1
|
Albracht-Schulte KD, Flynn L, Gary A, Perry CM, Robert-McComb JJ. The Physiology of Anorexia Nervosa and Bulimia Nervosa. THE ACTIVE FEMALE 2023:95-117. [DOI: 10.1007/978-3-031-15485-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Akalu Y, Molla MD, Dessie G, Ayelign B. Physiological Effect of Ghrelin on Body Systems. Int J Endocrinol 2020; 2020:1385138. [PMID: 32565790 PMCID: PMC7267865 DOI: 10.1155/2020/1385138] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/08/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Ghrelin is a relatively novel multifaceted hormone that has been found to exert a plethora of physiological effects. In this review, we found/confirmed that ghrelin has effect on all body systems. It induces appetite; promotes the use of carbohydrates as a source of fuel while sparing fat; inhibits lipid oxidation and promotes lipogenesis; stimulates the gastric acid secretion and motility; improves cardiac performance; decreases blood pressure; and protects the kidneys, heart, and brain. Ghrelin is important for learning, memory, cognition, reward, sleep, taste sensation, olfaction, and sniffing. It has sympatholytic, analgesic, antimicrobial, antifibrotic, and osteogenic effects. Moreover, ghrelin makes the skeletal muscle more excitable and stimulates its regeneration following injury; delays puberty; promotes fetal lung development; decreases thyroid hormone and testosterone; stimulates release of growth hormone, prolactin, glucagon, adrenocorticotropic hormone, cortisol, vasopressin, and oxytocin; inhibits insulin release; and promotes wound healing. Ghrelin protects the body by different mechanisms including inhibition of unwanted inflammation and induction of autophagy. Having a clear understanding of the ghrelin effect in each system has therapeutic implications. Future studies are necessary to elucidate the molecular mechanisms of ghrelin actions as well as its application as a GHSR agonist to treat most common diseases in each system without any paradoxical outcomes on the other systems.
Collapse
Affiliation(s)
- Yonas Akalu
- Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Gashaw Dessie
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
3
|
Wang L, Goebel-Stengel M, Yuan PQ, Stengel A, Taché Y. Corticotropin-releasing factor overexpression in mice abrogates sex differences in body weight, visceral fat, and food intake response to a fast and alters levels of feeding regulatory hormones. Biol Sex Differ 2017; 8:2. [PMID: 28101317 PMCID: PMC5237138 DOI: 10.1186/s13293-016-0122-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/14/2016] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Corticotropin-releasing factor overexpressing (CRF-OE) male mice showed an inhibited feeding response to a fast, and lower plasma acyl ghrelin and Fos expression in the arcuate nucleus compared to wild-type (WT) mice. We investigated whether hormones and hypothalamic feeding signals are impaired in CRF-OE mice and the influence of sex. METHODS Male and female CRF-OE mice and WT littermates (4-6 months old) fed ad libitum or overnight fasted were assessed for body, adrenal glands and perigonadal fat weights, food intake, plasma hormones, blood glucose, and mRNA hypothalamic signals. RESULTS Under fed conditions, compared to WT, CRF-OE mice have increased adrenal glands and perigonadal fat weight, plasma corticosterone, leptin and insulin, and hypothalamic leptin receptor and decreased plasma acyl ghrelin. Compared to male, female WT mice have lower body and perigonadal fat and plasma leptin but higher adrenal glands weights. CRF-OE mice lost these sex differences except for the adrenals. Male CRF-OE and WT mice did not differ in hypothalamic expression of neuropeptide Y (NPY) and proopiomelanocortin (POMC), while female CRF-OE compared to female WT and male CRF-OE had higher NPY mRNA levels. After fasting, female WT mice lost more body weight and ate more food than male WT, while CRF-OE mice had reduced body weight loss and inhibited food intake without sex difference. In male WT mice, fasting reduced plasma insulin and leptin and increased acyl ghrelin and corticosterone while female WT showed only a rise in corticosterone. In CRF-OE mice, fasting reduced insulin while leptin, acyl ghrelin and corticosterone were unchanged with no sex difference. Fasting blood glucose was higher in CRF-OE with female > male. In WT mice, fasting increased hypothalamic NPY expression in both sexes and decreased POMC only in males, while in CRF-OE mice, NPY did not change, and POMC decreased in males and increased in females. CONCLUSIONS These data indicate that CRF-OE mice have abnormal basal and fasting circulating hormones and hypothalamic feeding-related signals. CRF-OE also abolishes the sex difference in body weight, abdominal fat, and fasting-induced feeding and changes in plasma levels of leptin and acyl ghrelin.
