1
|
Carriere P, Calvo N, Novoa Díaz MB, Lopez-Moncada F, Herrera A, Torres MJ, Alonso E, Gandini NA, Gigola G, Contreras HR, Gentili C. Role of SPARC in the epithelial-mesenchymal transition induced by PTHrP in human colon cancer cells. Mol Cell Endocrinol 2021; 530:111253. [PMID: 33781836 DOI: 10.1016/j.mce.2021.111253] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/27/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022]
Abstract
Parathyroid hormone-related peptide (PTHrP) exerts its effects on cells derived from colorectal cancer (CRC) and tumor microenvironment and is involved in processes requiring the epithelial-mesenchymal transition (EMT). Here, we report that PTHrP modulates factors expression and morphological changes associated with EMT in HCT116 cells from CRC. PTHrP increased the protein expression of SPARC, a factor involved in EMT, in HCT116 cells but not in Caco-2 cells also from CRC but with less aggressiveness. PTHrP also increased SPARC expression and its subsequent release from endothelial HMEC-1 cells. The conditioned media of PTHrP-treated HMEC-1 cells induced early changes related to EMT in HCT116 cells. Moreover, SPARC treatment on HCT116 cells potentiated PTHrP modulation in E-cadherin expression and cell migration. In vivo PTHrP also increased SPARC expression and decreased E-cadherin expression. These results suggest a novel PTHrP action on CRC progression involving the microenvironment in the modulation of events associated with EMT.
Collapse
Affiliation(s)
- Pedro Carriere
- Department of Biology, Biochemistry and Pharmacy-INBIOSUR, National University of the South, Bahía Blanca, Argentina
| | - Natalia Calvo
- Department of Biology, Biochemistry and Pharmacy-INBIOSUR, National University of the South, Bahía Blanca, Argentina
| | - María Belén Novoa Díaz
- Department of Biology, Biochemistry and Pharmacy-INBIOSUR, National University of the South, Bahía Blanca, Argentina
| | - Fernanda Lopez-Moncada
- Department of Basic and Clinic Oncology. Faculty of Medicine, University of Chile, Chile
| | - Alexander Herrera
- Department of Basic and Clinic Oncology. Faculty of Medicine, University of Chile, Chile
| | - María José Torres
- Department of Basic and Clinic Oncology. Faculty of Medicine, University of Chile, Chile
| | | | | | - Graciela Gigola
- Department of Biology, Biochemistry and Pharmacy-INBIOSUR, National University of the South, Bahía Blanca, Argentina
| | - Hector R Contreras
- Department of Basic and Clinic Oncology. Faculty of Medicine, University of Chile, Chile
| | - Claudia Gentili
- Department of Biology, Biochemistry and Pharmacy-INBIOSUR, National University of the South, Bahía Blanca, Argentina.
| |
Collapse
|
2
|
He S, Tang J, Diao N, Liao Y, Shi J, Xu X, Xie F, Bai L. Parathyroid hormone-related protein activates HSCs via hedgehog signalling during liver fibrosis development. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2019; 47:1984-1994. [PMID: 31311343 DOI: 10.1080/21691401.2019.1615931] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022]
Abstract
Recently, we showed that parathyroid hormone-like hormone (PTHLH), a cytokine-like polyprotein, is critical for extracellular matrix (ECM) deposition through the activation of hepatic stellate cells (HSCs). Here, we show that N-terminal PTHLH is secreted into the supernatant of injured hepatocytes, its expression is positively correlated with liver fibrosis severity based on mice liver biopsies, and it is primarily expressed in the cytoplasm of hepatocytes along the fibrous septa of fibrotic livers. PTHLH overexpression in mice was achieved through adeno-associated virus-mediated gene delivery (AAV9-PTHLH), and liver fibrosis was induced with carbon tetrachloride (CCl4). We observed that AAV9-PTHLH induced spontaneous development of liver fibrosis and increased sensitivity to CCl4. PTHLH increased Hedgehog (Hh) pathway activation in a PTH1R-dependent manner, and the effect of PTHLH was primarily mediated by protein kinase C (PKC) θ. PTHLH-mediated PTH1R-PKC θ pathway activation is a key event in the profibrotic Hh-dependent activation of HSCs.
