1
|
Dagher DM, Zaghloul MS, Suddek GM. Modulation of AMPK/mTOR Autophagic Pathway Using Dapagliflozin Protects Against Cadmium-Induced Testicular and Renal Injury in Rats. J Biochem Mol Toxicol 2025; 39:e70257. [PMID: 40233265 DOI: 10.1002/jbt.70257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/03/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025]
Abstract
Cadmium is a widely distributed heavy metal found in the environment that poses serious hazards to human health. Dapagliflozin (DAPA), a sodium-glucose co-transporter 2 (SGLT-2) inhibitor, exhibited antioxidant, antiapoptotic, and anti-inflammatory properties. Our data assessed the effect of DAPA against Cd-triggered renal and testicular impairment in rats, as well as the underlying mechanisms. Cd (30 mg/kg) and DAPA (5 and 10 mg/kg) were administrated by oral gavage to rats and continued for 21 days. DAPA attenuated Cd-triggered renal and testicular injury as shown by diminishing serum creatinine, BUN, and urinary total protein concentration in addition to increasing creatinine clearance, urinary creatinine, and serum testosterone. Moreover, it diminished renal and testicular histopathological alterations induced by Cd. DAPA stimulated the impaired autophagy flux as seen by significantly elevating the p-AMPK/total AMPK, decreasing p-mTOR/total mTOR ratios, and diminishing p62 & LC3 protein levels. Additionally, DAPA significantly lowered MDA content, increased GSH level and SOD activity. Moreover, it augmented the cytoprotective Nrf2/HO-1 signaling pathway. Furthermore, it attenuated renal and testicular apoptotic cell death via decreasing caspase-3 expression. Conclusion: Boosting autophagic events and combating oxidative stress and apoptosis by DAPA were engaged in alleviating Cd-induced renal and testicular impairment. This was accomplished by modulating the AMPK/mTOR and enhancing the Nrf2/HO-1 pathways.
Collapse
Affiliation(s)
- Doha M Dagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Marwa S Zaghloul
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Lei L, Xiang YX, Luo ML, Zhang ZY, Wu HW, Tang C, Cui TJ, Zhang XM, Wang XH, Delic D, Klein T, Liu Y, Krämer BK, Zheng ZH, Lu YP, Hocher B, Zhu T. Intercellular Communication Network of CellChat Uncovers Mechanisms of Kidney Fibrosis Based on Single-Cell RNA Sequencing. Kidney Blood Press Res 2025; 50:276-299. [PMID: 40112793 DOI: 10.1159/000545209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a global health concern, with renal fibrosis being a major pathological feature. Empagliflozin (Empa), a sodium-glucose co-transporter-2 inhibitor, has shown promise in protecting the kidney. This study aimed to investigate the effects of Empa on renal fibrosis in a nondiabetic CKD model and to elucidate the underlying mechanisms. METHODS We established a CKD model using 5/6 nephrectomy (5/6 Nx) rats and divided them into three groups: placebo-treated sham surgery rats, placebo-treated 5/6 Nx rats, and Empa-treated 5/6 Nx rats. Kidney function was assessed by measuring blood urea nitrogen, serum creatinine, and urinary albumin-to-creatinine ratio. Renal fibrosis was evaluated histologically. Single-cell RNA sequencing (scRNA-seq) was performed to analyze intercellular communication networks and identify alterations in ligand-receptor pairs and signaling pathways involved in fibrosis. RESULTS Empa treatment significantly improved kidney function and reduced renal interstitial fibrosis in 5/6 Nx rats. scRNA-seq revealed that Empa modulated the TGF-β signaling pathway, inhibited intercellular communication, and reduced the expression of fibrotic genes such as COLLAGEN, FN1, THBS, and LAMININ. Furthermore, Empa downregulated GRN gene expression, weakened signal transmission in the MIF pathway, consequently reduced the interaction between M2 macrophages and other cell types, such as endothelial cells, fibroblasts, and mesangial cells. CONCLUSION This study elucidates the potential mechanisms by which Empa slows the progression of renal fibrosis in nondiabetic CKD. By reducing the number of M2 macrophages and inhibiting signal transduction in both pro-inflammatory and fibrotic pathways, Empa modulates the intercellular communication network in renal cells, offering a promising therapeutic strategy for CKD management.
Collapse
Affiliation(s)
- Lei Lei
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yun-Xiu Xiang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Mao-Lin Luo
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Endocrinology and Metabolism, People's Hospital of Liwan District, Guangzhou, China
| | - Ze-Yu Zhang
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Hong-Wei Wu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Tian-Jiao Cui
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xue-Mei Zhang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiao-Hua Wang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Denis Delic
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Thomas Klein
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Yvonne Liu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany,
- Medical Faculty, Charité Universitätsmedizin Berlin, Berlin, Germany,
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Zhi-Hua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yong-Ping Lu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Heidelberg, Germany
- Institute of Medical Diagnostics, IMD, Berlin, Germany
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- School of Medicine, Central South University, Changsha, China
| | - Ting Zhu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
3
|
Zhao M, Cao Y, Ma L. New insights in the treatment of DKD: recent advances and future prospects. BMC Nephrol 2025; 26:72. [PMID: 39934650 PMCID: PMC11817338 DOI: 10.1186/s12882-025-03953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Diabetic kidney disease (DKD) represents the predominant and severe microvascular complication associated with diabetes, frequently culminating in End-Stage Kidney Disease (ESKD). The escalating prevalence of diabetes has correspondingly led to a rise in DKD incidence, imposing significant challenges on both individuals and society. The etiology of DKD is multifaceted and remains devoid of definitive therapeutic interventions. This article examines the pharmacological actions and mechanisms of different drugs used for the prevention and treatment of DKD that are currently in clinical use or undergoing development. The goal is to offer insights for early intervention based on therapeutic combinations to potentially slow kidney disease progression.
Collapse
Affiliation(s)
- Meimei Zhao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China
| | - Yongtong Cao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China.
| | - Liang Ma
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
4
|
Qi B, Chen Y, Chai S, Lu X, Kang L. O-linked β-N-acetylglucosamine (O-GlcNAc) modification: Emerging pathogenesis and a therapeutic target of diabetic nephropathy. Diabet Med 2025; 42:e15436. [PMID: 39279604 PMCID: PMC11733667 DOI: 10.1111/dme.15436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/18/2024]
Abstract
AIMS O-Linked β-N-acetylglucosamine (O-GlcNAc) modification, a unique post-translational modification of proteins, is elevated in diabetic nephropathy. This review aims to summarize the current knowledge on the mechanisms by which O-GlcNAcylation of proteins contributes to the pathogenesis and progression of diabetic nephropathy, as well as the therapeutic potential of targeting O-GlcNAc modification for its treatment. METHODS Current evidence in the literature was reviewed and synthesized in a narrative review. RESULTS Hyperglycemia increases glucose flux into the hexosamine biosynthesis pathway, which activates glucosamino-fructose aminotransferase expression and activity, leading to the production of O-GlcNAcylation substrate UDP-GlcNAc and an increase in protein O-GlcNAcylation in kidney cells. Protein O-GlcNAcylation regulates the function of kidney cells including mesangial cells, podocytes, and proximal tubular cells, and promotes renal interstitial fibrosis, resulting in kidney damage. Current treatments for diabetic nephropathy, such as sodium-glucose cotransporter 2 (SGLT-2) inhibitors and renin-angiotensin-aldosterone system (RAAS) inhibitors, delay disease progression, and suppress protein O-GlcNAcylation. CONCLUSIONS Increased protein O-GlcNAcylation mediates renal cell damage and promotes renal interstitial fibrosis, leading to diabetic nephropathy. Although the full significance of inhibition of O-GlcNAcylation is not yet understood, it may represent a novel target for treating diabetic nephropathy.
Collapse
Affiliation(s)
- Bingxue Qi
- Precision Molecular Medicine CenterJilin Province People's HospitalChangchunChina
| | - Yang Chen
- Clinical Medicine CollegeChangchun University of Chinese MedicineChangchunChina
| | - Siyang Chai
- Clinical Medicine CollegeChangchun University of Chinese MedicineChangchunChina
| | - Xiaodan Lu
- Precision Molecular Medicine CenterJilin Province People's HospitalChangchunChina
| | - Li Kang
- Division of Cellular and Systems MedicineSchool of Medicine, University of DundeeDundeeUK
| |
Collapse
|
5
|
Kleibert M, Tkacz K, Winiarska K, Małyszko J, Cudnoch-Jędrzejewska A. The role of hypoxia-inducible factors 1 and 2 in the pathogenesis of diabetic kidney disease. J Nephrol 2025; 38:37-47. [PMID: 39648258 PMCID: PMC11903585 DOI: 10.1007/s40620-024-02152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/30/2024] [Indexed: 12/10/2024]
Abstract
According to the 10th edition of the IDF Diabetes Atlas, 537 million people suffered from diabetes in 2021, and this number will increase by 47% by 2045. It is estimated that even 30-40% of these individuals may develop diabetic kidney disease (DKD) in the course of diabetes. DKD is one of the most important complications of diabetes, both in terms of impact and magnitude. It leads to high morbidity and mortality, which subsequently impacts on quality of life, and it carries a high financial burden. Diabetic kidney disease is considered a complex and heterogeneous entity involving disturbances in vascular, glomerular, podocyte, and tubular function. It would appear that hypoxia-inducible factors (HIF)-1 and HIF-2 may be important players in the pathogenesis of this disease. However, their exact role is still not fully investigated. In this article, we summarize the current knowledge about HIF signaling and its role in DKD. In addition, we focus on the possible effects of nephroprotective drugs on HIF expression and activity in various tissues.