Collapse
Affiliation(s)
- Lixin Wang
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, David Geffen School of Medicine, University of California at Los Angeles and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California USA
| | - Miriam Goebel-Stengel
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, David Geffen School of Medicine, University of California at Los Angeles and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California USA ; Present address: Department for Internal Medicine, Martin-Luther-Krankenhaus, Caspar-Theyß-Str. 27-31, 14193 Berlin, Germany
| | - Pu-Qing Yuan
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, David Geffen School of Medicine, University of California at Los Angeles and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California USA
| | - Andreas Stengel
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, David Geffen School of Medicine, University of California at Los Angeles and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California USA ; Present address: Department for Psychosomatic Medicine, Charité Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Yvette Taché
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress, Department of Medicine, Digestive Diseases Division, David Geffen School of Medicine, University of California at Los Angeles and Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California USA
| |
Collapse
|
4
|
Ibrahim Abdalla MM. Ghrelin - Physiological Functions and Regulation. EUROPEAN ENDOCRINOLOGY 2015; 11:90-95. [PMID: 29632576 DOI: 10.17925/ee.2015.11.02.90] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/13/2015] [Indexed: 01/01/2023]
Abstract
Ghrelin is an orexigenic peptide predominantly secreted from the stomach and stimulates appetite and growth hormone (GH) release. Studies have provided evidence that ghrelin exercises a wide range of functions, including regulation of food intake and energy metabolism, modulation of cardiovascular function, stimulation of osteoblast proliferation and bone formation and stimulation of neurogenesis and myogenesis. In the gastrointestinal system, ghrelin affects multiple functions, including secretion of gastric acid, gastric motility and pancreatic protein output. Most of these functions have been attributed to the actions of acylated ghrelin. The balance among its secretion rate, degradation rate and clearance rate determines the circulating level of ghrelin. This review explains what ghrelin is, its physiological functions and the factors that influence its level.
Collapse
|
5
|
Duca FA, Sakar Y, Covasa M. The modulatory role of high fat feeding on gastrointestinal signals in obesity. J Nutr Biochem 2014; 24:1663-77. [PMID: 24041374 DOI: 10.1016/j.jnutbio.2013.05.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/13/2013] [Accepted: 05/28/2013] [Indexed: 01/03/2023]
Abstract
The gastrointestinal (GI) tract is a specialized sensory system that detects and responds to constant changes in nutrient- and bacterial-derived intestinal signals, thus contributing to controls of food intake. Chronic exposure to dietary fat causes morphological, physiological and metabolic changes leading to disruptions in the regulatory feeding pathways promoting more efficient fat absorption and utilization, blunted satiation signals and excess adiposity. Accumulating evidence demonstrates that impaired gastrointestinal signals following long-term high fat consumption are, at least partially, responsible for increased caloric intake. This review focuses on the role of dietary fat in modulating oral and post-oral chemosensory signaling elements responsible for lipid detection and responses, including changes in sensitivity to satiation signals, such as GLP-1, PYY and CCK and their impact on food intake and weight gain. Furthermore, the influence of the gut microbiota on mechanisms controlling energy regulation in the face of excessive fat exposure will be explored. The profound influence of dietary fats on altering complex regulatory feeding pathways can result in dysregulation of body weight and development of obesity, while restoration or manipulation of satiation signaling may prove an effective tool in prevention and treatment of obesity.
