1
|
Chen C, Wang W, Raymond M, Ahmadinejad F, Poklis JL, Em B, Gewirtz DA, Lichtman AH, Li N. Genetic Knockout of Fatty Acid Amide Hydrolase Ameliorates Cisplatin-Induced Nephropathy in Mice. Mol Pharmacol 2023; 103:230-240. [PMID: 36702548 PMCID: PMC10029825 DOI: 10.1124/molpharm.122.000618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 01/27/2023] Open
Abstract
Cisplatin is a potent first-line therapy for many solid malignancies, such as breast, ovarian, lung, testicular, and head and neck cancer. However, acute kidney injury (AKI) is a major dose-limiting toxicity in cisplatin therapy, which often hampers the continuation of cisplatin treatment. The endocannabinoid system, consisting of anandamide (AEA) and 2-arachidonoylglycerol and cannabinoid receptors, participates in different kidney diseases. Inhibition of fatty acid amide hydrolase (FAAH), the primary enzyme for the degradation of AEA and AEA-related N-acylethanolamines, elicits anti-inflammatory effects; however, little is known about its role in cisplatin nephrotoxicity. The current study tested the hypothesis that genetic deletion of Faah mitigates cisplatin-induced AKI. Male wild-type C57BL6 (WT) and Faah-/- mice were administered a single dose of intraperitoneal injection of cisplatin (30 mg/kg) and euthanatized 72 hours later. Faah-/- mice showed a reduction of cisplatin-induced blood urea nitrogen, plasma creatinine levels, kidney injury markers, and tubular damage in comparison with WT mice. The renal protection from Faah deletion was associated with enhanced tone of AEA-related N-acylethanolamines (palmitoylethanolamide and oleoylethanolamide), attenuated nuclear factor-κB/p65 activity, DNA damage markers p53 and p21, and decreased expression of the inflammatory cytokine interleukin-1β, as well as infiltration of macrophages and leukocytes in the kidneys. Notably, a selective FAAH inhibitor (PF-04457845) did not interfere with or perturb the antitumor effects of cisplatin in two head and neck squamous cell carcinoma cell lines, HN30 and HN12. Our work highlights that FAAH inactivation prevents cisplatin-induced nephrotoxicity in mice and that targeting FAAH could provide a novel strategy to mitigate cisplatin-induced nephrotoxicity. SIGNIFICANCE STATEMENT: Mice lacking the Faah gene are protected from cisplatin-induced inflammation, DNA damage response, tubular damage, and kidney dysfunction. Inactivation of FAAH could be a potential strategy to mitigate cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Chaoling Chen
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Weili Wang
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Marissa Raymond
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Fereshteh Ahmadinejad
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Justin L Poklis
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Brandon Em
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - David A Gewirtz
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Aron H Lichtman
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| | - Ningjun Li
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
2
|
Alswailmi FK. A Cross Talk between the Endocannabinoid System and Different Systems Involved in the Pathogenesis of Hypertensive Retinopathy. Pharmaceuticals (Basel) 2023; 16:ph16030345. [PMID: 36986445 PMCID: PMC10058254 DOI: 10.3390/ph16030345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
The prognosis of hypertension leads to organ damage by causing nephropathy, stroke, retinopathy, and cardiomegaly. Retinopathy and blood pressure have been extensively discussed in relation to catecholamines of the autonomic nervous system (ANS) and angiotensin II of the renin–angiotensin aldosterone system (RAAS) but very little research has been conducted on the role of the ECS in the regulation of retinopathy and blood pressure. The endocannabinoid system (ECS) is a unique system in the body that can be considered as a master regulator of body functions. It encompasses the endogenous production of its cannabinoids, its degrading enzymes, and functional receptors which innervate and perform various functions in different organs of the body. Hypertensive retinopathy pathologies arise normally due to oxidative stress, ischemia, endothelium dysfunction, inflammation, and an activated renin–angiotensin system (RAS) and catecholamine which are vasoconstrictors in their biological nature. The question arises of which system or agent counterbalances the vasoconstrictors effect of noradrenaline and angiotensin II (Ang II) in normal individuals? In this review article, we discuss the role of the ECS and its contribution to the pathogenesis of hypertensive retinopathy. This review article will also examine the involvement of the RAS and the ANS in the pathogenesis of hypertensive retinopathy and the crosstalk between these three systems in hypertensive retinopathy. This review will also explain that the ECS, which is a vasodilator in its action, either independently counteracts the effect produced with the vasoconstriction of the ANS and Ang II or blocks some of the common pathways shared by the ECS, ANS, and Ang II in the regulation of eye functions and blood pressure. This article concludes that persistent control of blood pressure and normal functions of the eye are maintained either by decreasing systemic catecholamine, ang II, or by upregulation of the ECS which results in the regression of retinopathy induced by hypertension.
