1
|
Ilarraza-Lomelí H, Rius-Suárez MD. Complexus cordis. ARCHIVOS DE CARDIOLOGIA DE MEXICO 2020; 91:327-336. [PMID: 33232968 PMCID: PMC8351662 DOI: 10.24875/acm.200000391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/18/2020] [Indexed: 11/17/2022] Open
Abstract
The science-based study of the heart has allowed us to know its structure and function deeply, through the fragmentation and analysis of its parts, following the guidelines that so many achievements have given to us. However, at the time of reassembling those analyzed fragments, we realize that something is missing; the simply sum of the parts is not equal to everything. Thus, for decades, numerous scientists have studied novel strategies that allow us understanding, every natural phenomena from a more inclusive, open and integrative models, which closely address to interactions rather than components. In this way, we can observe how, the behavior of many variables usually transgress the conventional plane and moves towards non-linearity and fractality, making a complex tissue that will maintain its structure while thermodynamically viable. Thus, this document shows the way how, the non-linear study of complex cardiovascular dynamics, begins to give us answers to many questions that the clinical cardiologist poses every day.
Collapse
Affiliation(s)
- Hermes Ilarraza-Lomelí
- Servicio de Rehabilitación Cardiaca y Medicina Física, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| | - María D. Rius-Suárez
- Servicio de Rehabilitación Cardiaca y Medicina Física, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, México
| |
Collapse
|
2
|
Sobiech T, Buchner T, Krzesiński P, Gielerak G. Cardiorespiratory coupling in young healthy subjects. Physiol Meas 2017; 38:2186-2202. [PMID: 29076810 DOI: 10.1088/1361-6579/aa9693] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To quantify the presence of cardiorespiratory interaction in a group of 41 healthy subjects performing a subset of the Ewing test battery. APPROACH We measure the empirical distribution of the cardiorespiratory coupling time (RI), defined as the time from inspiration onset to R peaks in the ECG. The study protocol is a subset of the Ewing test battery. The respiratory function was measured with a thoracic belt and heart rate was obtained from a two channel ECG measurement. Both series of fiducial points were determined using custom software. Additionally, we determine the presence of cardiorespiratory coupling (CRC) and cardiorespiratory interaction (CRI) using Shannon entropy, synchrograms and coordigrams. MAIN RESULTS We observe that the RI distribution is asymmetric and nonuniform. These features are a manifestation of the causal relation between heart action and respiration. The preceding R peak strongly affects a position of inspiration onset. From the asymmetry of the RI distribution we conclude that this relation is stronger than the relation between inspiration onset and the following R peak. We use a suitable choice of surrogate data to prove that the result cannot be falsified. We observe a dual structure of the RI histograms, which may be related to the respiratory rhythmogenesis. We compare the sensitivity of RI histograms with other measures of CRI and CRC. In 46% of subjects, CRC appears in at least one stage of the examination, most often in resting states. In states of increased stress-orthostasis or physical (exercise)-the strength of coupling is visibly diminished. The nonuniform structure of the RI histogram is more sensitive to the presence of CRI than synchrograms or coordigrams are, as is well visible in the group averages. We also refer to the question of the most proper mathematical description of cardiorespiratory dynamics (phase domain or time domain). Finally, we formulate the hypothesis that the arterial blood pressure is a common driver of cardiac and respiratory rhythms. SIGNIFICANCE Analysis of the asymmetry of RI histograms is an interesting and sensitive method to study cardiorespiratory interaction and autonomic balance, in order to assess physical and mental health. The dual structure of the RI histograms which we have observed suggests the possible presence of a twofold mechanism for respiratory rhythmogenesis, as proposed by Galletly and Larsen.
Collapse
Affiliation(s)
- Tomasz Sobiech
- Cardiovascular Physics Group, Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
| | | | | | | |
Collapse
|
3
|
Bifurcation of the respiratory response to lung inflation in anesthetized dogs. Respir Physiol Neurobiol 2017; 244:26-31. [PMID: 28698025 DOI: 10.1016/j.resp.2017.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 11/23/2022]
Abstract
Numerous studies have demonstrated the effect of lung volume on prolongation of duration of expiration (TE) with limited understanding of the TE shortening and termination of expiration as observed in newborn. In 14 dogs, the effects of varied onset of lung inflation during expiration on the TE were evaluated. When lung inflation was applied in the first part of expiration (20-60% of TE) TE was lengthened. However, in the second portion (60-80% of TE) of expiration, lung inflation either terminated or prolonged TE; whereas in the last portion of expiration (80-90% of TE), lung inflation tended to terminate expiration prematurely. The effects were abolished after bilateral vagotomy. We postulate that prolongation of TE relates to the Breuer-Hering inflation reflex, which increases the time needed for a passive expiration; whereas the ability to shorten TE could relate to Head's paradoxical reflex acting to initiate inspiration or to activate inspiratory motor activity to brake expiratory flow as occurs in the newborn.