Collapse
Affiliation(s)
- Marcin Kleibert
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097, Warsaw, Poland.
| | - Kamil Tkacz
- Department of Diabetology and Internal Diseases, Medical University of Warsaw, 02-097, Warsaw, Poland
| | - Katarzyna Winiarska
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Jolanta Małyszko
- Department of Nephrology, Dialysis and Internal Medicine, Medical University of Warsaw, Banacha 1A, 02-097, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097, Warsaw, Poland
| |
Collapse
|
6
|
Balogh DB, Hodrea J, Saeed A, Cserhalmi M, Rozsahegyi A, Lakat T, Lenart L, Szabo AJ, Wagner LJ, Fekete A. Sigma-1 Receptor as a Novel Therapeutic Target in Diabetic Kidney Disease. Int J Mol Sci 2024; 25:13327. [PMID: 39769092 PMCID: PMC11679586 DOI: 10.3390/ijms252413327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/28/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of chronic kidney disease. Current treatments for DKD do not halt renal injury progression, highlighting an urgent need for therapies targeting key disease mechanisms. Our previous studies demonstrated that activating the Sigma-1 receptor (S1R) with fluvoxamine (FLU) protects against acute kidney injury by inhibiting inflammation and ameliorating the effect of hypoxia. Based on these, we hypothesized that FLU might exert a similar protective effect in DKD. Diabetes was induced in male Wistar rats using streptozotocin, followed by a seven-week FLU treatment. Metabolic and renal parameters were assessed along with a histological analysis of glomerular damage and fibrosis. The effects of FLU on inflammation, hypoxia, and fibrosis were tested in human proximal tubular cells and normal rat kidney fibroblasts. FLU improved renal function and reduced glomerular damage and tubulointerstitial fibrosis. It also mitigated inflammation by reducing TLR4, IL6, and NFKB1 expressions and moderated the cellular response to tubular hypoxia. Additionally, FLU suppressed TGF-β1-induced fibrotic processes and fibroblast transformation. These findings suggest that S1R activation can slow DKD progression and protect renal function by modulating critical inflammatory, hypoxic, and fibrotic pathways; therefore, it might serve as a promising novel drug target for preventing DKD.
Collapse
Affiliation(s)
- Dora B. Balogh
- MTA-SE Lendület “Momentum” Diabetes Research Group, 1083 Budapest, Hungary; (D.B.B.); (J.H.); (A.S.); (M.C.); (A.R.)
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary;
| | - Judit Hodrea
- MTA-SE Lendület “Momentum” Diabetes Research Group, 1083 Budapest, Hungary; (D.B.B.); (J.H.); (A.S.); (M.C.); (A.R.)
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary;
| | - Adar Saeed
- MTA-SE Lendület “Momentum” Diabetes Research Group, 1083 Budapest, Hungary; (D.B.B.); (J.H.); (A.S.); (M.C.); (A.R.)
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary;
| | - Marcell Cserhalmi
- MTA-SE Lendület “Momentum” Diabetes Research Group, 1083 Budapest, Hungary; (D.B.B.); (J.H.); (A.S.); (M.C.); (A.R.)
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary;
| | - Alexandra Rozsahegyi
- MTA-SE Lendület “Momentum” Diabetes Research Group, 1083 Budapest, Hungary; (D.B.B.); (J.H.); (A.S.); (M.C.); (A.R.)
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary;
| | - Tamas Lakat
- MTA-SE Lendület “Momentum” Diabetes Research Group, 1083 Budapest, Hungary; (D.B.B.); (J.H.); (A.S.); (M.C.); (A.R.)
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary;
| | - Lilla Lenart
- MTA-SE Lendület “Momentum” Diabetes Research Group, 1083 Budapest, Hungary; (D.B.B.); (J.H.); (A.S.); (M.C.); (A.R.)
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary;
| | - Attila J. Szabo
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary;
| | - Laszlo J. Wagner
- Department of Surgery, Transplantation, and Gastroenterology, Semmelweis University, 1082 Budapest, Hungary;
| | - Andrea Fekete
- MTA-SE Lendület “Momentum” Diabetes Research Group, 1083 Budapest, Hungary; (D.B.B.); (J.H.); (A.S.); (M.C.); (A.R.)
- Pediatric Center, MTA Center of Excellence, Semmelweis University, 1083 Budapest, Hungary;
| |
Collapse
|
7
|
Moral Berrio E, De La Flor JC, Arambarri Segura M, Rodríguez-Doyágüez P, Martínez Calero A, Zamora R, Cieza-Terrones M, Yuste-Lozano C, Sánchez de la Nieta García MD, Nieto Iglesias J, Vozmediano Poyatos C. Effects of Sodium-Glucose Cotransporter 2 Inhibitors in Diabetic and Non-Diabetic Patients with Advanced Chronic Kidney Disease in Peritoneal Dialysis on Residual Kidney Function: In Real-World Data. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1198. [PMID: 39202480 PMCID: PMC11356563 DOI: 10.3390/medicina60081198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: Peritoneal dialysis (PD) is a renal replacement therapy modality in which the dialysis dose can be individually adapted according to the patients' residual kidney function (RKF). RKF is a crucial factor for technique and patient survival. Pharmacological strategies aimed at slowing the loss of RKF in patients on PD are limited. Therefore, we aimed to assess the potential effects and safety of sodium-glucose cotransporter 2 (SGLT-2) inhibitors on the preservation of RKF in patients with and without type 2 diabetes mellitus (T2DM) on PD during an average follow-up of 6 months. Materials and Methods: In this retrospective observational, single-center study on real-world data, we included patients from the Peritoneal Dialysis Unit of the Hospital General Universitario de Ciudad Real, who started treatment with SGLT-2 inhibitors during the period from December 2022 to December 2023. Data on analytical and clinical parameters, RKF, and peritoneal membrane transport function were retrospectively collected at months 0, 3, and 6. Results: Out of 31 patients in our unit, 16 prevalent patients initiated treatment with SGLT-2 inhibitors (13 empagliflozin and 3 dapagliflozin). A total of 62.5% were male and the mean age was 67.3 years. The baseline peritoneal ultrafiltration was higher in the non-diabetic patient (NDMP) group than in the diabetic patient (DMP) group. However, the residual diuresis volume, 24 h residual renal clearance rate of urea in urine, and 24 h proteinuria were higher in the DMP group than in the NDMP group. At the sixth month, patients in both groups preserved RKF and diuresis, with a trend towards a non-significant reduction in proteinuria and blood pressure. Only two patients of the DMP group presented adverse effects. Conclusions: The use of SGLT-2 inhibitors in our sample of patients with and without T2DM on PD appears to be safe and effective to preserve RKF.
Collapse
Affiliation(s)
- Esperanza Moral Berrio
- Department of Nephrology, Hospital General Universitario de Ciudad Real, 13005 Ciudad Real, Spain; (E.M.B.); (M.A.S.); (A.M.C.); (M.D.S.d.l.N.G.); (J.N.I.); (C.V.P.)
| | - José C. De La Flor
- Department of Nephrology, Hospital Central de la Defensa Gómez Ulla, 28047 Madrid, Spain
- Department of Medicine and Medical Specialties, Faculty of Medicine, Alcala University, 28805 Madrid, Spain
| | - Minerva Arambarri Segura
- Department of Nephrology, Hospital General Universitario de Ciudad Real, 13005 Ciudad Real, Spain; (E.M.B.); (M.A.S.); (A.M.C.); (M.D.S.d.l.N.G.); (J.N.I.); (C.V.P.)
| | | | - Alberto Martínez Calero
- Department of Nephrology, Hospital General Universitario de Ciudad Real, 13005 Ciudad Real, Spain; (E.M.B.); (M.A.S.); (A.M.C.); (M.D.S.d.l.N.G.); (J.N.I.); (C.V.P.)
| | - Rocío Zamora
- Department of Nephrology, Hospital Universitario General Villalba, 28400 Madrid, Spain;
| | | | | | - María Dolores Sánchez de la Nieta García
- Department of Nephrology, Hospital General Universitario de Ciudad Real, 13005 Ciudad Real, Spain; (E.M.B.); (M.A.S.); (A.M.C.); (M.D.S.d.l.N.G.); (J.N.I.); (C.V.P.)
| | - Javier Nieto Iglesias
- Department of Nephrology, Hospital General Universitario de Ciudad Real, 13005 Ciudad Real, Spain; (E.M.B.); (M.A.S.); (A.M.C.); (M.D.S.d.l.N.G.); (J.N.I.); (C.V.P.)
| | - Carmen Vozmediano Poyatos
- Department of Nephrology, Hospital General Universitario de Ciudad Real, 13005 Ciudad Real, Spain; (E.M.B.); (M.A.S.); (A.M.C.); (M.D.S.d.l.N.G.); (J.N.I.); (C.V.P.)