Collapse
Affiliation(s)
- Shuying He
- a Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Jing Tang
- a Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Na Diao
- a Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Yan Liao
- a Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Jie Shi
- a Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Xiaoping Xu
- a Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Fang Xie
- a Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Lan Bai
- a Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University , Guangzhou , China
| |
Collapse
|
3
|
He Y, Lang X, Cheng D, Yang Z. Curcumin Ameliorates Chronic Renal Failure in 5/6 Nephrectomized Rats by Regulation of the mTOR/HIF-1α/VEGF Signaling Pathway. Biol Pharm Bull 2019; 42:886-891. [PMID: 30918132 DOI: 10.1248/bpb.b18-00787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies implicated the mammalian target of rapamycin (mTOR)/hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathway in renal fibrosis and found that curcumin could suppress the expression of mTOR. Therefore, the aim of the present study was to investigate the therapeutic effects of curcumin against chronic renal failure (CRF) in a rat model induced by 5/6 nephrectomy through inhibition of mTOR/HIF-1α/VEGF signaling. A total of 70 male Sprague-Dawley rats were divided into seven groups: a sham group, a CRF group, and five treatment groups. Except for the sham rats, all rats underwent 5/6 nephrectomy to induce CRF. The 5/6 nephrectomized rats received treatment with curcumin vehicle, everolimus vehicle, curcumin, everolimus, or the combination of curcumin and everolimus. Everolimus, a specific inhibitor of mTOR, was used as a positive control. At the end of treatment, blood biochemical indexes, proteinuria and the kidney index were detected. Moreover, histological change was examined by hematoxylin and eosin staining, and protein expression levels were detected by Western blotting. The blood biochemical indexes, proteinuria, and kidney index were increased in the CRF group as compared to the sham group, which was accompanied by marked activation of the mTOR/HIF-1α/VEGF pathway. However, curcumin, as well as everolimus, restored or ameliorated these changes. These results indicate that activation of the mTOR/HIF-1α/VEGF signaling pathway plays an important role in the occurrence and development of CRF, and that curcumin has renoprotective effects by blocking activation of this pathway.
Collapse
Affiliation(s)
- Yangbiao He
- Department of Nephrology, Jinhua Hospital of Traditional Chinese Medicine
| | - Xujun Lang
- Department of Nephrology, Jinhua Hospital of Traditional Chinese Medicine
| | - Dong Cheng
- Department of Nephrology, Jinhua Hospital of Traditional Chinese Medicine
| | - Zhihao Yang
- Department of Nephrology, Jinhua Hospital of Traditional Chinese Medicine
| |
Collapse
|
4
|
Perretta‐Tejedor N, Muñoz‐Félix JM, Düwel A, Quiros‐Luis Y, Fernández‐Martín JL, Morales AI, López‐Hernández FJ, López‐Novoa JM, Martínez‐Salgado C. Cardiotrophin-1 opposes renal fibrosis in mice: Potential prevention of chronic kidney disease. Acta Physiol (Oxf) 2019; 226:e13247. [PMID: 30589223 DOI: 10.1111/apha.13247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/17/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
AIM Chronic kidney disease is characterized by tubulointerstitial fibrosis involving inflammation, tubular apoptosis, fibroblast proliferation and extracellular matrix accumulation. Cardiotrophin-1, a member of the interleukin-6 family of cytokines, protects several organs from damage by promoting survival and anti-inflammatory effects. However, whether cardiotrophin-1 participates in the response to chronic kidney injury leading to renal fibrosis is unknown. METHODS We hypothesized and assessed the potential role of cardiotrophin-1 in a mice model of tubulointerstitial fibrosis induced by unilateral ureteral obstruction (UUO). RESULTS Three days after UUO, obstructed kidneys from cardiotrophin-1-/- mice show higher expression of inflammatory markers IL-1β, Cd68, ICAM-1, COX-2 and iNOs, higher activation of NF-κB, higher amount of myofibroblasts and higher severity of tubular damage and apoptosis, compared with obstructed kidneys from wild-type littermates. In a later stage, obstructed kidneys from cardiotrophin-1-/- mice show higher fibrosis than obstructed kidneys from wild-type mice. Interestingly, administration of exogenous cardiotrophin-1 prevents the increased fibrosis resulting from the genetic knockout of cardiotrophin-1 upon UUO, and supplementation of wild-type mice with exogenous cardiotrophin-1 further reduces the renal fibrosis induced by UUO. In vitro, renal myofibroblasts from cardiotrophin-1-/- mice have higher collagen I and fibronectin expression and higher NF-κB activation than wild-type cells. CONCLUSIONS Cardiotrophin-1 participates in the endogenous response that opposes renal damage by counteracting the inflammatory, apoptotic and fibrotic processes. And exogenous cardiotrophin-1 is proposed as a candidate for the treatment and prevention of chronic renal fibrosis.
