1
|
Cybulsky AV, Papillon J, Bryan C, Navarro‐Betancourt JR, Sabourin LA. Role of the Ste20-like kinase SLK in podocyte adhesion. Physiol Rep 2024; 12:e15897. [PMID: 38163671 PMCID: PMC10758337 DOI: 10.14814/phy2.15897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024] Open
Abstract
SLK controls the cytoskeleton, cell adhesion, and migration. Podocyte-specific deletion of SLK in mice leads to podocyte injury as mice age and exacerbates injury in experimental focal segment glomerulosclerosis (FSGS; adriamycin nephrosis). We hypothesized that adhesion proteins may be substrates of SLK. In adriamycin nephrosis, podocyte ultrastructural injury was exaggerated by SLK deletion. Analysis of a protein kinase phosphorylation site dataset showed that podocyte adhesion proteins-paxillin, vinculin, and talin-1 may be potential SLK substrates. In cultured podocytes, deletion of SLK increased adhesion to collagen. Analysis of paxillin, vinculin, and talin-1 showed that SLK deletion reduced focal adhesion complexes (FACs) containing these proteins mainly in adriamycin-induced injury; there was no change in FAC turnover (focal adhesion kinase Y397 phosphorylation). In podocytes, paxillin S250 showed basal phosphorylation that was slightly enhanced by SLK; however, SLK did not phosphorylate talin-1. In adriamycin nephrosis, SLK deletion did not alter glomerular expression/localization of talin-1 and vinculin, but increased focal adhesion kinase phosphorylation modestly. Therefore, SLK decreases podocyte adhesion, but FAC proteins in podocytes are not major substrates of SLK in health and disease.
Collapse
Affiliation(s)
- Andrey V. Cybulsky
- Department of MedicineMcGill University Health Centre Research Institute, McGill UniversityMontrealQuebecCanada
| | - Joan Papillon
- Department of MedicineMcGill University Health Centre Research Institute, McGill UniversityMontrealQuebecCanada
| | - Craig Bryan
- Department of MedicineMcGill University Health Centre Research Institute, McGill UniversityMontrealQuebecCanada
| | - José R. Navarro‐Betancourt
- Department of MedicineMcGill University Health Centre Research Institute, McGill UniversityMontrealQuebecCanada
| | - Luc A. Sabourin
- Ottawa Hospital Research Institute, Cancer TherapeuticsOttawaOntarioCanada
| |
Collapse
|
2
|
Zeng Y, Xiong C, Chen Y, Yang C, Li Q. Effects and mechanism of Rictor interference in podocyte injury induced by high glucose. Exp Ther Med 2023; 26:473. [PMID: 37753299 PMCID: PMC10518650 DOI: 10.3892/etm.2023.12172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 07/07/2023] [Indexed: 09/28/2023] Open
Abstract
Rapamycin-insensitive companion of mTOR (Rictor) is a critical effector of mTOR protein complex 2 (mTORC2). The aim of the present study was to investigate the effect of Rictor in the mTORC2 signaling pathway in high glucose (HG)-induced diabetic podocyte injury by silencing the expression of Rictor. In the present study, mouse podocytes were treated with glucose (150 mM) and mannitol (200 mM), the Rictor gene was silenced using small interfering RNA (siRNA). Apoptosis was detected by flow cytometry, whereas podocyte cytoskeletal protein expression was detected by western blotting (WB) and immunofluorescence staining. The results demonstrated that, compared with that in the control group, the podocyte apoptotic rate was significantly increased in the mannitol group (negative group) and the groups that were treated with glucose (model groups). The podocyte apoptotic rate in the model + Rictor siRNA group was significantly decreased compared with that in the negative, model and the model glucose + siRNA negative control (NC) groups. WB indicated that the protein expression levels of podocalyxin and synaptopodin were reduced in the model and model + siRNA NC groups compared with those in the normal control and negative groups. Additionally, the protein expression levels of α-smooth muscle actin (α-SMA) and P-AKT/AKT were increased in the model and model + siRNA NC groups compared with the those in control and negative groups. Compared with those the model and model + siRNA NC groups, the protein expression levels of podocalyxin and synaptopodin were increased, whilst those of the α-SMA and P-AKT/AKT proteins were decreased, in the model + Rictor siRNA group. Results from immunofluorescence analysis were basically consistent with those of WB. Therefore, results of the present study suggest that silencing of the Rictor gene may reduce the damage to podocytes induced by HG, such that the Rictor/mTORC2 signaling pathway may be involved in the remodeling of podocyte actin cytoskeletal in diabetes.