| |
Collapse
|
8
|
Iordan L, Gaita L, Timar R, Avram V, Sturza A, Timar B. The Renoprotective Mechanisms of Sodium-Glucose Cotransporter-2 Inhibitors (SGLT2i)-A Narrative Review. Int J Mol Sci 2024; 25:7057. [PMID: 39000165 PMCID: PMC11241663 DOI: 10.3390/ijms25137057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Chronic kidney disease (CKD) is a noncommunicable condition that has become a major healthcare burden across the globe, often underdiagnosed and associated with low awareness. The main cause that leads to the development of renal impairment is diabetes mellitus and, in contrast to other chronic complications such as retinopathy or neuropathy, it has been suggested that intensive glycemic control is not sufficient in preventing the development of diabetic kidney disease. Nevertheless, a novel class of antidiabetic agents, the sodium-glucose cotransporter-2 inhibitors (SGLT2i), have shown multiple renoprotective properties that range from metabolic and hemodynamic to direct renal effects, with a major impact on reducing the risk of occurrence and progression of CKD. Thus, this review aims to summarize current knowledge regarding the renoprotective mechanisms of SGLT2i and to offer a new perspective on this innovative class of antihyperglycemic drugs with proven pleiotropic beneficial effects that, after decades of no significant progress in the prevention and in delaying the decline of renal function, start a new era in the management of patients with CKD.
Collapse
Affiliation(s)
- Liana Iordan
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Laura Gaita
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Romulus Timar
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Vlad Avram
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adrian Sturza
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Department of Functional Sciences, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Bogdan Timar
- “Pius Brinzeu” Emergency County Hospital, 300723 Timisoara, Romania; (L.I.); (R.T.); (V.A.); (A.S.); (B.T.)
- Second Department of Internal Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
9
|
Mondal S, Pramanik S, Khare VR, Fernandez CJ, Pappachan JM. Sodium glucose cotransporter-2 inhibitors and heart disease: Current perspectives. World J Cardiol 2024; 16:240-259. [PMID: 38817648 PMCID: PMC11135334 DOI: 10.4330/wjc.v16.i5.240] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 05/23/2024] Open
Abstract
Sodium glucose cotransporter-2 inhibitors (SGLT-2i) are antidiabetic medications with remarkable cardiovascular (CV) benefits proven by multiple randomised controlled trials and real-world data. These drugs are also useful in the prevention of CV disease (CVD) in patients with diabetes mellitus (DM). Although DM as such is a huge risk factor for CVD, the CV benefits of SGLT-2i are not just because of antidiabetic effects. These molecules have proven beneficial roles in prevention and management of nondiabetic CVD and renal disease as well. There are various molecular mechanisms for the organ protective effects of SGLT-2i which are still being elucidated. Proper understanding of the role of SGLT-2i in prevention and management of CVD is important not only for the cardiologists but also for other specialists caring for various illnesses which can directly or indirectly impact care of heart diseases. This clinical review compiles the current evidence on the rational use of SGLT-2i in clinical practice.
Collapse
Affiliation(s)
- Sunetra Mondal
- Department of Endocrinology, NRS Medical College, Kolkata 700020, West Bengal, India
| | - Subhodip Pramanik
- Department of Endocrinology, Neotia Getwel Multispecialty Hospitals, Siliguri 734010, West Bengal, India
| | - Vibhu Ranjan Khare
- Department of Endocrinology, NRS Medical College, Kolkata 700020, West Bengal, India
| | - Cornelius James Fernandez
- Department of Endocrinology and Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, United Kingdom
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, United Kingdom
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, United Kingdom
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M13 9PL, United Kingdom.
| |
Collapse
|
10
|
Hu J, Teng J, Hui S, Liang L. SGLT-2 inhibitors as novel treatments of multiple organ fibrosis. Heliyon 2024; 10:e29486. [PMID: 38644817 PMCID: PMC11031788 DOI: 10.1016/j.heliyon.2024.e29486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
Fibrosis, a significant health issue linked to chronic inflammatory diseases, affects various organs and can lead to serious damage and loss of function. Despite the availability of some treatments, their limitations necessitate the development of new therapeutic options. Sodium-glucose cotransporter 2 inhibitors (SGLT2i), known for their glucose-lowering ability, have shown promise in offering protective effects against fibrosis in multiple organs through glucose-independent mechanisms. This review explores the anti-fibrotic potential of SGLT2i across different tissues, providing insights into their underlying mechanisms and highlighting recent research advancements. The evidence positions SGLT2i as a potential future treatments for fibrotic diseases.
Collapse
Affiliation(s)
- Junpei Hu
- Department of Geriatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, China
| | - Jianhui Teng
- Department of Geriatrics, Hunan Provincial People's Hospital, China
| | - Shan Hui
- Department of Geriatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, China
| | - Lihui Liang
- Department of Geriatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, China
| |
Collapse
|
11
|
Li T, Sun W, Zhu S, He C, Chang T, Zhang J, Chen Y. T-2 Toxin-Mediated β-Arrestin-1 O-GlcNAcylation Exacerbates Glomerular Podocyte Injury via Regulating Histone Acetylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307648. [PMID: 38083975 PMCID: PMC10870076 DOI: 10.1002/advs.202307648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Indexed: 02/17/2024]
Abstract
T-2 toxin causes renal dysfunction with proteinuria and glomerular podocyte damage. This work explores the role of metabolic disorder/reprogramming-mediated epigenetic modification in the progression of T-2 toxin-stimulated podocyte injury. A metabolomics experiment is performed to assess metabolic responses to T-2 toxin infection in human podocytes. Roles of protein O-linked-N-acetylglucosaminylation (O-GlcNAcylation) in regulating T-2 toxin-stimulated podocyte injury in mouse and podocyte models are assessed. O-GlcNAc target proteins are recognized by mass spectrometry and co-immunoprecipitation experiments. Moreover, histone acetylation and autophagy levels are measured. T-2 toxin infection upregulates glucose transporter type 1 (GLUT1) expression and enhances hexosamine biosynthetic pathway in glomerular podocytes, resulting in a significant increase in β-arrestin-1 O-GlcNAcylation. Decreasing β-arrestin-1 or O-GlcNAc transferase (OGT) effectively prevents T-2 toxin-induced renal dysfunction and podocyte injury. Mechanistically, O-GlcNAcylation of β-arrestin-1 stabilizes β-arrestin-1 to activate the mammalian target of rapamycin (mTOR) pathway as well as to inhibit autophagy during podocyte injury by promoting H4K16 acetylation. To sum up, OGT-mediated β-arrestin-1 O-GlcNAcylation is a vital regulator in the development of T-2 toxin-stimulated podocyte injury via activating the mTOR pathway to suppress autophagy. Targeting β-arrestin-1 or OGT can be a potential therapy for T-2 toxin infection-associated glomerular injury, especially podocyte injury.
Collapse
Affiliation(s)
- Tushuai Li
- School of Biology and Food EngineeringChangshu Institute of TechnologySuzhou215500P.R. China
- Wuxi School of MedicineJiangnan UniversityWuxi214013P.R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi BranchWuxi214013P.R. China
| | - Wenxue Sun
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJining272000P.R. China
- Postdoctoral of Shandong University of Traditional Chinese MedicineJi'nan250355P.R. China
- Institute of Translational PharmacyJining Medical Research AcademyJining272000P.R. China
| | - Shenglong Zhu
- Wuxi School of MedicineJiangnan UniversityWuxi214013P.R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi BranchWuxi214013P.R. China
| | - Chengsheng He
- School of Biology and Food EngineeringChangshu Institute of TechnologySuzhou215500P.R. China
| | - Tong Chang
- School of Biology and Food EngineeringChangshu Institute of TechnologySuzhou215500P.R. China
| | - Jie Zhang
- School of Biology and Food EngineeringChangshu Institute of TechnologySuzhou215500P.R. China
| | - Yongquan Chen
- Wuxi School of MedicineJiangnan UniversityWuxi214013P.R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi BranchWuxi214013P.R. China
| |
Collapse
|
12
|
Papaetis GS. SGLT2 inhibitors, intrarenal hypoxia and the diabetic kidney: insights into pathophysiological concepts and current evidence. Arch Med Sci Atheroscler Dis 2023; 8:e155-e168. [PMID: 38283924 PMCID: PMC10811536 DOI: 10.5114/amsad/176658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/08/2023] [Indexed: 01/30/2024] Open
Abstract
Approximately 20-40% of all diabetic patients experience chronic kidney disease, which is related to higher mortality (cardiovascular and all-cause). A large body of evidence suggests that renal hypoxia is one of the main forces that drives diabetic kidney disease, both in its early and advanced stages. It promotes inflammation, generation of intrarenal collagen, capillary rarefaction and eventually accumulation of extracellular matrix that destroys normal renal architecture. SGLT2 inhibitors are unquestionably a practice-changing drug class and a valuable weapon for patients with type 2 diabetes and chronic kidney disease. They have achieved several beneficial kidney effects after targeting multiple and interrelated signaling pathways, including renal hypoxia, independent of their antihyperglycemic activities. This manuscript discusses the pathophysiological concepts that underly their possible effects on modulating renal hypoxia. It also comprehensively investigates both preclinical and clinical studies that explored the possible role of SGLT2 inhibitors in this setting, so as to achieve long-term renoprotective benefits.