Collapse
Affiliation(s)
- Nuria Perretta‐Tejedor
- Department of Physiology and Pharmacology, Translational Research on Renal and Cardiovascular Diseases (TRECARD) University of Salamanca Salamanca Spain
- Institute of Health Sciences Studies of Castilla y Leon (IECSCYL) Salamanca Spain
- Institute of Biomedical Research of Salamanca (IBSAL) Salamanca Spain
| | - José M. Muñoz‐Félix
- Department of Physiology and Pharmacology, Translational Research on Renal and Cardiovascular Diseases (TRECARD) University of Salamanca Salamanca Spain
- Institute of Biomedical Research of Salamanca (IBSAL) Salamanca Spain
| | - Annette Düwel
- Department of Physiology and Pharmacology, Translational Research on Renal and Cardiovascular Diseases (TRECARD) University of Salamanca Salamanca Spain
- Institute of Health Sciences Studies of Castilla y Leon (IECSCYL) Salamanca Spain
- Institute of Biomedical Research of Salamanca (IBSAL) Salamanca Spain
| | - Yaremi Quiros‐Luis
- Department of Physiology and Pharmacology, Translational Research on Renal and Cardiovascular Diseases (TRECARD) University of Salamanca Salamanca Spain
| | - José L. Fernández‐Martín
- UGC Bone Metabolism Institute of Health Research of the Principality of Asturias (ISPA) Oviedo Asturias Spain
| | - Ana I. Morales
- Department of Physiology and Pharmacology, Translational Research on Renal and Cardiovascular Diseases (TRECARD) University of Salamanca Salamanca Spain
- Institute of Biomedical Research of Salamanca (IBSAL) Salamanca Spain
| | - Francisco J. López‐Hernández
- Department of Physiology and Pharmacology, Translational Research on Renal and Cardiovascular Diseases (TRECARD) University of Salamanca Salamanca Spain
- Institute of Health Sciences Studies of Castilla y Leon (IECSCYL) Salamanca Spain
- Institute of Biomedical Research of Salamanca (IBSAL) Salamanca Spain
| | - José M. López‐Novoa
- Department of Physiology and Pharmacology, Translational Research on Renal and Cardiovascular Diseases (TRECARD) University of Salamanca Salamanca Spain
- Institute of Biomedical Research of Salamanca (IBSAL) Salamanca Spain
| | - Carlos Martínez‐Salgado
- Department of Physiology and Pharmacology, Translational Research on Renal and Cardiovascular Diseases (TRECARD) University of Salamanca Salamanca Spain
- Institute of Health Sciences Studies of Castilla y Leon (IECSCYL) Salamanca Spain
- Institute of Biomedical Research of Salamanca (IBSAL) Salamanca Spain
| |
Collapse
|
5
|
Parathyroid hormone-related protein induces fibronectin up-regulation in rat mesangial cells through reactive oxygen species/Src/EGFR signaling. Biosci Rep 2019; 39:BSR20182293. [PMID: 30926678 PMCID: PMC6487264 DOI: 10.1042/bsr20182293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 01/19/2023] Open
Abstract
Parathyroid hormone-related protein (PTHrP) is known to be up-regulated in both glomeruli and tubules in patients with diabetic kidney disease (DKD), but its role remains unclear. Previous studies show that PTHrP-induced hypertrophic response in mesangial cells (MCs) and epithelial-mesenchymal transition (EMT) in tubuloepithelial cells can be mediated by TGF-β1. In the present study, although long-term PHTrP (1-34) treatment increased the mRNA and protein level of TGF-β1 in primary rat MCs, fibronectin up-regulation occurred earlier, suggesting that fibronectin induction is independent of TGF-β1/Smad signaling. We thus evaluated the involvement of epidermal growth factor receptor (EGFR) signaling and found that nicotinamide adenine dinucleotide phosphate oxidase-derived reactive oxygen species mediates PTHrP (1-34)-induced Src kinase activation. Src phosphorylates EGFR at tyrosine 845 and then transactive EGFR. Subsequent PI3K activation mediates Akt and ERK1/2 activation. Akt and ERK1/2 discretely lead to excessive protein synthesis of fibronectin. Our study thus demonstrates the new role of PTHrP in fibronectin up-regulation for the first time in glomerular MCs. These data also provided new insights to guide development of therapy for glomerular sclerosis.