Collapse
Affiliation(s)
- Yan Zeng
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Changbin Xiong
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yinxiang Chen
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chunyun Yang
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiuyue Li
- Department of Nephrology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
3
|
Saiki R, Katayama K, Dohi K. Recent Advances in Proteinuric Kidney Disease/Nephrotic Syndrome: Lessons from Knockout/Transgenic Mouse Models. Biomedicines 2023; 11:1803. [PMID: 37509442 PMCID: PMC10376620 DOI: 10.3390/biomedicines11071803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Proteinuria is known to be associated with all-cause and cardiovascular mortality, and nephrotic syndrome is defined by the level of proteinuria and hypoalbuminemia. With advances in medicine, new causative genes for genetic kidney diseases are being discovered increasingly frequently. We reviewed articles on proteinuria/nephrotic syndrome, focal segmental glomerulosclerosis, membranous nephropathy, diabetic kidney disease/nephropathy, hypertension/nephrosclerosis, Alport syndrome, and rare diseases, which have been studied in mouse models. Significant progress has been made in understanding the genetics and pathophysiology of kidney diseases thanks to advances in science, but research in this area is ongoing. In the future, genetic analyses of patients with proteinuric kidney disease/nephrotic syndrome may ultimately lead to personalized treatment options.
Collapse
Affiliation(s)
- Ryosuke Saiki
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Kan Katayama
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| |
Collapse
|
4
|
Wan W, Zhou J, Lu R, Wang C, Hu S, Liu M, Xiong R, Kuang J, Fan X. Clinical Efficacy of Huangkui Capsule plus Methylprednisolone in the Treatment of Nephropathy and the Effect on Urinary Protein and Serum Inflammatory Factors in Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6232264. [PMID: 35845574 PMCID: PMC9279028 DOI: 10.1155/2022/6232264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022]
Abstract
Objective The study aimed to assess the clinical efficacy of Huangkui capsule plus methylprednisolone in the treatment of nephropathy and the effect on urinary protein and serum inflammatory factors in patients. Methods Between June 2017 and July 2020, 90 patients with nephropathy admitted to our hospital were recruited after assessment of eligibility and assigned via the random number table method (1 : 1) to receive either methylprednisolone tablets (observation group) or methylprednisolone tablets plus Huangkui capsules (experimental group). All eligible patients were also given dipyridamole and valsartan. Outcome measures included clinical efficacy, urine protein, hematuria, serum inflammatory factor levels, and adverse reactions. Results A higher clinical efficacy was observed in the experimental group versus the observation group (P < 0.05). Huangkui capsules resulted in significantly lower levels of urine protein and hematuria in the experimental group versus the observation group after treatment (P < 0.05). The serum tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and monocyte chemoattractant protein-1 (MCP-1) levels in the experimental group were significantly lower than those in the observation group after treatment (P < 0.05). Huangkui capsules plus methylprednisolone were associated with a lower incidence of adverse events versus methylprednisolone (P < 0.05). Conclusion The clinical efficacy of Huangkui capsule plus methylprednisolone in the treatment of patients with nephropathy is remarkable. It can effectively mitigate the inflammatory responses and enhance renal function, with reliable clinical safety, so it is worthy of clinical application.