Collapse
|
4
|
Kjetså E, Skjaervold NK, Skogvoll E, Kirkeby-Garstad I. Synchronizing thermodilution cardiac output measurements with spontaneous breathing does not improve precision. Acta Anaesthesiol Scand 2016; 60:354-9. [PMID: 26497869 DOI: 10.1111/aas.12650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Measuring cardiac output (CO) with the pulmonary artery catheter intermittent bolus thermodilution technique (PAC-IBTD) is less precise with spontaneous breathing compared to controlled ventilation. We aimed to test if precision could be improved in spontaneous breathing by synchronizing the measurement with respiration or using instructed respiration in 18 post-operative cardiac surgery patients. METHODS We performed eight CO measurements with PAC-IBTD using cold saline in three different situations; in random order: 1) random compared to respiration, 2) timed to the start of expiration, and 3) synchronized with a slow exhalation through a PEP-flute. We calculated the standard deviation (SD), coefficient of variation (CV), and precision in the total material and in the three situations using a linear mixed effects model. RESULTS A total of 408 CO measurements were performed in 17 included patients. There were no differences between the three study situations regarding mean or precision. The overall CO was 6.0 ± 1.4 l/min (mean ± SD), CV 6.2% and precision 12.2% for single measurements. Averaging three measurements increased the precision to 7.0%. CONCLUSION We could not improve the precision of PAC-IBTD in spontaneously breathing patients by synchronizing the measurements with respiration.
Collapse
Affiliation(s)
- E. Kjetså
- Department of Circulation and Medical Imaging; Norwegian University of Science and Technology; Trondheim Norway
- Department of Anaesthesia and Intensive Care Medicine; Trondheim University Hospital; Trondheim Norway
| | - N. K. Skjaervold
- Department of Circulation and Medical Imaging; Norwegian University of Science and Technology; Trondheim Norway
- Department of Anaesthesia and Intensive Care Medicine; Trondheim University Hospital; Trondheim Norway
| | - E. Skogvoll
- Department of Circulation and Medical Imaging; Norwegian University of Science and Technology; Trondheim Norway
- Department of Anaesthesia and Intensive Care Medicine; Trondheim University Hospital; Trondheim Norway
| | - I. Kirkeby-Garstad
- Department of Circulation and Medical Imaging; Norwegian University of Science and Technology; Trondheim Norway
- Department of Anaesthesia and Intensive Care Medicine; Trondheim University Hospital; Trondheim Norway
| |
Collapse
|
6
|
Hess A, Yu L, Klein I, De Mazancourt M, Jebrak G, Mal H, Brugière O, Fournier M, Courbage M, Dauriat G, Schouman-Clayes E, Clerici C, Mangin L. Neural mechanisms underlying breathing complexity. PLoS One 2013; 8:e75740. [PMID: 24098396 PMCID: PMC3789752 DOI: 10.1371/journal.pone.0075740] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 08/20/2013] [Indexed: 01/22/2023] Open
Abstract
Breathing is maintained and controlled by a network of automatic neurons in the brainstem that generate respiratory rhythm and receive regulatory inputs. Breathing complexity therefore arises from respiratory central pattern generators modulated by peripheral and supra-spinal inputs. Very little is known on the brainstem neural substrates underlying breathing complexity in humans. We used both experimental and theoretical approaches to decipher these mechanisms in healthy humans and patients with chronic obstructive pulmonary disease (COPD). COPD is the most frequent chronic lung disease in the general population mainly due to tobacco smoke. In patients, airflow obstruction associated with hyperinflation and respiratory muscles weakness are key factors contributing to load-capacity imbalance and hence increased respiratory drive. Unexpectedly, we found that the patients breathed with a higher level of complexity during inspiration and expiration than controls. Using functional magnetic resonance imaging (fMRI), we scanned the brain of the participants to analyze the activity of two small regions involved in respiratory rhythmogenesis, the rostral ventro-lateral (VL) medulla (pre-Bötzinger complex) and the caudal VL pons (parafacial group). fMRI revealed in controls higher activity of the VL medulla suggesting active inspiration, while in patients higher activity of the VL pons suggesting active expiration. COPD patients reactivate the parafacial to sustain ventilation. These findings may be involved in the onset of respiratory failure when the neural network becomes overwhelmed by respiratory overload We show that central neural activity correlates with airflow complexity in healthy subjects and COPD patients, at rest and during inspiratory loading. We finally used a theoretical approach of respiratory rhythmogenesis that reproduces the kernel activity of neurons involved in the automatic breathing. The model reveals how a chaotic activity in neurons can contribute to chaos in airflow and reproduces key experimental fMRI findings.