Collapse
Affiliation(s)
- Frank A Duca
- INRA, UMR 1319 Micalis, F-78352 Jouy-en-Josas, France; AgroParis Tech, UMR 1319, F-78352 Jouy-en-Josas, France; University Pierre and Marie Curie, 75006 Paris, France
| | | | | |
Collapse
|
6
|
Zhao X, Yang S, Zhang W, Zu C, Tang B, Zhang B, Li G, Su L, Cai D. Fuzi-Lizhong pill compensates hypothyroid-hypothermia via ghrelin release. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:707-712. [PMID: 23920247 DOI: 10.1016/j.jep.2013.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/27/2013] [Accepted: 07/24/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzi-Lizhong pill (FLZ) is a traditional Chinese medicine for treating patients with Spleen Yang deficient syndrome. Ghrelin, a peptide with 28 amino acid residues, plays multiple roles in thermogenesis. This study aims to explore FLZ regulating ghrelin to compensate hypothermia in rats with hypothyroid and indigestion. MATERIALS AND METHODS In litter-matched rats, hypothermia was developed with both thyroidectomy at d1 and interscapular brown adipose (IBA) removal at d42, indigestion was induced with both high fat diet and fasting-feeding cycle from d56; the littermates with hypothermia and indigestion were administrated with FLZ from d70. Adaptive thermogenesis, thyroid hormones, metabolites, ghrelin dynamics were measured at d98. RESULTS The results showed that plasma ghrelin levels were inversely correlated with the gastric ghrelin levels and adaptive thermogenesis in rats undergone both thyroidectomy and IBA removal. Fatty diet and FLZ enhanced the increase of plasma ghrelin of hypothyroid rats. These were supported by the changes of plasma thyroid related hormones, plasma metabolites, gastric ghrelin mRNA and protein, and the effects of fatty diet or FLZ. CONCLUSIONS Our results suggest that more ghrelin release compensate chronic hypothermia in rats with both hypothyroidism and indigestion. It could explain the mechanisms of FLZ in relieving chronic hypothermia.
Collapse
Affiliation(s)
- Xin Zhao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zakhari JS, Zorrilla EP, Zhou B, Mayorov AV, Janda KD. Oligoclonal antibody targeting ghrelin increases energy expenditure and reduces food intake in fasted mice. Mol Pharm 2011; 9:281-9. [PMID: 22149064 DOI: 10.1021/mp200376c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ghrelin, an enteric peptide hormone linked to the pathophysiology of obesity has been a therapeutic target of great interest over the past decade. Many research efforts have focused on the antagonism of ghrelin's endogenous receptor GHSR1a, which is found along ascending vagal afferent fibers, as well as in the arcuate nucleus of the hypothalamus. Additionally, peptidic inhibitors of ghrelin O-acyltransferase, the enzyme responsible for the paracrine activation of ghrelin, have recently been studied. Our research has taken an alternative immunological approach, studying both active and passive vaccination as a means to sequester ghrelin in the periphery, with the original discovery in rat of decreased feed efficiency and adiposity, as well as increased metabolic activity. Using our previous hapten designs as a stepping-stone, three monoclonal antibodies (JG2, JG3, and JG4) were procured against ghrelin and tested in vivo. While mAb JG4 had the highest affinity for ghrelin, it failed to attenuate the orexigenic effects of food deprivation on energy metabolism or food intake in mice. However, animals that were administered a combination of JG3:JG4 (termed a doublet) or JG2:JG3:JG4 (termed a triplet) demonstrated higher heat dispersion and rate of respiration (higher CO(2) emission and O(2) consumption) during a 24 h fast refeed. Mice administered the triplet cocktail of JG2:JG3:JG4 also demonstrated decreased food intake upon refeeding as compared to control animals. Recently, Lu and colleagues reported that a passive approach using a single, high affinity N-terminally directed monoclonal antibody did not abrogate the effects of endogenous ghrelin. Our current report corroborates this finding, yet, refutes that a monoclonal antibody approach cannot be efficacious. Rather, we find that a multiple monoclonal antibody (oligoclonal) approach can reproduce the underlying logic to previously reported efficacies using active vaccinations.