Collapse
Affiliation(s)
- Weibo Wan
- Department of Critical Care, Wuhan First Hospital of Hubei Province, Wuhan 430000, China
| | - Jingjing Zhou
- Department of Critical Care, Wuhan First Hospital of Hubei Province, Wuhan 430000, China
| | - Rong Lu
- Department of Critical Care, Wuhan First Hospital of Hubei Province, Wuhan 430000, China
| | - Chaoyang Wang
- Department of Critical Care, Wuhan First Hospital of Hubei Province, Wuhan 430000, China
| | - Shuli Hu
- Department of Critical Care, Wuhan First Hospital of Hubei Province, Wuhan 430000, China
| | - Mei Liu
- Department of Critical Care, Wuhan First Hospital of Hubei Province, Wuhan 430000, China
| | - Rong Xiong
- Department of Critical Care, Wuhan First Hospital of Hubei Province, Wuhan 430000, China
| | - Jing Kuang
- Department of Critical Care, Wuhan First Hospital of Hubei Province, Wuhan 430000, China
| | - Xuepeng Fan
- Department of Critical Care, Wuhan First Hospital of Hubei Province, Wuhan 430000, China
| |
Collapse
|
5
|
The unfolded protein response transducer IRE1α promotes reticulophagy in podocytes. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166391. [PMID: 35304860 DOI: 10.1016/j.bbadis.2022.166391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/18/2023]
Abstract
Glomerular diseases involving podocyte/glomerular epithelial cell (GEC) injury feature protein misfolding and endoplasmic reticulum (ER) stress. Inositol-requiring enzyme 1α (IRE1α) mediates chaperone production and autophagy during ER stress. We examined the role of IRE1α in selective autophagy of the ER (reticulophagy). Control and IRE1α knockout (KO) GECs were incubated with tunicamycin to induce ER stress and subjected to proteomic analysis. This showed IRE1α-dependent upregulation of secretory pathway mediators, including the coat protein complex II component Sec23B. Tunicamycin enhanced expression of Sec23B and the reticulophagy adaptor reticulon-3-long (RTN3L) in control, but not IRE1α KO GECs. Knockdown of Sec23B reduced autophagosome formation in response to ER stress. Tunicamycin stimulated colocalization of autophagosomes with Sec23B and RTN3L in an IRE1α-dependent manner. Similarly, during ER stress, glomerular α5 collagen IV colocalized with RTN3L and autophagosomes. Degradation of RTN3L and collagen IV increased in response to tunicamycin, and the turnover was blocked by deletion of IRE1α; thus, the IRE1α pathway promotes RTN3L-mediated reticulophagy and collagen IV may be an IRE1α-dependent reticulophagy substrate. In experimental glomerulonephritis, expression of Sec23B, RTN3L, and LC3-II increased in glomeruli of control mice, but not in podocyte-specific IRE1α KO littermates. In conclusion, during ER stress, IRE1α redirects a subset of Sec23B-positive vesicles to deliver RTN3L-coated ER fragments to autophagosomes. Reticulophagy is a novel outcome of the IRE1α pathway in podocytes and may play a cytoprotective role in glomerular diseases.