Collapse
|
6
|
He S, Xue M, Liu C, Xie F, Bai L. Parathyroid Hormone-Like Hormone Induces Epithelial-to-Mesenchymal Transition of Intestinal Epithelial Cells by Activating the Runt-Related Transcription Factor 2. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1374-1388. [PMID: 29577935 DOI: 10.1016/j.ajpath.2018.03.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/04/2018] [Accepted: 03/06/2018] [Indexed: 01/18/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a key contributor to fibroblast activation in fibrosis of multiple organs, including the intestine. Parathyroid hormone-like hormone (PTHLH) is an important factor in renal fibrosis and regulates several processes, including EMT. Herein, we investigated the role of PTHLH-induced EMT in intestinal fibrosis associated with Crohn disease. The expression levels of the EMT-related proteins, PTHLH, and parathyroid hormone receptor 1 (PTH1R) in intestinal tissues were determined by immunohistochemistry, and our results revealed that PTHLH and PTH1R were significantly elevated and associated with EMT marker expression. Moreover, neutralizing PTH1R and antagonizing PTHLH bioactivity prevented transforming growth factor-β1-induced EMT. PTH1R can propagate the protein kinase A (PKA) signal and activate downstream nuclear transcription factors, including runt-related transcription factor 2 (Runx2). In addition, lentiviral vector-PTHLH-treated mice were highly sensitive to 2,4,6-trinitrobenzene sulfonic acid, and analysis of the PTHLH-PTH1R axis revealed the involvement of PKA-Runx2 in PTHLH-induced EMT. Our results indicate that PTHLH triggered EMT in intestinal epithelial cells through the PKA-Runx2 pathway, which might serve as a therapeutic target for intestinal fibrosis in Crohn disease.
Collapse
Affiliation(s)
- Shuying He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minmin Xue
- Department of Gastroenterology, Chinese People's Liberation Army 254 Hospital, Tianjin, China
| | - Cuiping Liu
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Xie
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lan Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
7
|
Activated effects of parathyroid hormone-related protein on human hepatic stellate cells. PLoS One 2013; 8:e76517. [PMID: 24116114 PMCID: PMC3792035 DOI: 10.1371/journal.pone.0076517] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022] Open
Abstract
Background & Aims After years of experiments and clinical studies, parathyroid hormone-related protein(PTHrP) has been shown to be a bone formation promoter that elicits rapid effects with limited adverse reaction. Recently, PTHrP was reported to promote fibrosis in rat kidney in conjunction with transforming growth factor-beta1 (TGF-β1), which is also a fibrosis promoter in liver. However, the effect of PTHrP in liver has not been determined. In this study, the promoting actions of PTHrP were first investigated in human normal hepatic stellate cells (HSC) and LX-2 cell lines. Methods TGF-β1, alpha-smooth muscle actin (α-SMA), matrix metalloproteinase 2 (MMP-2), and collagen I mRNA were quantified by real-time polymerase chain reaction (PCR) after HSCs or LX-2 cells were treated with PTHrP(1–36) or TGF-β1. Protein levels were also assessed by western-blot analysis. Alpha-SMA were also detected by immunofluorescence, and TGF-β1 secretion was measured with enzyme-linked immunosorbent assay (ELISA) of HSC cell culture media. Results In cultured human HSCs, mRNA and protein levels of α-SMA, collagen I, MMP-2, and TGF-β1 were increased by PTHrP treatment. A similar increasing pattern was also observed in LX-2 cells. Moreover, PTHrP significantly increased TGF-β1 secretion in cultured media from HSCs. Conclusions PTHrP activated HSCs and promoted the fibrosis process in LX-2 cells. These procedures were probably mediated via TGF-β1, highlighting the potential effects of PTHrP in the liver.