Collapse
Affiliation(s)
- Joseph S Zakhari
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
8
|
Influence of a long-term high-fat diet on ghrelin secretion and ghrelin-induced food intake in rats. ACTA ACUST UNITED AC 2011; 173:60-3. [PMID: 21971115 DOI: 10.1016/j.regpep.2011.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/30/2011] [Accepted: 09/16/2011] [Indexed: 11/22/2022]
Abstract
The aims of this study were: (1) to define the extent to which a high-fat (HF) diet given on a long-term basis reduces resting plasma ghrelin (total [acyl+des-acyl]) levels and the plasma ghrelin (total) response to fasting, (2) to determine whether a chronic HF diet modifies the orexigenic activity of acyl-ghrelin, (3) whether insulin pretreatment inhibits the plasma ghrelin (total) response to fasting, and (4) the extent to which pioglitazone (PIO) treatment will increase stomach and plasma ghrelin (total) levels in rats fed a HF diet. PIO is a drug given to diabetics which improves insulin resistance. Our findings show that a chronic HF diet given for either 10 or 60 weeks exerts a persistent inhibitory effect on resting plasma ghrelin (total) levels. Additionally, the plasma ghrelin (total) elevation to overnight fasting is not altered in rats fed a HF diet on a long-term basis. A HF diet does not impair the ingestive response to acyl-ghrelin. Together, these results suggest that acyl-ghrelin serves as an important orexigenic factor. Results show that insulin pretreatment does not inhibit the plasma ghrelin (total) response to fasting suggesting that meal-induced insulin secretion does not have a role in reducing ghrelin (total) secretion. In rats fed a HF diet, PIO administration increases stomach ghrelin (total) levels. Because PIO can reduce systemic glucose and lipid levels, our findings suggest that elevated glucose and lipid levels are part of the inhibitory mechanism behind reduced ghrelin (total) secretion in rats fed a HF diet.
Collapse
|
9
|
Sculati M, Rossi F, Cena H, Roggi C. Effect of dietary glycemic index on food intake, adiposity, and fasting plasma ghrelin levels in animals. J Endocrinol Invest 2010; 33:250-3. [PMID: 19915384 DOI: 10.1007/bf03345788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND An increase in lipid storage as a consequence of feeding animals with high-glycemic index (GI) diets has been observed by many authors. Ghrelin is one of the most important orexigenic hormones, and curiously, its fasting plasma levels are decreased in human obesity. AIM As ghrelin secretion is affected by insulin concentration, we hypothesized that carbohydrates with different glycemic responses might influence fasting plasma ghrelin levels. MATERIAL AND METHODS Twenty rats were divided into two groups and fed ad libitum a low-GI or a high-GI diet for 21 days. RESULTS In rats fed a high- vs low-GI diet we observed: increased food intake (18.9+/-0.6 vs 16.4+/-2.0 g/day; p<0.01), increased weight gain (28.8+/-6.6 vs 16.4+/-6% of initial weight; p<0.01), higher relative weight of epididymal fat pads (1.7+/-0.4 vs 1.4+/-0.3%; p=0.05), but lower total fasting ghrelin levels (41.1+/-10.7 vs 59.5+/-9.8 pg/ml; p=0.05). CONCLUSIONS Ghrelin appeared to be downregulated in rats fed a high-GI diet; this observation could be related to the higher food intake and fat mass observed in these rats and to the effects of insulin response on ghrelin levels.