Collapse
Affiliation(s)
- Farhan Khashim Alswailmi
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al Batin, Hafr Al Batin 39524, Saudi Arabia
| |
Collapse
|
3
|
Amruta N, Kandikattu HK, Intapad S. Cardiovascular Dysfunction in Intrauterine Growth Restriction. Curr Hypertens Rep 2022; 24:693-708. [PMID: 36322299 DOI: 10.1007/s11906-022-01228-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW We highlight important new findings on cardiovascular dysfunction in intrauterine growth restriction. RECENT FINDINGS Intrauterine growth restriction (IUGR) is a multifactorial condition which negatively impacts neonatal growth during pregnancy and is associated with health problems during the lifespan. It affects 5-15% of all pregnancies in the USA and Europe with varying percentages in developing countries. Epidemiological studies have reported that IUGR is associated with the pathogenesis of hypertension, activation of the renin-angiotensin system (RAS), disruption in placental-mTORC and TGFβ signaling cascades, and endothelial dysfunction in IUGR fetuses, children, adolescents, and adults resulting in the development of cardiovascular diseases (CVD). Experimental studies are needed to investigate therapeutic measures to treat increased blood pressure (BP) and long-term CVD problems in people affected by IUGR. We outline the mechanisms mediating fetal programming of hypertension in developing CVD. We have reviewed findings from different experimental models focusing on recent studies that demonstrate CVD in IUGR.
Collapse
Affiliation(s)
- Narayanappa Amruta
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, #8683, New Orleans, LA, 70112-2699, USA
| | - Hemanth Kumar Kandikattu
- Department of Medicine, Section of Pulmonary Diseases, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Suttira Intapad
- Department of Pharmacology, Tulane University School of Medicine, 1430 Tulane Avenue, #8683, New Orleans, LA, 70112-2699, USA.
| |
Collapse
|
4
|
Chen C, Wang W, Poklis JL, Lichtman AH, Ritter JK, Hu G, Xie D, Li N. Inactivation of fatty acid amide hydrolase protects against ischemic reperfusion injury-induced renal fibrogenesis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166456. [PMID: 35710061 PMCID: PMC10215004 DOI: 10.1016/j.bbadis.2022.166456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
Abstract
Although cannabinoid receptors (CB) are recognized as targets for renal fibrosis, the roles of endogenous cannabinoid anandamide (AEA) and its primary hydrolytic enzyme, fatty acid amide hydrolase (FAAH), in renal fibrogenesis remain unclear. The present study used a mouse model of post-ischemia-reperfusion renal injury (PIR) to test the hypothesis that FAAH participates in the renal fibrogenesis. Our results demonstrated that PIR showed upregulated expression of FAAH in renal proximal tubules, accompanied with decreased AEA levels in kidneys. Faah knockout mice recovered the reduced AEA levels and ameliorated PIR-triggered increases in blood urea nitrogen, plasma creatinine as well as renal profibrogenic markers and injuries. Correspondingly, a selective FAAH inhibitor, PF-04457845, inhibited the transforming growth factor-beta 1 (TGF-β1)-induced profibrogenic markers in human proximal tubular cell line (HK-2 cells) and mouse primary cultured tubular cells. Knockdown of FAAH by siRNA in HK-2 cells had similar effects as PF-04457845. Tubular cells isolated from Faah-/- mice further validated the protection against TGF-β1-induced damages. The CB 1 or CB2 receptor antagonist and exogenous FAAH metabolite arachidonic acid failed to reverse the protective effects of FAAH inactivation in HK-2 cells. However, a substrate-selective inhibitor of AEA-cyclooxygenase-2 (COX-2) pathway significantly suppressed the anti-profibrogenic actions of FAAH inhibition. Further, the AEA-COX-2 metabolite, prostamide E2 exerted anti-fibrogenesis effect. These findings suggest that FAAH activation and the consequent reduction of AEA contribute to the renal fibrogenesis, and that FAAH inhibition protects against fibrogenesis in renal cells independently of CB receptors via the AEA-COX-2 pathway by the recovery of reduced AEA.