Collapse
Affiliation(s)
- Georgios S. Papaetis
- K.M.P THERAPIS Paphos Medical Center, Internal Medicine and Diabetes Clinic, Paphos, Cyprus
- CDA College, Paphos, Cyprus
| |
Collapse
|
13
|
Silva-Aguiar RP, Teixeira DE, Peres RAS, Alves SAS, Novaes-Fernandes C, Dias WB, Pinheiro AAS, Peruchetti DB, Caruso-Neves C. O-Linked GlcNAcylation mediates the inhibition of proximal tubule (Na ++K +)ATPase activity in the early stage of diabetes mellitus. Biochim Biophys Acta Gen Subj 2023; 1867:130466. [PMID: 37742874 DOI: 10.1016/j.bbagen.2023.130466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Diabetic kidney disease (DKD) is a severe complication of diabetes mellitus (DM). It has been proposed that modifications in the function of proximal tubule epithelial cells (PTECs) precede glomerular damage during the onset of DKD. This study aimed to identify modifications in renal sodium handling in the early stage of DM and its molecular mechanism. METHODS Streptozotocin (STZ)-induced diabetic BALB/c mice (STZ group) and LLC-PK1 cells, a model of PTECs, were used. All parameters were assessed in the 4th week after an initial injection of STZ. RESULTS Early stage of DKD was characterized by hyperfiltration and PTEC dysfunction. STZ group exhibited increased urinary sodium excretion due to impairment of tubular sodium reabsorption. This was correlated to a decrease in cortical (Na++K+)ATPase (NKA) α1 subunit expression and enzyme activity and an increase in O-GlcNAcylation. RNAseq analysis of patients with DKD revealed an increase in expression of the glutamine-fructose aminotransferase (GFAT) gene, a rate-limiting step of hexosamine biosynthetic pathway, and a decrease in NKA expression. Incubation of LLC-PK1 cells with 10 μM thiamet G, an inhibitor of O-GlcNAcase, reduced the expression and activity of NKA and increased O-GlcNAcylation. Furthermore, 6-diazo-5-oxo-L-norleucine (DON), a GFAT inhibitor, or dapagliflozin, an SGLT2 inhibitor, avoided the inhibitory effect of HG on expression and activity of NKA associated with the decrease in O-GlcNAcylation. CONCLUSION Our results show that the impairment of tubular sodium reabsorption, in the early stage of DM, is due to SGLT2-mediated HG influx in PTECs, increase in O-GlcNAcylation and reduction in NKA expression and activity.
Collapse
Affiliation(s)
- Rodrigo P Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo A S Peres
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sarah A S Alves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Novaes-Fernandes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wagner B Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUDE/FAPERJ, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUDE/FAPERJ, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTIC, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Melander SA, Møller AL, Mohamed KE, Rasmussen DGK, Genovese F, Karsdal MA, Henriksen K, Larsen AT. Dual amylin and calcitonin receptor agonist treatment reduces biomarkers associated with kidney fibrosis in diabetic rats. Am J Physiol Endocrinol Metab 2023; 325:E529-E539. [PMID: 37792041 DOI: 10.1152/ajpendo.00245.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
Dual amylin and calcitonin receptor agonists (DACRAs) are effective treatments for obesity and type 2 diabetes (T2D). They provide beneficial effects on body weight, glucose control, and insulin action. However, whether DACRAs protect against diabetes-related kidney damage remains unknown. We characterize the potential of long-acting DACRAs (KBP-A, Key Bioscience Peptide-A) as a treatment for T2D-related pathological alterations of the kidney extracellular matrix (ECM) in Zucker diabetic fatty rats (ZDF). We examined levels of endotrophin (profibrotic signaling molecule reflecting collagen type VI formation) and tumstatin (matrikine derived from collagen type IVα3) in serum and evaluated kidney morphology and collagen deposition in the kidneys. We included a study in obese Sprague-Dawley rats to further investigate the impact of KBP-A on ECM biomarkers. In ZDF vehicles, levels of endotrophin and tumstatin increased, suggesting disease progression along with an increase in blood glucose levels. These rats also displayed damage to their kidneys, which was evident from the presence of collagen formation in the medullary region of the kidney. Interestingly, KBP-A treatment attenuated these increases, resulting in significantly lower levels of endotrophin and tumstatin than the vehicle. Levels of endotrophin and tumstatin were unchanged in obese Sprague-Dawley rats, supporting the relation to diabetes-related kidney complications. Furthermore, KBP-A treatment normalized collagen deposition in the kidney while improving glucose control. These studies confirm the beneficial effects of DACRAs on biomarkers associated with kidney fibrosis. Moreover, these antifibrotic effects are likely associated with improved glucose control, highlighting KBP-A as a promising treatment of T2D and its related late complications.NEW & NOTEWORTHY These studies describe the beneficial effects of using a dual amylin and calcitonin receptor agonist (DACRA) for diabetes-related kidney complications. DACRA treatment reduced levels of serological biomarkers associated with kidney fibrosis. These reductions were further reflected by reduced collagen expression in diabetic kidneys. In general, these results validate the use of serological biomarkers while demonstrating the potential effect of DACRAs in treating diabetes-related long-term complications.
Collapse
Affiliation(s)
- Simone Anna Melander
- Nordic Bioscience, Herlev, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alexandra Louise Møller
- Nordic Bioscience, Herlev, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | - Kim Henriksen
- Nordic Bioscience, Herlev, Denmark
- KeyBioscience AG, Stans, Switzerland
| | | |
Collapse
|
15
|
Song J, Li X, Ni J. A Role for Sodium-Glucose Cotransporter 2 Inhibitors in the Treatment of Chronic Kidney Disease: A Mini Review. Kidney Blood Press Res 2023; 48:599-610. [PMID: 37717569 PMCID: PMC10614480 DOI: 10.1159/000534174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND Sodium-glucose cotransport protein 2 (SGLT2) inhibitors, a new type of glucose-lowering drug, have been well proved in several clinical studies for their glucose-lowering and nephroprotective effects, and the nephroprotective effects include both indirect effects of metabolic improvement and direct effects, independent of glucose-lowering effects. SUMMARY In patients with diabetic kidney disease (DKD), several studies have demonstrated the potential nephroprotective mechanisms of SGLT2 inhibitors, and evidence of nephroprotective mechanisms in the non-DKD population is accumulating. Although the nephroprotective mechanism of SGLT2 inhibitors has not been fully elucidated, several laboratory studies have illustrated the mechanism underlying the effects of SGLT2 inhibitors at various aspects. KEY MESSAGES The purpose of this article is to review the mechanism of nephroprotective effect of SGLT2 inhibitors and to look forward to promising research in the future.
Collapse
Affiliation(s)
- Jinfang Song
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xia Li
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, Wuxi, China
| | - Jiang Ni
- Department of Clinical Pharmacy, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Jiangsu Province, Wuxi, China
| |
Collapse
|
16
|
Ashfaq A, Meineck M, Pautz A, Arioglu-Inan E, Weinmann-Menke J, Michel MC. A systematic review on renal effects of SGLT2 inhibitors in rodent models of diabetic nephropathy. Pharmacol Ther 2023; 249:108503. [PMID: 37495021 DOI: 10.1016/j.pharmthera.2023.108503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
We have performed a systematic review of studies reporting on the renal effects of SGLT2 inhibitors in rodent models of diabetes. In 105 studies, SGLT2 inhibitors improved not only the glycemic control but also various aspects of renal function in most cases. These nephroprotective effects were similarly reported whether treatment with the SGLT2 inhibitor started concomitant with the onset of diabetes (within 1 week), early after onset (1-4 weeks) or after nephropathy had developed (>4 weeks after onset) with the latter probably having the greatest translational value. They were observed across various animal models of type 1 and type 2 diabetes/obesity (4 and 23 models, respectively), although studies in the type 2 diabetes model of db/db mice more often had negative data than in other models. Among possibly underlying pathophysiological mechanisms of nephroprotection, treatment with SGLT2 inhibitors had beneficial effects on lipid metabolism, blood pressure, glomerulosclerosis as well as renal tubular fibrosis, apoptosis, oxidative stress, and inflammation. These pathomechanisms highly influence atherosclerosis and renal health, which are two major factors that lead to an enhanced mortality in patients with diabetes and/or chronic kidney disease. Interestingly, renal SGLT2 inhibitor effects did not always correlate with those on glucose homeostasis, particularly in a limited number of direct comparative studies with other anti-diabetic treatments, indicating that nephroprotection may at least partly occur by mechanisms other than improving glycemic control. Our analyses did not provide evidence for different nephroprotective efficacy between SGLT2 inhibitors. Importantly, only four of 105 studies reported on female animals, and none provided direct comparative data between sexes. We conclude that more data on female animals and more direct comparative studies with other anti-diabetic compounds and combinations of treatments are needed.