Collapse
|
8
|
Unilateral ureteral obstruction: beyond obstruction. Int Urol Nephrol 2013; 46:765-76. [PMID: 24072452 DOI: 10.1007/s11255-013-0520-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/15/2013] [Indexed: 01/10/2023]
Abstract
Unilateral ureteral obstruction is a popular experimental model of renal injury. However, the study of the kidney response to urinary tract obstruction is only one of several advantages of this model. Unilateral ureteral obstruction causes subacute renal injury characterized by tubular cell injury, interstitial inflammation and fibrosis. For this reason, it serves as a model both of irreversible acute kidney injury and of events taking place during human chronic kidney disease. Being a unilateral disease, it is not useful to study changes in global kidney function, but has the advantage of a low mortality and the availability of an internal control (the non-obstructed kidney). Experimental unilateral ureteral obstruction has illustrated the molecular mechanisms of apoptosis, inflammation and fibrosis, all three key processes in kidney injury of any cause, thus providing information beyond obstruction. Recently this model has supported key concepts on the role in kidney fibrosis of epithelial-mesenchymal transition, tubular epithelial cell G2/M arrest, the anti-aging hormone Klotho and renal innervation. We now review the experimental model and its contribution to identifying novel therapeutic targets in kidney injury and fibrosis, independently of the noxa.
Collapse
|
9
|
Parathyroid hormone-related protein protects renal tubuloepithelial cells from apoptosis by activating transcription factor Runx2. Kidney Int 2013; 83:825-34. [PMID: 23364519 DOI: 10.1038/ki.2012.476] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Runx2 is a key transcription factor in bone development regulating several processes, including osteoblast apoptosis. The antiapoptotic effects of parathyroid hormone (PTH) in osteoblasts depend on Runx2-mediated transcription of prosurvival genes. In the kidney, PTH-related protein (PTHrP) promotes tubulointerstitial cell survival by activating the PTH/PTHrP type 1 receptor. We found that Runx2 is expressed in renal tubuloepithelial MCT and HK2 cell lines in vitro and in the mouse kidney tubuloepithelium in vivo. The 1-36 amino-acid fragment of PTHrP was found to increase the expression and nuclear translocation of Runx2 in both cell lines in a dose- and time-dependent manner. PTHrP(1-36) protected renal tubuloepithelial cells from folic acid toxicity and serum deprivation, an effect inhibited by a dominant-negative Runx2 construct or a Runx2 siRNA. Furthermore, PTHrP(1-36) upregulated the antiapoptotic proteins Bcl-2 and osteopontin, and these effects were abolished by Runx2 siRNA. Runx2, osteopontin, and Bcl-2 were increased in tubuloepithelial cells from transgenic mice with PTHrP overexpression and in wild-type mice with acute or chronic renal failure. Thus, PTHrP regulates renal tubuloepithelial cell survival via Runx2 in the mammalian kidney.
Collapse
|
10
|
Romero M, Ortega A, Olea N, Arenas MI, Izquierdo A, Bover J, Esbrit P, Bosch RJ. Novel role of parathyroid hormone-related protein in the pathophysiology of the diabetic kidney: evidence from experimental and human diabetic nephropathy. J Diabetes Res 2013; 2013:162846. [PMID: 23984429 PMCID: PMC3747478 DOI: 10.1155/2013/162846] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 07/04/2013] [Indexed: 11/17/2022] Open
Abstract
Parathyroid hormone-related protein (PTHrP) and its receptor type 1 (PTH1R) are extensively expressed in the kidney, where they are able to modulate renal function. Renal PTHrP is known to be overexpressed in acute renal injury. Recently, we hypothesized that PTHrP involvement in the mechanisms of renal injury might not be limited to conditions with predominant damage of the renal tubulointerstitium and might be extended to glomerular diseases, such as diabetic nephropathy (DN). In experimental DN, the overexpression of both PTHrP and the PTH1R contributes to the development of renal hypertrophy as well as proteinuria. More recent data have shown, for the first time, that PTHrP is upregulated in the kidney from patients with DN. Collectively, animal and human studies have shown that PTHrP acts as an important mediator of diabetic renal cell hypertrophy by a mechanism which involves the modulation of cell cycle regulatory proteins and TGF- β 1. Furthermore, angiotensin II (Ang II), a critical factor in the progression of renal injury, appears to be responsible for PTHrP upregulation in these conditions. These findings provide novel insights into the well-known protective effects of Ang II antagonists in renal diseases, paving the way for new therapeutic approaches.