Collapse
Affiliation(s)
- Agathe Hess
- Laboratoire Matière et Systèmes complexes, UMR 7057, CNRS, Université Paris 7, Paris, France
- Service de Radiologie, APHP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Lianchun Yu
- Laboratoire Matière et Systèmes complexes, UMR 7057, CNRS, Université Paris 7, Paris, France
- Institute of Theoretical Physics, Lanzhou University, Lanzhou, China
| | - Isabelle Klein
- Service de Radiologie, APHP, Hôpital Bichat-Claude Bernard, Paris, France
- Unité Inserm 698, Université Paris 7, Paris, France
| | - Marine De Mazancourt
- Laboratoire Matière et Systèmes complexes, UMR 7057, CNRS, Université Paris 7, Paris, France
- Ecole Normale Supérieure, Paris, France
| | - Gilles Jebrak
- Service de Pneumologie B, APHP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Hervé Mal
- Service de Pneumologie B, APHP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Olivier Brugière
- Service de Pneumologie B, APHP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Michel Fournier
- Service de Pneumologie B, APHP, Hôpital Bichat-Claude Bernard, Paris, France
| | - Maurice Courbage
- Laboratoire Matière et Systèmes complexes, UMR 7057, CNRS, Université Paris 7, Paris, France
| | - Gaelle Dauriat
- Service de Pneumologie B, APHP, Hôpital Bichat-Claude Bernard, Paris, France
| | | | - Christine Clerici
- Département de Physiologie-Explorations fonctionnelles, APHP, Hôpital Bichat-Claude Bernard, Paris, France
- Unité Inserm 700, Université Paris 7, Paris, France
| | - Laurence Mangin
- Laboratoire Matière et Systèmes complexes, UMR 7057, CNRS, Université Paris 7, Paris, France
- Département de Physiologie-Explorations fonctionnelles, APHP, Hôpital Bichat-Claude Bernard, Paris, France
- Centre d’Investigation Clinique APHP, Hôpital Bichat, Paris, France
- * E-mail:
| |
Collapse
|
7
|
Cabiddu R, Cerutti S, Viardot G, Werner S, Bianchi AM. Modulation of the Sympatho-Vagal Balance during Sleep: Frequency Domain Study of Heart Rate Variability and Respiration. Front Physiol 2012; 3:45. [PMID: 22416233 PMCID: PMC3299415 DOI: 10.3389/fphys.2012.00045] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 02/20/2012] [Indexed: 11/13/2022] Open
Abstract
Sleep is a complex state characterized by important changes in the autonomic modulation of the cardiovascular activity. Heart rate variability (HRV) greatly changes during different sleep stages, showing a predominant parasympathetic drive to the heart during non-rapid eye movement (NREM) sleep and an increased sympathetic activity during rapid eye movement (REM) sleep. Respiration undergoes important modifications as well, becoming deeper and more regular with deep sleep and shallower and more frequent during REM sleep. The aim of the present study is to assess both autonomic cardiac regulation and cardiopulmonary coupling variations during different sleep stages in healthy subjects, using spectral and cross-spectral analysis of the HRV and respiration signals. Polysomnographic sleep recordings were performed in 11 healthy women and the HRV signal and the respiration signal were obtained. The spectral and cross-spectral parameters of the HRV signal and of the respiration signal were computed at low frequency and at breathing frequency (high frequency, HF) during different sleep stages. Results attested a sympatho-vagal balance shift toward parasympathetic modulation during NREM sleep and toward sympathetic modulation during REM sleep. Spectral analysis of the HRV signal and of the respiration signal indicated a higher respiration regularity during deep sleep, and a higher parasympathetic drive was also confirmed by an increase in the coherence between the HRV and the respiration signal in the HF band during NREM sleep. Our findings about sleep stage-dependent variations in the HRV signal and in the respiratory activity are in line with previous evidences and confirm spectral analysis of the HRV and the respiration signal to be a suitable tool for investigating cardiac autonomic modulation and cardio-respiratory coupling during sleep.