Collapse
|
6
|
Li S, Luo Z, Meng S, Qiu X, Zheng F, Dai W, Zhang X, Sui W, Yan Q, Tang D, Dai Y. Label-free quantitative proteomic and phosphoproteomic analyses of renal biopsy tissues in membranous nephropathy. Proteomics Clin Appl 2021; 16:e2000069. [PMID: 34543527 DOI: 10.1002/prca.202000069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 11/11/2022]
Abstract
PURPOSE Membranous nephropathy (MN) is a common cause of nephrotic syndrome in adults. However, the underlying mechanisms of its occurrence and development are not completely clear. Thus, it is essential to explore the mechanisms. EXPERIMENTAL DESIGN Here, we employed label-free quantification and liquid chromatography-tandem mass spectrometry analysis techniques to investigate the proteomic and phosphoproteomic alterations in renal biopsy tissues of MN patients. Samples were collected from 16 MN patients and 10 controls. Immunohistochemistry (IHC) was performed to validate the hub phosphoprotein. RESULTS We focused on the changes in the phosphoproteome in MN group versus control group (CG). Totally, 1704 phosphoproteins containing 3241 phosphosites were identified and quantified. The phosphorylation levels of 216 phosphoproteins containing 297 phosphosites were differentially regulated in stage II MN group versus CG, and 333 phosphoproteins containing 461 phosphosites were differentially phosphorylated in stage III MN group versus CG. In each comparison, several differential phosphoproteins were factors, kinases and receptors involved in cellular processes, biological regulation and other biological processes. The subcellular location of most of the differential phosphoproteins was the nucleus. Protein-protein interaction analysis showed that the connections among the differential phosphoproteins were extremely complex, and several signalling pathways probably associated with MN were identified. The hub phosphoprotein was validated by IHC. CONCLUSIONS AND CLINICAL RELEVANCE This investigation can provide direct insight into the global phosphorylation events in MN group versus CG and may help to shed light on the potential pathogenic mechanisms of MN.
Collapse
Affiliation(s)
- Shanshan Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Zhifeng Luo
- Guangxi Key Laboratory of Metabolic Disease Research, Department of Nephrology, The No. 924 Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Guilin, China
| | - Shuhui Meng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Xiaofen Qiu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.,Guangxi Key Laboratory of Metabolic Disease Research, Department of Nephrology, The No. 924 Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Guilin, China
| | - Fengping Zheng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, Texas, USA
| | - Xinzhou Zhang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Weiguo Sui
- Guangxi Key Laboratory of Metabolic Disease Research, Department of Nephrology, The No. 924 Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Guilin, China
| | - Qiang Yan
- Guangxi Key Laboratory of Metabolic Disease Research, Department of Nephrology, The No. 924 Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Guilin, China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
7
|
Garland B, Delisle S, Al-Zahrani KN, Pryce BR, Sabourin LA. The Ste20-like kinase - a Jack of all trades? J Cell Sci 2021; 134:261804. [PMID: 33961052 DOI: 10.1242/jcs.258269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over the past 20 years, the Ste20-like kinase (SLK; also known as STK2) has emerged as a central regulator of cytoskeletal dynamics. Reorganization of the cytoskeleton is necessary for a plethora of biological processes including apoptosis, proliferation, migration, tissue repair and signaling. Several studies have also uncovered a role for SLK in disease progression and cancer. Here, we review the recent findings in the SLK field and summarize the various roles of SLK in different animal models and discuss the biochemical mechanisms regulating SLK activity. Together, these studies have revealed multiple roles for SLK in coupling cytoskeletal dynamics to cell growth, in muscle repair and in negative-feedback loops critical for cancer progression. Furthermore, the ability of SLK to regulate some systems appears to be kinase activity independent, suggesting that it may be an important scaffold for signal transduction pathways. These various findings reveal highly complex functions and regulation patterns of SLK in development and disease, making it a potential therapeutic target.