Collapse
Affiliation(s)
- Montserrat Romero
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Arantxa Ortega
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Nuria Olea
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - María Isabel Arenas
- Department of Biomedicine and Biotechnology/Cell Biology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Adriana Izquierdo
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Jordi Bover
- Nephrology Department, Fundació Puigvert, Barcelona, Spain
| | - Pedro Esbrit
- Bone and Mineral Metabolism Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
| | - Ricardo J. Bosch
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Biological Systems/Physiology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Department of Biomedicine and Biotechnology/Cell Biology Unit, University of Alcalá, Alcalá de Henares, Madrid, Spain
- *Ricardo J. Bosch:
| |
Collapse
|
11
|
Silva SR, Bowen KA, Rychahou PG, Jackson LN, Weiss HL, Lee EY, Townsend CM, Evers BM. VEGFR-2 expression in carcinoid cancer cells and its role in tumor growth and metastasis. Int J Cancer 2011; 128:1045-56. [PMID: 20473929 DOI: 10.1002/ijc.25441] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Carcinoid tumors are slow growing and highly vascular neuroendocrine neoplasms that are increasing in incidence. Previously, we showed that carcinoid tumors express vascular endothelial growth factor receptor 2 (VEGFR-2) in the epithelial compartment of carcinoid tumor sections; yet, its role is not completely understood. The purpose of our study was to: (i) assess the expression of VEGFR-2 in the novel human carcinoid cell line BON, (ii) to determine the role of PI3K/Akt signaling on VEGFR-2 expression and (iii) to assess the effect of VEGFR-2 on BON cell invasion, migration and proliferation. We found that, although VEGFR-2 is expressed in BON cells, reduction in VEGFR-2 expression actually enhanced proliferation, invasion, and migration of the BON cell line. Also, expression of VEGFR-2 was inversely related to PI3K signaling. Carcinoid liver metastases in mice demonstrated decreased VEGFR-2 expression. Furthermore, the expression of a truncated, soluble form of VEGFR-2 (sVEGFR-2), a protein demonstrated to inhibit cell growth, was detected in BON cells. The presence of VEGFR-2 in the epithelial component of carcinoid tumors and in the BON cell line suggests an alternate role for VEGFR-2, in addition to its well-defined role in angiogenesis. The expression of sVEGFR-2 may explain the inverse relationship between VEGFR-2 expression and PI3K/Akt signaling and the inhibitory effect VEGFR-2 has on BON cell proliferation, migration and invasion.
Collapse
Affiliation(s)
- Scott R Silva
- Department of Surgery, The University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
A transgenic mouse model for studying the role of the parathyroid hormone-related protein system in renal injury. J Biomed Biotechnol 2010; 2011:290874. [PMID: 21052497 PMCID: PMC2967837 DOI: 10.1155/2011/290874] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 10/11/2010] [Indexed: 01/15/2023] Open
Abstract
Parathyroid hormone- (PTH-) related protein (PTHrP) and its receptor, the PTH1 receptor (PTH1R), are widely expressed in the kidney, where PTHrP exerts a modulatory action on renal function. PTHrP is known to be upregulated in several experimental nephropathies such as acute renal failure (ARF), obstructive nephropathy (ON) as well as diabetic nephropathy (DN). In this paper, we will discuss the functional consequences of chronic PTHrP overexpression in the damaged kidney using a transgenic mouse strain overexpressing PTHrP in the renal proximal tubule. In both ARF and ON, PTHrP displays proinflammatory and profibrogenic actions including the induction of epithelia to mesenquima transition. Moreover, PTHrP participates in the mechanisms of renal hypertrophy as well as proteinuria in experimental DN. Angiotensin II (Ang II), a critical factor in the progression of renal injury, appears to be, at least in part, responsible for endogenous PTHrP upregulation in these pathophysiological settings. These findings provide novel insights into the well-known protective effects of Ang II antagonists in renal diseases, paving the way for new therapeutic approaches.