Collapse
Affiliation(s)
- Chaoling Chen
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Weili Wang
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Justin L Poklis
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Aron H Lichtman
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Joseph K Ritter
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Gaizun Hu
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Dengpiao Xie
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ningjun Li
- Department of Pharmacology & Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
5
|
Ritter JK, Ahmad A, Mummalaneni S, Daneva Z, Dempsey SK, Li N, Li PL, Lyall V. Mechanism of Diuresis and Natriuresis by Cannabinoids: Evidence for Inhibition of Na +-K +-ATPase in Mouse Kidney Thick Ascending Limb Tubules. J Pharmacol Exp Ther 2021; 376:1-11. [PMID: 33087396 PMCID: PMC7745087 DOI: 10.1124/jpet.120.000163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid, anandamide (AEA), stimulates cannabinoid receptors (CBRs) and is enriched in the kidney, especially the renal medulla. AEA infused into the renal outer medulla of mice stimulates urine flow rate and salt excretion. Here we show that these effects are blocked by the CBR type 1 (CB1) inverse agonist, rimonabant. Immunohistochemical analysis demonstrated the presence of CB1 in thick ascending limb (TAL) tubules. Western immunoblotting demonstrated the presence of CB1 (52 kDa) in the cortex and outer medulla of mouse kidney. The effect of direct [CP55940 (CP) or AEA] or indirect [fatty acyl amide hydrolase (FAAH) inhibitor, PF3845 (PF)] cannabinoidimetics on Na+ transport in isolated mouse TAL tubules was studied using the Na+-sensitive dye, SBFI-AM. Switching from 0 Na+ solution to control Ringer's solution (CR) rapidly increased TAL cell [Na+]i Addition of CP to CR produced a further elevation, similar in magnitude to that of ouabain, a Na+-K+-ATPase inhibitor. This [Na+]i-elevating effect of CP was time-dependent, required the presence of Na+ in the bathing solution, and was insensitive to Na+-K+-2Cl- cotransporter inhibition. Addition of PF to CR elevated [Na+]i in FAAH wild-type but not FAAH knockout (KO) TALs, whereas the additions of CP and AEA to PF-treated FAAH KO TALs increased [Na+]i An interaction between cannabinoidimetics and ouabain (Ou) was observed. Ou produced less increase in [Na+]i after cannabinoidimetic treatment, whereas cannabinoidimetics had less effect after Ou treatment. It is concluded that cannabinoidimetics, including CP and AEA, inhibit Na+ transport in TALs by inhibiting Na+ exit via Na+-K+-ATPase. SIGNIFICANCE STATEMENT: Cannabinoids including endocannabinoids induce renal urine and salt excretion and are proposed to play a physiological role in the regulation of blood pressure. Our data suggest that the mechanism of the cannabinoids involves inhibition of the sodium pump, Na+-K+-ATPase, in thick ascending limb cells and, likely, other proximal and distal tubular segments of the kidney nephron.