Collapse
Affiliation(s)
- Brennan Garland
- Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, K1H8L1, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H8L6, Canada
| | - Samuel Delisle
- Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, K1H8L1, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H8L6, Canada
| | - Khalid N Al-Zahrani
- Center for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G1X5, Canada
| | - Benjamin R Pryce
- Department of Pediatrics, Hollings Cancer Center, Medical University of South Carolina,Charleston, SC 29425, USA
| | - Luc A Sabourin
- Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, K1H8L1, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H8L6, Canada
| |
Collapse
|
8
|
Fukusumi Y, Yasuda H, Zhang Y, Kawachi H. Nephrin-Ephrin-B1-Na +/H + Exchanger Regulatory Factor 2-Ezrin-Actin Axis Is Critical in Podocyte Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1209-1226. [PMID: 33887216 DOI: 10.1016/j.ajpath.2021.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/13/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Ephrin-B1 is one of the critical components of the slit diaphragm of kidney glomerular podocyte. However, the precise function of ephrin-B1 is unclear. To clarify the function of ephrin-B1, ephrin-B1-associated molecules were studied. RNA-sequencing analysis suggested that Na+/H+ exchanger regulatory factor 2 (NHERF2), a scaffolding protein, is associated with ephrin-B1. NHERF2 was expressed at the apical area and the slit diaphragm, and interacted with the nephrin-ephrin-B1 complex at the slit diaphragm. The nephrin-ephrin-B1-NHERF2 complex interacted with ezrin bound to F-actin. NHERF2 bound ephrin-B1 via its first postsynaptic density protein-95/disks large/zonula occludens-1 domain, and podocalyxin via its second postsynaptic density protein-95/disks large/zonula occludens-1 domain. Both in vitro analyses with human embryonic kidney 293 cells and in vivo study with rat nephrotic model showed that stimulaiton of the slit diaphragm, phosphorylation of nephrin and ephrin-B1, and dephosphorylation of NHERF2 and ezrin, disrupted the linkages of ephrin-B1-NHERF2 and NHERF2-ezrin. It is conceivable that the linkage of nephrin-ephrin-B1-NHERF2-ezrin-actin is a novel critical axis in the podocytes. Ephrin-B1 phosphorylation also disrupted the linkage of an apical transmembrane protein, podocalyxin, with NHERF2-ezrin-actin. The phosphorylation of ephrin-B1 and the consequent dephosphorylation of NHERF2 are critical initiation events leading to podocyte injury.
Collapse
Affiliation(s)
- Yoshiyasu Fukusumi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hidenori Yasuda
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ying Zhang
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroshi Kawachi
- Department of Cell Biology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
9
|
Navarro-Betancourt JR, Papillon J, Guillemette J, Iwawaki T, Chung CF, Cybulsky AV. Role of IRE1α in podocyte proteostasis and mitochondrial health. Cell Death Discov 2020; 6:128. [PMID: 33298866 PMCID: PMC7677398 DOI: 10.1038/s41420-020-00361-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Glomerular epithelial cell (GEC)/podocyte proteostasis is dysregulated in glomerular diseases. The unfolded protein response (UPR) is an adaptive pathway in the endoplasmic reticulum (ER) that upregulates proteostasis resources. This study characterizes mechanisms by which inositol requiring enzyme-1α (IRE1α), a UPR transducer, regulates proteostasis in GECs. Mice with podocyte-specific deletion of IRE1α (IRE1α KO) were produced and nephrosis was induced with adriamycin. Compared with control, IRE1α KO mice had greater albuminuria. Adriamycin increased glomerular ER chaperones in control mice, but this upregulation was impaired in IRE1α KO mice. Likewise, autophagy was blunted in adriamycin-treated IRE1α KO animals, evidenced by reduced LC3-II and increased p62. Mitochondrial ultrastructure was markedly disrupted in podocytes of adriamycin-treated IRE1α KO mice. To pursue mechanistic studies, GECs were cultured from glomeruli of IRE1α flox/flox mice and IRE1α was deleted by Cre-lox recombination. In GECs incubated with tunicamycin, deletion of IRE1α attenuated upregulation of ER chaperones, LC3 lipidation, and LC3 transcription, compared with control GECs. Deletion of IRE1α decreased maximal and ATP-linked oxygen consumption, as well as mitochondrial membrane potential. In summary, stress-induced chaperone production, autophagy, and mitochondrial health are compromised by deletion of IRE1α. The IRE1α pathway is cytoprotective in glomerular disease associated with podocyte injury and ER stress.
Collapse
Affiliation(s)
- José R Navarro-Betancourt
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| | - Takao Iwawaki
- Department of Life Science, Kanazawa Medical University, Uchinada, Japan
| | - Chen-Fang Chung
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada
| | - Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|