Collapse
|
13
|
de Castro LF, Lozano D, Dapía S, Portal-Núñez S, Caeiro JR, Gómez-Barrena E, Esbrit P. Role of the N- and C-terminal Fragments of Parathyroid-Hormone-Related Protein as Putative Therapies to Improve Bone Regeneration Under High Glucocorticoid Treatment. Tissue Eng Part A 2010; 16:1157-68. [DOI: 10.1089/ten.tea.2009.0355] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
| | - Daniel Lozano
- Bone and Mineral Metabolism Laboratory, Jiménez Díaz Foundation (Capio Group), Madrid, Spain
| | - Sonia Dapía
- Trabeculae®, San Cibrao das Viñas, Ourense, Spain
| | - Sergio Portal-Núñez
- Bone and Mineral Metabolism Laboratory, Jiménez Díaz Foundation (Capio Group), Madrid, Spain
| | | | - Enrique Gómez-Barrena
- Orthopedic Department, Jiménez Díaz Foundation and Autonomous University of Madrid, Madrid, Spain
| | - Pedro Esbrit
- Bone and Mineral Metabolism Laboratory, Jiménez Díaz Foundation (Capio Group), Madrid, Spain
| |
Collapse
|
14
|
Romero M, Ortega A, Izquierdo A, López-Luna P, Bosch RJ. Parathyroid hormone-related protein induces hypertrophy in podocytes via TGF-beta(1) and p27(Kip1): implications for diabetic nephropathy. Nephrol Dial Transplant 2010; 25:2447-57. [PMID: 20200004 DOI: 10.1093/ndt/gfq104] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Hypertrophy of podocytes is characteristic in diabetic nephropathy (DN). Previously, we observed the upregulation of parathyroid hormone-related protein (PTHrP) and its receptor PTH1R, in experimental DN, associated with renal hypertrophy. Herein, we test the hypothesis that PTHrP participates in the mechanism of high glucose (HG)-induced podocyte hypertrophy. METHODS On mouse podocytes, hypertrophy was assessed by protein content/cell and [H(3)]leucine incorporation. Podocytes were stimulated with HG (25 mM), PTHrP(1-36) (100 nM), angiotensin II (AngII) (100 nM) or TGF-beta(1) (5 ng/mL) in the presence or absence of PTHrP-neutralizing antibodies (alpha-PTHrP), the PTH1R antagonist JB4250 (10 microM), PTHrP silencer RNA (siRNA) or TGF-beta(1) siRNA. Protein expression was analysed by western blot and immunohistochemistry. RESULTS HG-induced hypertrophy was abolished in the presence of either alpha-PTHrP or PTHrP siRNA. This effect was associated with an inhibition of the upregulation of TGF-beta(1) and p27(Kip1). JB4250 also inhibited HG-induced p27(Kip1) upregulation. Interestingly, whilst HG and AngII were unable to stimulate the expression of p27(Kip1) on PTHrP siRNA-transfected podocytes, TGF-beta(1) was still able to upregulate p27(Kip1) in these cells. Moreover, HG and PTHrP-induced hypertrophy as well as p27(Kip1) upregulation were abolished on TGF-beta(1) siRNA-transfected podocytes. Furthermore, the glomeruli of transgenic PTHrP-overexpressing mice showed a constitutive overexpression of TGF-beta(1) and p27(Kip1) to a degree similar to that of diabetic animals. CONCLUSIONS PTHrP seems to participate in the hypertrophic signalling triggered by HG. In this condition, AngII induces the upregulation of PTHrP, which might induce the expression of TGF-beta(1) and p27(Kip1). These findings provide new insights into the protective effects of AngII antagonists in DN, opening new paths for intervention.