Collapse
Affiliation(s)
- Joseph K Ritter
- Departments of Pharmacology and Toxicology (J.K.R., A.A., Z.D., S.K.D., N.L., P.-L.L.) and Physiology and Biophysics (S.M., V.L.), Virginia Commonwealth University, Richmond, Virginia
| | - Ashfaq Ahmad
- Departments of Pharmacology and Toxicology (J.K.R., A.A., Z.D., S.K.D., N.L., P.-L.L.) and Physiology and Biophysics (S.M., V.L.), Virginia Commonwealth University, Richmond, Virginia
| | - Shobha Mummalaneni
- Departments of Pharmacology and Toxicology (J.K.R., A.A., Z.D., S.K.D., N.L., P.-L.L.) and Physiology and Biophysics (S.M., V.L.), Virginia Commonwealth University, Richmond, Virginia
| | - Zdravka Daneva
- Departments of Pharmacology and Toxicology (J.K.R., A.A., Z.D., S.K.D., N.L., P.-L.L.) and Physiology and Biophysics (S.M., V.L.), Virginia Commonwealth University, Richmond, Virginia
| | - Sara K Dempsey
- Departments of Pharmacology and Toxicology (J.K.R., A.A., Z.D., S.K.D., N.L., P.-L.L.) and Physiology and Biophysics (S.M., V.L.), Virginia Commonwealth University, Richmond, Virginia
| | - Ningjun Li
- Departments of Pharmacology and Toxicology (J.K.R., A.A., Z.D., S.K.D., N.L., P.-L.L.) and Physiology and Biophysics (S.M., V.L.), Virginia Commonwealth University, Richmond, Virginia
| | - Pin-Lan Li
- Departments of Pharmacology and Toxicology (J.K.R., A.A., Z.D., S.K.D., N.L., P.-L.L.) and Physiology and Biophysics (S.M., V.L.), Virginia Commonwealth University, Richmond, Virginia
| | - Vijay Lyall
- Departments of Pharmacology and Toxicology (J.K.R., A.A., Z.D., S.K.D., N.L., P.-L.L.) and Physiology and Biophysics (S.M., V.L.), Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
6
|
Sadowski J, Bądzyńska B. Altered renal medullary blood flow: A key factor or a parallel event in control of sodium excretion and blood pressure? Clin Exp Pharmacol Physiol 2020; 47:1323-1332. [PMID: 32163610 DOI: 10.1111/1440-1681.13303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 11/29/2022]
Abstract
In the context of the ongoing debate on the mechanism of blood pressure (BP) regulation and pathophysiology of arterial hypertension ("renocentric" vs "neural" concepts), attention is focused on the putative regulatory role of changes in renal medullary blood flow (MBF). Experimental evidence is analysed with regard to the question whether an elevation of BP and renal perfusion pressure (RPP) is likely to increase MBF due to its impaired autoregulation. It is concluded that such increases have been clearly documented only in rats with extracellular fluid volume expansion. A possible translation of this finding to BP regulation in health and hypertension in humans may only be a matter of speculation. Within the "renocentric" theory, the key event leading to restoration of initial BP level is pressure natriuresis. Its relation to elevation of renal interstitial hydrostatic pressure and to the phenomenon of "wash-out" of renal medullary solutes by increasing MBF is discussed. We also assessed the validity of data supporting the putative mechanism of short-term restoration of elevated BP owing to the release of a vasodilator lipid (medullipin) by the medulla. The structure of the proposed medullary lipid is still undefined, and there is no sound evidence on its mediatory role in lowering elevated BP level. In conclusion, MBF change can hardly be regarded as a crucial event in the regulation of BP: it can be involved in the control of sodium excretion and BP only in some circumstances, although its contributory role cannot be excluded.
Collapse
Affiliation(s)
- Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Bożena Bądzyńska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Stasiulewicz A, Znajdek K, Grudzień M, Pawiński T, Sulkowska JI. A Guide to Targeting the Endocannabinoid System in Drug Design. Int J Mol Sci 2020; 21:ijms21082778. [PMID: 32316328 PMCID: PMC7216112 DOI: 10.3390/ijms21082778] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is one of the most crucial systems in the human organism, exhibiting multi-purpose regulatory character. It is engaged in a vast array of physiological processes, including nociception, mood regulation, cognitive functions, neurogenesis and neuroprotection, appetite, lipid metabolism, as well as cell growth and proliferation. Thus, ECS proteins, including cannabinoid receptors and their endogenous ligands’ synthesizing and degrading enzymes, are promising therapeutic targets. Their modulation has been employed in or extensively studied as a treatment of multiple diseases. However, due to a complex nature of ECS and its crosstalk with other biological systems, the development of novel drugs turned out to be a challenging task. In this review, we summarize potential therapeutic applications for ECS-targeting drugs, especially focusing on promising synthetic compounds and preclinical studies. We put emphasis on modulation of specific proteins of ECS in different pathophysiological areas. In addition, we stress possible difficulties and risks and highlight proposed solutions. By presenting this review, we point out information pivotal in the spotlight of ECS-targeting drug design, as well as provide an overview of the current state of knowledge on ECS-related pharmacodynamics and show possible directions for needed research.