Collapse
Affiliation(s)
- Aqsa Ashfaq
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Myriam Meineck
- 1(st) Dept. of Medicine, Div. of Nephrology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Andrea Pautz
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ebru Arioglu-Inan
- Dept. of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Julia Weinmann-Menke
- 1(st) Dept. of Medicine, Div. of Nephrology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Martin C Michel
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
17
|
Packer M. Fetal Reprogramming of Nutrient Surplus Signaling, O-GlcNAcylation, and the Evolution of CKD. J Am Soc Nephrol 2023; 34:1480-1491. [PMID: 37340541 PMCID: PMC10482065 DOI: 10.1681/asn.0000000000000177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
ABSTRACT Fetal kidney development is characterized by increased uptake of glucose, ATP production by glycolysis, and upregulation of mammalian target of rapamycin (mTOR) and hypoxia-inducible factor-1 alpha (HIF-1 α ), which (acting in concert) promote nephrogenesis in a hypoxic low-tubular-workload environment. By contrast, the healthy adult kidney is characterized by upregulation of sirtuin-1 and adenosine monophosphate-activated protein kinase, which enhances ATP production through fatty acid oxidation to fulfill the needs of a normoxic high-tubular-workload environment. During stress or injury, the kidney reverts to a fetal signaling program, which is adaptive in the short term, but is deleterious if sustained for prolonged periods when both oxygen tension and tubular workload are heightened. Prolonged increases in glucose uptake in glomerular and proximal tubular cells lead to enhanced flux through the hexosamine biosynthesis pathway; its end product-uridine diphosphate N -acetylglucosamine-drives the rapid and reversible O-GlcNAcylation of thousands of intracellular proteins, typically those that are not membrane-bound or secreted. Both O-GlcNAcylation and phosphorylation act at serine/threonine residues, but whereas phosphorylation is regulated by hundreds of specific kinases and phosphatases, O-GlcNAcylation is regulated only by O-GlcNAc transferase and O-GlcNAcase, which adds or removes N-acetylglucosamine, respectively, from target proteins. Diabetic and nondiabetic CKD is characterized by fetal reprogramming (with upregulation of mTOR and HIF-1 α ) and increased O-GlcNAcylation, both experimentally and clinically. Augmentation of O-GlcNAcylation in the adult kidney enhances oxidative stress, cell cycle entry, apoptosis, and activation of proinflammatory and profibrotic pathways, and it inhibits megalin-mediated albumin endocytosis in glomerular mesangial and proximal tubular cells-effects that can be aggravated and attenuated by augmentation and muting of O-GlcNAcylation, respectively. In addition, drugs with known nephroprotective effects-angiotensin receptor blockers, mineralocorticoid receptor antagonists, and sodium-glucose cotransporter 2 inhibitors-are accompanied by diminished O-GlcNAcylation in the kidney, although the role of such suppression in mediating their benefits has not been explored. The available evidence supports further work on the role of uridine diphosphate N -acetylglucosamine as a critical nutrient surplus sensor (acting in concert with upregulated mTOR and HIF-1 α signaling) in the development of diabetic and nondiabetic CKD.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute , Dallas , Texas and Imperial College , London , United Kingdom
| |
Collapse
|
18
|
Martín-Carro B, Donate-Correa J, Fernández-Villabrille S, Martín-Vírgala J, Panizo S, Carrillo-López N, Martínez-Arias L, Navarro-González JF, Naves-Díaz M, Fernández-Martín JL, Alonso-Montes C, Cannata-Andía JB. Experimental Models to Study Diabetes Mellitus and Its Complications: Limitations and New Opportunities. Int J Mol Sci 2023; 24:10309. [PMID: 37373455 PMCID: PMC10299511 DOI: 10.3390/ijms241210309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Preclinical biomedical models are a fundamental tool to improve the knowledge and management of diseases, particularly in diabetes mellitus (DM) since, currently, the pathophysiological and molecular mechanisms involved in its development are not fully clarified, and there is no treatment to cure DM. This review will focus on the features, advantages and limitations of some of the most used DM models in rats, such as the spontaneous models: Bio-Breeding Diabetes-Prone (BB-DP) and LEW.1AR1-iddm, as representative models of type 1 DM (DM-1); the Zucker diabetic fatty (ZDF) and Goto-kakizaki (GK) rats, as representative models of type 2 DM (DM-2); and other models induced by surgical, dietary and pharmacological-alloxan and streptozotocin-procedures. Given the variety of DM models in rats, as well as the non-uniformity in the protocols and the absence of all the manifestation of the long-term multifactorial complications of DM in humans, the researchers must choose the one that best suits the final objectives of the study. These circumstances, added to the fact that most of the experimental research in the literature is focused on the study of the early phase of DM, makes it necessary to develop long-term studies closer to DM in humans. In this review, a recently published rat DM model induced by streptozotocin injection with chronic exogenous administration of insulin to reduce hyperglycaemia has also been included in an attempt to mimic the chronic phase of DM in humans.
Collapse
Affiliation(s)
- Beatriz Martín-Carro
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Donate-Correa
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Sara Fernández-Villabrille
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Julia Martín-Vírgala
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sara Panizo
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Natalia Carrillo-López
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Laura Martínez-Arias
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan F. Navarro-González
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- Nephrology Service, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José L. Fernández-Martín
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Alonso-Montes
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jorge B. Cannata-Andía
- Bone and Mineral Research Unit, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medicine, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
19
|
Huang K, Luo X, Liao B, Li G, Feng J. Insights into SGLT2 inhibitor treatment of diabetic cardiomyopathy: focus on the mechanisms. Cardiovasc Diabetol 2023; 22:86. [PMID: 37055837 PMCID: PMC10103501 DOI: 10.1186/s12933-023-01816-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Among the complications of diabetes, cardiovascular events and cardiac insufficiency are considered two of the most important causes of death. Experimental and clinical evidence supports the effectiveness of SGLT2i for improving cardiac dysfunction. SGLT2i treatment benefits metabolism, microcirculation, mitochondrial function, fibrosis, oxidative stress, endoplasmic reticulum stress, programmed cell death, autophagy, and the intestinal flora, which are involved in diabetic cardiomyopathy. This review summarizes the current knowledge of the mechanisms of SGLT2i for the treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Keming Huang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Xianling Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Bin Liao
- Department of Cardiovascular Surgery, Metabolic Vascular Diseases Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Guang Li
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| | - Jian Feng
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
20
|
Afsar B, Afsar RE. Sodium-glucose cotransporter inhibitors and kidney fibrosis: review of the current evidence and related mechanisms. Pharmacol Rep 2023; 75:44-68. [PMID: 36534320 DOI: 10.1007/s43440-022-00442-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Sodium-glucose cotransporter inhibitors (SGLT2i) are a new class of anti-diabetic drugs that have beneficial cardiovascular and renal effects. These drugs decrease proximal tubular glucose reabsorption and decrease blood glucose levels as a main anti-diabetic action. Furthermore, SGLT2i decreases glomerular hyperfiltration by a tubuloglomerular feedback mechanism. However, the renal benefits of these agents are independent of glucose-lowering and hemodynamic factors, and SGLT2i also impacts the kidney structure including kidney fibrosis. Renal fibrosis is a common pathway and pathological marker of virtually every type of chronic kidney disease (CKD), and amelioration of renal fibrosis is of utmost importance to reduce the progression of CKD. Recent studies have shown that SGLT2i impact many cellular processes including inflammation, hypoxia, oxidative stress, metabolic functions, and renin-angiotensin system (RAS) which all are related with kidney fibrosis. Indeed, most but not all studies showed that renal fibrosis was ameliorated by SGLT2i through the reduction of inflammation, hypoxia, oxidative stress, and RAS activation. In addition, less known effects on SGLT2i on klotho expression, capillary rarefaction, signal transducer and activator of transcription signaling and peptidylprolyl cis/trans isomerase (Pin1) levels may partly explain the anti-fibrotic effects of SGLT2i in kidneys. It is important to remember that some studies have not shown any beneficial effects of SGLT2i on kidney fibrosis. Given this background, in the current review, we have summarized the studies and pathophysiologic aspects of SGL2 inhibition on renal fibrosis in various CKD models and tried to explain the potential reasons for contrasting findings.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
21
|
Zhou Y, Li Z, Xu M, Zhang D, Ling J, Yu P, Shen Y. O-GlycNacylation Remission Retards the Progression of Non-Alcoholic Fatty Liver Disease. Cells 2022; 11:cells11223637. [PMID: 36429065 PMCID: PMC9688300 DOI: 10.3390/cells11223637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disease spectrum associated with insulin resistance (IR), from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma (HCC). O-GlcNAcylation is a posttranslational modification, regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Abnormal O-GlcNAcylation plays a key role in IR, fat deposition, inflammatory injury, fibrosis, and tumorigenesis. However, the specific mechanisms and clinical treatments of O-GlcNAcylation and NAFLD are yet to be elucidated. The modification contributes to understanding the pathogenesis and development of NAFLD, thus clarifying the protective effect of O-GlcNAcylation inhibition on liver injury. In this review, the crucial role of O-GlcNAcylation in NAFLD (from NAFL to HCC) is discussed, and the effect of therapeutics on O-GlcNAcylation and its potential mechanisms on NAFLD have been highlighted. These inferences present novel insights into the pathogenesis and treatments of NAFLD.