Collapse
Affiliation(s)
- Montserrat Romero
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Physiology, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | | | | | | | | |
Collapse
|
15
|
Ardura JA, Rayego-Mateos S, Rámila D, Ruiz-Ortega M, Esbrit P. Parathyroid hormone-related protein promotes epithelial-mesenchymal transition. J Am Soc Nephrol 2009; 21:237-48. [PMID: 19959711 DOI: 10.1681/asn.2009050462] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is an important process that contributes to renal fibrogenesis. TGF-beta1 and EGF stimulate EMT. Recent studies suggested that parathyroid hormone-related protein (PTHrP) promotes fibrogenesis in the damaged kidney, apparently dependent on its interaction with vascular endothelial growth factor (VEGF), but whether it also interacts with TGF-beta and EGF to modulate EMT is unknown. Here, PTHrP(1-36) increased TGF-beta1 in cultured tubuloepithelial cells and TGF-beta blockade inhibited PTHrP-induced EMT-related changes, including upregulation of alpha-smooth muscle actin and integrin-linked kinase, nuclear translocation of Snail, and downregulation of E-cadherin and zonula occludens-1. PTHrP(1-36) also induced EGF receptor (EGFR) activation; inhibition of protein kinase C and metalloproteases abrogated this activation. Inhibition of EGFR activation abolished these EMT-related changes, the activation of ERK1/2, and upregulation of TGF-beta1 and VEGF by PTHrP(1-36). Moreover, inhibition of ERK1/2 blocked EMT induced by either PTHrP(1-36), TGF-beta1, EGF, or VEGF. In vivo, obstruction of mouse kidneys led to changes consistent with EMT and upregulation of TGF-beta1 mRNA, p-EGFR protein, and PTHrP. Taken together, these data suggest that PTHrP, TGF-beta, EGF, and VEGF might cooperate through activation of ERK1/2 to induce EMT in renal tubuloepithelial cells.
Collapse
Affiliation(s)
- Juan Antonio Ardura
- Laboratorio de Metabolismo Mineral y Oseo, Fundación Jiménez Díaz-UTE, Avda. Reyes Católicos 2, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
16
|
Lozano D, de Castro LF, Dapía S, Andrade-Zapata I, Manzarbeitia F, Alvarez-Arroyo MV, Gómez-Barrena E, Esbrit P. Role of parathyroid hormone-related protein in the decreased osteoblast function in diabetes-related osteopenia. Endocrinology 2009; 150:2027-35. [PMID: 19196804 DOI: 10.1210/en.2008-1108] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A deficit in bone formation is a major factor in diabetes-related osteopenia. We examined here whether diabetes-associated changes in osteoblast phenotype might in part result from a decrease in PTH-related protein (PTHrP). We used a bone marrow ablation model in diabetic mice by multiple streptozotocin injections. PTHrP (1-36) (100 microg/kg, every other day) or vehicle was administered to mice for 13 d starting 1 wk before marrow ablation. Diabetic mice showed bone loss in both the intact femur and the regenerating tibia on d 6 after ablation; in the latter, this was related to decreased bone-forming cells, osteoid surface, and blood vessels, and increased marrow adiposity. Moreover, a decrease in matrix mineralization occurred in ex vivo bone marrow cultures from the unablated tibia from diabetic mice. These skeletal alterations were associated with decreased gene expression (by real-time PCR) of Runx2, osterix, osteocalcin, PTHrP, the PTH type 1 receptor, vascular endothelial growth factor and its receptors, and osteoprotegerin to receptor activator of nuclear factor-kappaB ligand mRNA ratio, and increased peroxisome proliferator-activated receptor-gamma2 mRNA levels. Similar changes were induced by hyperosmotic (high glucose or mannitol) medium in osteoblastic MC3T3-E1 cells, which were mimicked by adding a neutralizing anti-PTHrP antibody or PTH type 1 receptor antagonists to these cells in normal glucose medium. PTHrP (1-36) administration reversed these changes in both intact and regenerating bones from diabetic mice in vivo, and in MC3T3-E1 cells exposed to high glucose. These findings strongly suggest that PTHrP has an important role in the altered osteoblastic function related to diabetes.
Collapse
Affiliation(s)
- Daniel Lozano
- Laboratorio de Metabolismo Mineral y Oseo, Fundación Jiménez Díaz (Capio Group), Avenida. Reyes Católicos, 2, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|