Collapse
Affiliation(s)
- Ramona Cabiddu
- Department of Biomedical Engineering, Politecnico di Milano Milano, Italy
| | | | | | | | | |
Collapse
|
8
|
Mangin L, Lesèche G, Duprey A, Clerici C. Ventilatory chaos is impaired in carotid atherosclerosis. PLoS One 2011; 6:e16297. [PMID: 21297985 PMCID: PMC3030574 DOI: 10.1371/journal.pone.0016297] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 12/20/2010] [Indexed: 11/19/2022] Open
Abstract
Ventilatory chaos is strongly linked to the activity of central pattern generators, alone or influenced by respiratory or cardiovascular afferents. We hypothesized that carotid atherosclerosis should alter ventilatory chaos through baroreflex and autonomic nervous system dysfunctions. Chaotic dynamics of inspiratory flow was prospectively evaluated in 75 subjects undergoing carotid ultrasonography: 27 with severe carotid stenosis (>70%), 23 with moderate stenosis (<70%), and 25 controls. Chaos was characterized by the noise titration method, the correlation dimension and the largest Lyapunov exponent. Baroreflex sensitivity was estimated in the frequency domain. In the control group, 92% of the time series exhibit nonlinear deterministic chaos with positive noise limit, whereas only 68% had a positive noise limit value in the stenoses groups. Ventilatory chaos was impaired in the groups with carotid stenoses, with significant parallel decrease in the noise limit value, correlation dimension and largest Lyapunov exponent, as compared to controls. In multiple regression models, the percentage of carotid stenosis was the best in predicting the correlation dimension (p<0.001, adjusted R(2): 0.35) and largest Lyapunov exponent (p<0.001, adjusted R(2): 0.6). Baroreflex sensitivity also predicted the correlation dimension values (p = 0.05), and the LLE (p = 0.08). Plaque removal after carotid surgery reversed the loss of ventilatory complexity. To conclude, ventilatory chaos is impaired in carotid atherosclerosis. These findings depend on the severity of the stenosis, its localization, plaque surface and morphology features, and is independently associated with baroreflex sensitivity reduction. These findings should help to understand the determinants of ventilatory complexity and breathing control in pathological conditions.
Collapse
Affiliation(s)
- Laurence Mangin
- Assistance Publique-Hôpitaux de Paris, Hôpital Bichat-Claude Bernard, Service de Physiologie, Paris, France.
| | | | | | | |
Collapse
|
9
|
Cardiorespiratory phase-coupling is reduced in patients with obstructive sleep apnea. PLoS One 2010; 5:e10602. [PMID: 20485528 PMCID: PMC2869347 DOI: 10.1371/journal.pone.0010602] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 04/18/2010] [Indexed: 12/19/2022] Open
Abstract
Cardiac and respiratory rhythms reveal transient phases of phase-locking which were proposed to be an important aspect of cardiorespiratory interaction. The aim of this study was to quantify cardio-respiratory phase-locking in obstructive sleep apnea (OSA). We investigated overnight polysomnography data of 248 subjects with suspected OSA. Cardiorespiratory phase-coupling was computed from the R-R intervals of body surface ECG and respiratory rate, calculated from abdominal and thoracic sensors, using Hilbert transform. A significant reduction in phase-coupling was observed in patients with severe OSA compared to patients with no or mild OSA. Cardiorespiratory phase-coupling was also associated with sleep stages and was significantly reduced during rapid-eye-movement (REM) sleep compared to slow-wave (SW) sleep. There was, however, no effect of age and BMI on phase coupling. Our study suggests that the assessment of cardiorespiratory phase coupling may be used as an ECG based screening tool for determining the severity of OSA.
Collapse
|