Collapse
Affiliation(s)
- Yicheng Zhou
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, Nanchang 330031, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Jitao Ling
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
- Correspondence: (P.Y.); (Y.S.)
| | - Yunfeng Shen
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Nanchang University, Branch of Nationlal Clinical Research Center for Metabolic Diseases, Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China
- Correspondence: (P.Y.); (Y.S.)
| |
Collapse
|
22
|
Liu F, Zhu Y, He J, Chen H, Cao C, Xiong D, Zhou Y, Hu L. Therapeutic effect of sodium‑glucose cotransporter 2 inhibitor and benazepril on diabetic nephropathic rats. Exp Ther Med 2022; 24:747. [PMID: 36561973 PMCID: PMC9748655 DOI: 10.3892/etm.2022.11683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
The present study aimed to compare the therapeutic effect of sodium/glucose cotransporter 2 (SGLT2) inhibitor and benazepril on diabetic nephropathy (DN) rats and provide a potential novel agent for the clinical treatment of DN. The DN model was established on rats. Animals were dosed orally with SGLT2 and benazepril daily for 4 weeks. The pathological state of renal tissues were evaluated using hematoxylin and eosin, Masson and periodic acid-Schiff staining. The change in the morphology of renal tissues was observed through transmission electron microscopy. Western blotting was utilized to determine the expression level of TGF-β, N-terminal fragment of the B-type natriuretic peptide precursor (NT-proBNP) and matrix metalloproteinase-9 (MMP-9). The expression level of endothelin 1 (ET-1), von Willebrand factor (vWF), collagen (col)-I and α smooth muscle actin (α-SMA) in renal tissues was visualized using immunohistochemical assay. Significant pathological changes in the glomerular basement membrane, mesangial membrane, renal tubules, lumen, renal interstitial region and renal tubular epithelial cells were observed in DN rats, accompanied by increased collagen fibers. SGLT2 inhibitor treatment demonstrated more alleviatory effects on the pathological changes of renal tissues compared with benazepril. Compared with control, TGF-β and NT-proBNP were upregulated in DN rats, accompanied by the downregulation of MMP-9, ET-1, vWF, col-I and α-SMA, which were markedly reversed by treatment with SGLT2 inhibitor and benazepril. Compared with benazepril, the effects of SGLT2 inhibitor on the expression level of TGF-β, NT-proBNP, MMP-9, ET-1, vWF, col-I and α-SMA were more significant. Overall, SGLT2 inhibitor demonstrated an increased therapeutic effect against DN rats compared with benazepril by regulating cytokines, renal fibrosis and extracellular matrix degradation.
Collapse
Affiliation(s)
- Feiyan Liu
- Department of Nephrology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Yan Zhu
- Department of Endocrinology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Jie He
- Department of Nephrology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Huimin Chen
- Department of Nephrology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Caixia Cao
- Department of Nephrology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Di Xiong
- Department of Nephrology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Ying Zhou
- Department of Nephrology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Ling Hu
- Department of Endocrinology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China,Correspondence to: Dr Ling Hu, Department of Endocrinology, The Third Affiliated Hospital of Nanchang University, 128 Xiangshan North Road, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
23
|
Silva-Aguiar RP, Peruchetti DB, Pinheiro AAS, Caruso-Neves C, Dias WB. O-GlcNAcylation in Renal (Patho)Physiology. Int J Mol Sci 2022; 23:ijms231911260. [PMID: 36232558 PMCID: PMC9569498 DOI: 10.3390/ijms231911260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/29/2022] Open
Abstract
Kidneys maintain internal milieu homeostasis through a well-regulated manipulation of body fluid composition. This task is performed by the correlation between structure and function in the nephron. Kidney diseases are chronic conditions impacting healthcare programs globally, and despite efforts, therapeutic options for its treatment are limited. The development of chronic degenerative diseases is associated with changes in protein O-GlcNAcylation, a post-translation modification involved in the regulation of diverse cell function. O-GlcNAcylation is regulated by the enzymatic balance between O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) which add and remove GlcNAc residues on target proteins, respectively. Furthermore, the hexosamine biosynthetic pathway provides the substrate for protein O-GlcNAcylation. Beyond its physiological role, several reports indicate the participation of protein O-GlcNAcylation in cardiovascular, neurodegenerative, and metabolic diseases. In this review, we discuss the impact of protein O-GlcNAcylation on physiological renal function, disease conditions, and possible future directions in the field.
Collapse
Affiliation(s)
- Rodrigo P. Silva-Aguiar
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Diogo B. Peruchetti
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Ana Acacia S. Pinheiro
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro 21045-900, Brazil
| | - Celso Caruso-Neves
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro 21045-900, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro 21941-902, Brazil
| | - Wagner B. Dias
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
- Correspondence:
| |
Collapse
|
24
|
Protein O-GlcNAcylation and the regulation of energy homeostasis: lessons from knock-out mouse models. J Biomed Sci 2022; 29:64. [PMID: 36058931 PMCID: PMC9443036 DOI: 10.1186/s12929-022-00851-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
O-GlcNAcylation corresponds to the addition of N-Acetylglucosamine (GlcNAc) on serine or threonine residues of cytosolic, nuclear and mitochondrial proteins. This reversible modification is catalysed by a unique couple of enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). OGT uses UDP-GlcNAc produced in the hexosamine biosynthesis pathway, to modify proteins. UDP-GlcNAc is at the cross-roads of several cellular metabolisms, including glucose, amino acids and fatty acids. Therefore, OGT is considered as a metabolic sensor that post-translationally modifies proteins according to nutrient availability. O-GlcNAcylation can modulate protein–protein interactions and regulate protein enzymatic activities, stability or subcellular localization. In addition, it can compete with phosphorylation on the same serine or threonine residues, or regulate positively or negatively the phosphorylation of adjacent residues. As such, O-GlcNAcylation is a major actor in the regulation of cell signaling and has been implicated in numerous physiological and pathological processes. A large body of evidence have indicated that increased O-GlcNAcylation participates in the deleterious effects of glucose (glucotoxicity) in metabolic diseases. However, recent studies using mice models with OGT or OGA knock-out in different tissues have shown that O-GlcNAcylation protects against various cellular stresses, and indicate that both increase and decrease in O-GlcNAcylation have deleterious effects on the regulation of energy homeostasis.
Collapse
|
25
|
Sun H, Chen J, Hua Y, Zhang Y, Liu Z. New insights into the role of empagliflozin on diabetic renal tubular lipid accumulation. Diabetol Metab Syndr 2022; 14:121. [PMID: 35999610 PMCID: PMC9396853 DOI: 10.1186/s13098-022-00886-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/04/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Glucose cotransporter (SGLT) 2 suppression provides potent renal protective effect during diabetic kidney disease (DKD). This work aimed to explore how empagliflozin (EMPA, the selective and strong inhibitor of SGLT2) affected renal lipid deposition among patients undergoing type 2 diabetes mellitus (T2DM), a T2DM mouse model and human renal proximal tubular epithelial (HK-2) cells. METHODS This work divided subjects as 3 groups: non-diabetic volunteers, patients treated with metformin and those treated with metformin plus EMPA. In an in vivo study, EMPA was adopted for treating db/db mice that were raised with the basal diet or the high-advanced glycation end products (AGEs) diet. In addition, AGEs and/or EMPA was utilized to treat HK-2 cells in vitro. RESULTS Results showed that diabetic patients treated with metformin plus EMPA had lower AGEs levels and renal fat fraction (RFF) than those treated with metformin. Moreover, a significant and positive association was found between AGEs and RFF. Results from the basic study showed that EMPA decreased cholesterol level, tubular lipid droplets, and protein levels related to cholesterol metabolism in AGEs-mediated HK-2 cells, kidneys of db/db mice and those fed with the high-AGEs diet. Additionally, EMPA decreased AGEs levels in serum while inhibiting the expression of receptor of AGEs (RAGE) in vitro and in vivo. CONCLUSION EMPA inhibited the AGEs-RAGE pathway, thereby alleviating diabetic renal tubular cholesterol accumulation.