Collapse
Affiliation(s)
- M Sculati
- Department of Applied Sciences, Section of Human Nutrition, University of Pavia School of Medicine, 27100 - Pavia, Italy.
| | | | | | | |
Collapse
|
10
|
Castañeda TR, Tong J, Datta R, Culler M, Tschöp MH. Ghrelin in the regulation of body weight and metabolism. Front Neuroendocrinol 2010; 31:44-60. [PMID: 19896496 DOI: 10.1016/j.yfrne.2009.10.008] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 10/26/2009] [Accepted: 10/26/2009] [Indexed: 12/25/2022]
Abstract
Ghrelin, a peptide hormone predominantly produced by the stomach, was isolated as the endogenous ligand for the growth hormone secretagogue receptor. Ghrelin is a potent stimulator of growth hormone (GH) secretion and is the only circulatory hormone known to potently enhance feeding and weight gain and to regulate energy homeostasis following central and systemic administration. Therapeutic intervention with ghrelin in catabolic situations may induce a combination of enhanced food intake, increased gastric emptying and nutrient storage, coupled with an increase in GH thereby linking nutrient partitioning with growth and repair processes. These qualities have fostered the idea that ghrelin-based compounds may have therapeutic utility in treating malnutrition and wasting induced by various sub-acute and chronic disorders. Conversely, compounds that inhibit ghrelin action may be useful for the prevention or treatment of metabolic syndrome components such as obesity, impaired lipid metabolism or insulin resistance. In recent years, the effects of ghrelin on glucose homeostasis, memory function and gastrointestinal motility have attracted considerable amount of attention and revealed novel therapeutic targets in treating a wide range of pathologic conditions. Furthermore, discovery of ghrelin O-acyltransferase has also opened new research opportunities that could lead to major understanding of ghrelin physiology. This review summarizes the current knowledge on ghrelin synthesis, secretion, mechanism of action and biological functions with an additional focus on potential for ghrelin-based pharmacotherapies.
Collapse
Affiliation(s)
- T R Castañeda
- Dept. of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine, University of Toledo, Toledo, OH, USA
| | | | | | | | | |
Collapse
|
11
|
Chen CY, Asakawa A, Fujimiya M, Lee SD, Inui A. Ghrelin gene products and the regulation of food intake and gut motility. Pharmacol Rev 2009; 61:430-81. [PMID: 20038570 DOI: 10.1124/pr.109.001958] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A breakthrough using "reverse pharmacology" identified and characterized acyl ghrelin from the stomach as the endogenous cognate ligand for the growth hormone (GH) secretagogue receptor (GHS-R) 1a. The unique post-translational modification of O-n-octanoylation at serine 3 is the first in peptide discovery history and is essential for GH-releasing ability. Des-acyl ghrelin, lacking O-n-octanoylation at serine 3, is also produced in the stomach and remains the major molecular form secreted into the circulation. The third ghrelin gene product, obestatin, a novel 23-amino acid peptide identified from rat stomach, was found by comparative genomic analysis. Three ghrelin gene products actively participate in modulating appetite, adipogenesis, gut motility, glucose metabolism, cell proliferation, immune, sleep, memory, anxiety, cognition, and stress. Knockdown or knockout of acyl ghrelin and/or GHS-R1a, and overexpression of des-acyl ghrelin show benefits in the therapy of obesity and metabolic syndrome. By contrast, agonism of acyl ghrelin and/or GHS-R1a could combat human anorexia-cachexia, including anorexia nervosa, chronic heart failure, chronic obstructive pulmonary disease, liver cirrhosis, chronic kidney disease, burn, and postsurgery recovery, as well as restore gut dysmotility, such as diabetic or neurogenic gastroparesis, and postoperative ileus. The ghrelin acyl-modifying enzyme, ghrelin O-Acyltransferase (GOAT), which attaches octanoate to serine-3 of ghrelin, has been identified and characterized also from the stomach. To date, ghrelin is the only protein to be octanylated, and inhibition of GOAT may have effects only on the stomach and is unlikely to affect the synthesis of other proteins. GOAT may provide a critical molecular target in developing novel therapeutics for obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Chih-Yen Chen
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Japan
| | | | | | | | | |
Collapse
|
12
|
Wells T. Ghrelin – Defender of fat. Prog Lipid Res 2009; 48:257-74. [DOI: 10.1016/j.plipres.2009.04.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/09/2009] [Accepted: 04/21/2009] [Indexed: 12/21/2022]
|