Collapse
Affiliation(s)
- Hong Sun
- Department of Endocrinology and Metabolism, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, Jiangsu, China.
| | - Juan Chen
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yulin Hua
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuyang Zhang
- The First Clinical Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zheng Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
26
|
Li N, Zhou H. Sodium-glucose Cotransporter Type 2 Inhibitors: A New Insight into the Molecular Mechanisms of Diabetic Nephropathy. Curr Pharm Des 2022; 28:2131-2139. [PMID: 35718973 DOI: 10.2174/1381612828666220617153331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/15/2022] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy is one of the chronic microvascular complications of diabetes and is a leading cause of end-stage renal disease. Fortunately, clinical trials have demonstrated that sodium-glucose cotransporter type 2 inhibitors could decrease proteinuria and improve renal endpoints and are promising agents for the treatment of diabetic nephropathy. The renoprotective effects of sodium-glucose cotransporter type 2 inhibitors cannot be simply attributed to their advantages in aspects of metabolic benefits, such as glycemic control, lowering blood pressure, and control of serum uric acid, or improving hemodynamics associated with decreased glomerular filtration pressure. Some preclinical evidence suggests that sodium-glucose cotransporter type 2 inhibitors exert their renoprotective effects by multiple mechanisms, including attenuation of oxidative and endoplasmic reticulum stresses, anti-fibrosis and anti-inflammation, protection of podocytes, suppression of megalin function, improvement of renal hypoxia, restored mitochondrial dysfunction and autophagy, as well as inhibition of sodium-hydrogen exchanger 3. In the present study, the detailed molecular mechanisms of sodium-glucose cotransporter type 2 inhibitors with the actions of diabetic nephropathy were reviewed, with the purpose of providing the basis for drug selection for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Na Li
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Zhou
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
27
|
Čertíková Chábová V, Zakiyanov O. Sodium Glucose Cotransporter-2 Inhibitors: Spotlight on Favorable Effects on Clinical Outcomes beyond Diabetes. Int J Mol Sci 2022; 23:2812. [PMID: 35269954 PMCID: PMC8911473 DOI: 10.3390/ijms23052812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/16/2022] Open
Abstract
Sodium glucose transporter type 2 (SGLT2) molecules are found in proximal tubules of the kidney, and perhaps in the brain or intestine, but rarely in any other tissue. However, their inhibitors, intended to improve diabetes compensation, have many more beneficial effects. They improve kidney and cardiovascular outcomes and decrease mortality. These benefits are not limited to diabetics but were also found in non-diabetic individuals. The pathophysiological pathways underlying the treatment success have been investigated in both clinical and experimental studies. There have been numerous excellent reviews, but these were mostly restricted to limited aspects of the knowledge. The aim of this review is to summarize the known experimental and clinical evidence of SGLT2 inhibitors' effects on individual organs (kidney, heart, liver, etc.), as well as the systemic changes that lead to an improvement in clinical outcomes.
Collapse
Affiliation(s)
- Věra Čertíková Chábová
- Department of Nephrology, 1st Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 12800 Prague 2, Czech Republic;
| | | |
Collapse
|
28
|
Wonnacott A, Denby L, Coward RJM, Fraser DJ, Bowen T. MicroRNAs and their delivery in diabetic fibrosis. Adv Drug Deliv Rev 2022; 182:114045. [PMID: 34767865 DOI: 10.1016/j.addr.2021.114045] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 09/21/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022]
Abstract
The global prevalence of diabetes mellitus was estimated to be 463 million people in 2019 and is predicted to rise to 700 million by 2045. The associated financial and societal costs of this burgeoning epidemic demand an understanding of the pathology of this disease, and its complications, that will inform treatment to enable improved patient outcomes. Nearly two decades after the sequencing of the human genome, the significance of noncoding RNA expression is still being assessed. The family of functional noncoding RNAs known as microRNAs regulates the expression of most genes encoded by the human genome. Altered microRNA expression profiles have been observed both in diabetes and in diabetic complications. These transcripts therefore have significant potential and novelty as targets for therapy, therapeutic agents and biomarkers.
Collapse
Affiliation(s)
- Alexa Wonnacott
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Laura Denby
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Richard J M Coward
- Bristol Renal, Dorothy Hodgkin Building, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Donald J Fraser
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Timothy Bowen
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
29
|
SGLT2 inhibitor dapagliflozin prevents atherosclerotic and cardiac complications in experimental type 1 diabetes. PLoS One 2022; 17:e0263285. [PMID: 35176041 PMCID: PMC8853531 DOI: 10.1371/journal.pone.0263285] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023] Open
Abstract
Introduction Cardiovascular disease (CVD) is two to five times more prevalent in diabetic patients and is the leading cause of death. Therefore, identification of novel therapeutic strategies that reduce the risk of CVD is a research priority. Clinical trials showed that reduction in the relative risk of heart failure by sodium-glucose cotransporter 2 inhibitors (SGLT2i) are partly beyond their glucose lowering effects, however, the molecular mechanisms are still elusive. Here we investigated the role of SGLT2i dapagliflozin (DAPA) in the prevention of diabetes-induced cardiovascular complications. Methods Type 1 diabetes was induced with streptozotocin (65 mg/bwkg, ip.) in adult, male Wistar rats. Following the onset of diabetes rats were treated for six weeks with DAPA (1 mg/bwkg/day, po.). Results DAPA decreased blood glucose levels (D: 37±2.7 vs. D+DAPA: 18±5.6 mmol/L; p<0.05) and prevented metabolic decline. Aortic intima-media thickening was mitigated by DAPA. DAPA abolished cardiac hypertrophy, and myocardial damage. Cardiac inflammation and fibrosis were also moderated after DAPA treatment. Conclusions These data support the preventive and protective role of SGLT2i in diabetes-associated cardiovascular disease. SGLT2i may provide novel therapeutic strategy to hinder the development of cardiovascular diseases in type 1 diabetes, thereby improve the outcomes.
Collapse
|
30
|
Lehrke M, Moellmann J, Kahles F, Marx N. Glucose-derived posttranslational modification in cardiovascular disease. Mol Aspects Med 2022; 86:101084. [DOI: 10.1016/j.mam.2022.101084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 12/21/2022]
|
31
|
Wang FZ, Wei WB, Li X, Huo JY, Jiang WY, Wang HY, Qian P, Li ZZ, Zhou YB. The cardioprotective effect of the sodium-glucose cotransporter 2 inhibitor dapagliflozin in rats with isoproterenol-induced cardiomyopathy. Am J Transl Res 2021; 13:10950-10961. [PMID: 34650776 PMCID: PMC8506988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Sodium-glucose cotransporter 2 inhibitor (SGLT2i) has been reported to improve glycemic control. This study was designed to investigate the effects of SGLT2i dapagliflozin (dapa) on cardiomyopathy induced by isoproterenol (ISO) and its potential mechanisms. Fifty male Sprague Dawley rats were randomly assigned to the control (n=10) and the ISO (2.5 mg/kg/day)-treated groups (n=40). After 2 weeks, the 28 surviving rats with obvious left ventricular dysfunction in the ISO group were randomized into three medication groups, including the angiotensin receptor neprilysin inhibitor (ARNI) sacubitril/valsartan group (S/V, n=9), the dapa group (n=9), and the ISO group (n=10) for 4 weeks. Next, electrical programmed stimulation was performed in all the groups to evaluate their susceptibility to ventricular arrhythmias (VAs). Compared to the ISO rats, the dapa administration not only effectively reduced the cumulative risk of death, the myocardial fibrosis, the plasma angiotensin II levels and its functional receptor AT1R protein expressions in the heart, and the proinflammatory cytokine levels in the cardiac tissue of the ISO-treated rats, but it also improved their cardiac function and inhibited oxidative stress. These effects were similar to S/V. However, dapa showed a greater efficacy than S/V in reducing the left ventricular end-diastolic volumes, lowing the heart rates and VAs, and decreasing the body weights and plasma glucose levels. The mechanisms by which dapa exerts protective effects on cardiomyopathy may be related to its indirect antioxidant capacity and direct hypoglycemic action.
Collapse
Affiliation(s)
- Fang-Zheng Wang
- Department of Physiology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Wen-Bo Wei
- Department of Cardiology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical UniversityNanjing 210021, Jiangsu, China
| | - Xin Li
- Department of Cardiology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical UniversityNanjing 210021, Jiangsu, China
| | - Jun-Yu Huo
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical UniversityNanjing 210006, Jiangsu, China
| | - Wan-Ying Jiang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical UniversityNanjing 210006, Jiangsu, China
| | - Hong-Yu Wang
- Department of Physiology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Pei Qian
- Department of Physiology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Zhen-Zhen Li
- Department of Cardiology, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical UniversityNanjing 210021, Jiangsu, China
| | - Ye-Bo Zhou
- Department of Physiology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| |
Collapse
|
32
|
Experimental long-term diabetes mellitus alters the transcriptome and biomechanical properties of the rat urinary bladder. Sci Rep 2021; 11:15529. [PMID: 34330963 PMCID: PMC8324824 DOI: 10.1038/s41598-021-94532-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/30/2021] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus (DM) is the leading cause of chronic kidney disease and diabetic nephropathy is widely studied. In contrast, the pathobiology of diabetic urinary bladder disease is less understood despite dysfunctional voiding being common in DM. We hypothesised that diabetic cystopathy has a characteristic molecular signature. We therefore studied bladders of hyperglycaemic and polyuric rats with streptozotocin (STZ)-induced DM. Sixteen weeks after induction of DM, as assessed by RNA arrays, wide-ranging changes of gene expression occurred in DM bladders over and above those induced in bladders of non-hyperglycaemic rats with sucrose-induced polyuria. The altered transcripts included those coding for extracellular matrix regulators and neural molecules. Changes in key genes deregulated in DM rat bladders were also detected in db/db mouse bladders. In DM rat bladders there was reduced birefringent collagen between detrusor muscle bundles, and atomic force microscopy showed a significant reduction in tissue stiffness; neither change was found in bladders of sucrose-treated rats. Thus, altered extracellular matrix with reduced tissue rigidity may contribute to voiding dysfunction in people with long-term DM. These results serve as an informative stepping stone towards understanding the complex pathobiology of diabetic cystopathy.
Collapse
|
33
|
Caffeic Acid, One of the Major Phenolic Acids of the Medicinal Plant Antirhea borbonica, Reduces Renal Tubulointerstitial Fibrosis. Biomedicines 2021; 9:biomedicines9040358. [PMID: 33808509 PMCID: PMC8065974 DOI: 10.3390/biomedicines9040358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/16/2022] Open
Abstract
The renal fibrotic process is characterized by a chronic inflammatory state and oxidative stress. Antirhea borbonica (A. borbonica) is a French medicinal plant found in Reunion Island and known for its antioxidant and anti-inflammatory activities mostly related to its high polyphenols content. We investigated whether oral administration of polyphenol-rich extract from A. borbonica could exert in vivo a curative anti-renal fibrosis effect. To this aim, three days after unilateral ureteral obstruction (UUO), mice were daily orally treated either with a non-toxic dose of polyphenol-rich extract from A. borbonica or with caffeic acid (CA) for 5 days. The polyphenol-rich extract from A. borbonica, as well as CA, the predominant phenolic acid of this medicinal plant, exerted a nephroprotective effect through the reduction in the three phases of the fibrotic process: (i) macrophage infiltration, (ii) myofibroblast appearance and (iii) extracellular matrix accumulation. These effects were associated with the mRNA down-regulation of Tgf-β, Tnf-α, Mcp1 and NfkB, as well as the upregulation of Nrf2. Importantly, we observed an increased antioxidant enzyme activity for GPX and Cu/ZnSOD. Last but not least, desorption electrospray ionization-high resolution/mass spectrometry (DESI-HR/MS) imaging allowed us to visualize, for the first time, CA in the kidney tissue. The present study demonstrates that polyphenol-rich extract from A. borbonica significantly improves, in a curative way, renal tubulointerstitial fibrosis progression in the UUO mouse model.
Collapse
|
34
|
Margonato D, Galati G, Mazzetti S, Cannistraci R, Perseghin G, Margonato A, Mortara A. Renal protection: a leading mechanism for cardiovascular benefit in patients treated with SGLT2 inhibitors. Heart Fail Rev 2021; 26:337-345. [PMID: 32901315 PMCID: PMC7895775 DOI: 10.1007/s10741-020-10024-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
Initially developed as glucose-lowering drugs, sodium-glucose co-transporter type 2 inhibitors (SGLT2i) have demonstrated to be effective agents for the risk reduction of cardiovascular (CV) events in patients with type 2 diabetes mellitus (T2DM). Subsequently, data has emerged showing a significant CV benefit in patients treated with SGLT2i regardless of diabetes status. Renal protection has been initially evaluated in CV randomized trials only as secondary endpoints; nonetheless, the positive results gained have rapidly led to the evaluation of nephroprotection as primary outcome in the CREDENCE trial. Different renal and vascular mechanisms can account for the CV and renal benefits enlightened in recent literature. As clinical guidelines rapidly evolve and the role of SGLT2i appears to become pivotal for CV, T2DM, and kidney disease management, in this review, we analyze the renal effects of SGLT2, the benefits derived from its inhibition, and how this may result in the multiple CV and renal benefits evidenced in recent clinical trials.
Collapse
Affiliation(s)
- Davide Margonato
- Heart Failure Unit and Department of Cardiology, Policlinico di Monza, Via Amati 111, 20900, Monza, Italy.
- Department of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Giuseppe Galati
- Heart Failure Unit and Department of Cardiology, San Raffaele Hospital and Scientific Institute (IRCCS), Milan, Italy
| | - Simone Mazzetti
- Heart Failure Unit and Department of Cardiology, Policlinico di Monza, Via Amati 111, 20900, Monza, Italy
| | - Rosa Cannistraci
- Department of Medicine and Surgery, Università Degli Studi di Milano Bicocca, & Policlinico di Monza, Monza, Italy
| | - Gianluca Perseghin
- Department of Medicine and Surgery, Università Degli Studi di Milano Bicocca, & Policlinico di Monza, Monza, Italy
| | - Alberto Margonato
- Heart Failure Unit and Department of Cardiology, San Raffaele Hospital and Scientific Institute (IRCCS), Milan, Italy
| | - Andrea Mortara
- Heart Failure Unit and Department of Cardiology, Policlinico di Monza, Via Amati 111, 20900, Monza, Italy
| |
Collapse
|
35
|
SGLT2 Inhibition by Intraperitoneal Dapagliflozin Mitigates Peritoneal Fibrosis and Ultrafiltration Failure in a Mouse Model of Chronic Peritoneal Exposure to High-Glucose Dialysate. Biomolecules 2020; 10:biom10111573. [PMID: 33228017 PMCID: PMC7699342 DOI: 10.3390/biom10111573] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 01/04/2023] Open
Abstract
Peritoneal dialysis (PD) is limited by glucose-mediated peritoneal membrane (PM) fibrosis, angiogenesis, and ultrafiltration failure. Influencing PM integrity by pharmacologically targeting sodium-dependent glucose transporter (SGLT)-mediated glucose uptake has not been studied. In this study, wildtype C57Bl/6N mice were treated with high-glucose dialysate via an intraperitoneal catheter, with or without addition of selective SGLT2 inhibitor dapagliflozin. PM structural changes, ultrafiltration capacity, and peritoneal equilibration testing (PET) status for glucose, urea, and creatinine were analyzed. Expression of SGLT and facilitative glucose transporters (GLUT) was analyzed by real-time PCR, immunofluorescence, and immunohistochemistry. Peritoneal effluents were analyzed for cellular and cytokine composition. We found that peritoneal SGLT2 was expressed in mesothelial cells and in skeletal muscle. Dapagliflozin significantly reduced effluent transforming growth factor (TGF-β) concentrations, peritoneal thickening, and fibrosis, as well as microvessel density, resulting in improved ultrafiltration, despite the fact that it did not affect development of high-glucose transporter status. In vitro, dapagliflozin reduced monocyte chemoattractant protein-1 release under high-glucose conditions in human and murine peritoneal mesothelial cells. Proinflammatory cytokine release in macrophages was reduced only when cultured in high-glucose conditions with an additional inflammatory stimulus. In summary, dapagliflozin improved structural and functional peritoneal health in the context of high-glucose PD.
Collapse
|
36
|
Guo J, Zheng HJ, Zhang W, Lou W, Xia C, Han XT, Huang WJ, Zhang F, Wang Y, Liu WJ. Accelerated Kidney Aging in Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1234059. [PMID: 32774664 PMCID: PMC7407029 DOI: 10.1155/2020/1234059] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/25/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
With aging, the kidney undergoes inexorable and progressive changes in structural and functional performance. These aging-related alterations are more obvious and serious in diabetes mellitus (DM). Renal accelerated aging under DM conditions is associated with multiple stresses such as accumulation of advanced glycation end products (AGEs), hypertension, oxidative stress, and inflammation. The main hallmarks of cellular senescence in diabetic kidneys include cyclin-dependent kinase inhibitors, telomere shortening, and diabetic nephropathy-associated secretory phenotype. Lysosome-dependent autophagy and antiaging proteins Klotho and Sirt1 play a fundamental role in the accelerated aging of kidneys in DM, among which the autophagy-lysosome system is the convergent mechanism of the multiple antiaging pathways involved in renal aging under DM conditions. Metformin and the inhibitor of sodium-glucose cotransporter 2 are recommended due to their antiaging effects independent of antihyperglycemia, besides angiotensin-converting enzyme inhibitors/angiotensin receptor blockers. Additionally, diet intervention including low protein and low AGEs with antioxidants are suggested for patients with diabetic nephropathy (DN). However, their long-term benefits still need further study. Exploring the interactive relationships among antiaging protein Klotho, Sirt1, and autophagy-lysosome system may provide insight into better satisfying the urgent medical needs of elderly patients with aging-related DN.
Collapse
Affiliation(s)
- Jing Guo
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hui Juan Zheng
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wenting Zhang
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wenjiao Lou
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Chenhui Xia
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xue Ting Han
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wei Jun Huang
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Fan Zhang
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yaoxian Wang
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wei Jing Liu
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, No. 57th South Renmin Road, Zhanjiang, Guangdong 524001, China
| |
Collapse
|
37
|
Nephroprotection by SGLT2 Inhibition: Back to the Future? J Clin Med 2020; 9:jcm9072243. [PMID: 32679744 PMCID: PMC7408701 DOI: 10.3390/jcm9072243] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
The introduction of sodium/glucose cotransporter 2 inhibitors (SGLT2i) has opened new perspectives for the management of diabetic population at risk of or with chronic kidney disease (CKD). More important, recent, large real-world studies have repositioned the nephroprotective efficacy of SGLT2i emerged from randomized trials within the frame of effectiveness. Furthermore, the salutary effects of these agents may extend to the nondiabetic population according to the positive results of current studies. Nevertheless, the clear benefits of these agents on the prevention of organ damage contrast with their unexpected, limited use in clinical practice. One potential barrier is the acute decline in glomerular filtration rate (GFR) commonly observed at the beginning of treatment. This phenomenon is reminiscent of the early response to the traditional nephroprotective interventions, namely blood pressure lowering, dietary protein and salt restriction and the inhibition of the renin–angiotensin system. Under this perspective, the “check-mark” sign observed in the GFR trajectory over the first weeks of SGT2i therapy should renew interest on the very basic goal of CKD treatment, i.e., alleviate hyperfiltration in viable nephrons in order to prolong their function.
Collapse
|