Collapse
Affiliation(s)
- Adam Stasiulewicz
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Correspondence: (A.S.); (J.I.S.)
| | - Katarzyna Znajdek
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Monika Grudzień
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Tomasz Pawiński
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Joanna I. Sulkowska
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
- Correspondence: (A.S.); (J.I.S.)
| |
Collapse
|
8
|
Dempsey SK, Gesseck AM, Ahmad A, Daneva Z, Ritter JK, Poklis JL. Formation of HETE-EAs and dihydroxy derivatives in mouse kidney tissue and analysis by high-performance liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1126-1127:121748. [PMID: 31437772 DOI: 10.1016/j.jchromb.2019.121748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/21/2019] [Accepted: 08/06/2019] [Indexed: 11/15/2022]
Abstract
The kidneys play an important role in the long-term regulation of blood pressure by control of salt and water balance in the body through various systems including the endocannabinoid system. The endocannabinoid system consists of the two major cannabinoid receptor agonists, anandamide (AEA) and 2-arachidonylglycerol (2-AG), their hydrolyzing enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), and the cannabinoid receptors, CB1 and CB2. AEA can be converted into 12- and 15(S)-hydroperoxyeicosatetraenoic acid ethanolamides by 12-LOX and 15-LOX, respectively and can form epoxyeicosatrienoic acid- (EET-EAs) (5,6-, 8,9-, 11,12-, 14,15-) and hydroxyeicosatetraenoic acid- (HETE) ethanolamides. Furthermore, the EET-EAs produce a secondary metabolism by microsomal epoxide hydrolase to form the corresponding dihydroxyeicosatetraenoic acid-EAs (DiHETE-EA). Reference material was not available for DiHETE-EA. These metabolites were synthesized by incubation of the corresponding EET-EAs with mouse liver cytosol containing epoxide hydrolases. Presented is a solid phase extraction and high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) for the extraction and quantitation of AEA, 2-AG, their metabolites, oleoylethanolamide (OEA), and palmitoylethanolamide (PEA), and the in vivo formation of the DiHETE-EAs in kidney after a single intravenous bolus administration of 20 mg/kg of anandamide in C57BL/6 J and FAAH KO mice.
Collapse
Affiliation(s)
- Sara K Dempsey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298-0613, USA.
| | - Ashley M Gesseck
- Department of Forensic Science, Virginia Commonwealth University, PO Box 843079, Richmond, VA 23284-3079, USA; Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, PO Box 84230, Richmond, VA 23284-02030, USA.
| | - Ashfaq Ahmad
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298-0613, USA.
| | - Zdravka Daneva
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298-0613, USA.
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298-0613, USA.
| | - Justin L Poklis
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, PO Box 980613, Richmond, VA 23298-0613, USA; Department of Forensic Science, Virginia Commonwealth University, PO Box 843079, Richmond, VA 23284-3079, USA.
| |
Collapse
|
9
|
Daneva Z, Dempsey SK, Ahmad A, Li N, Li PL, Ritter JK. Diuretic, Natriuretic, and Vasodepressor Activity of a Lipid Fraction Enhanced in Medium of Cultured Mouse Medullary Interstitial Cells by a Selective Fatty Acid Amide Hydrolase Inhibitor. J Pharmacol Exp Ther 2019; 368:187-198. [PMID: 30530623 PMCID: PMC6337005 DOI: 10.1124/jpet.118.252320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023] Open
Abstract
The relationship between the endocannabinoid system in the renal medulla and the long-term regulation of blood pressure is not yet understood. To investigate the possible role of the endocannabinoid system in renomedullary interstitial cells, mouse medullary interstitial cells (MMICs) were obtained, cultured, and characterized for their responses to treatment with a selective inhibitor of fatty acid amide hydrolase, PF-3845 (N-3-pyridinyl-4-[[3-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenyl]methyl]-1-piperidinecarboxamide). Treatment of MMICs with PF-3845 increased cytoplasmic lipid granules detected by Sudan Black B staining and multilamellar bodies identified by transmission electron microscopy. High-performance liquid chromatography (HPLC) analyses of lipid extracts of MMIC culture medium revealed a 205-nm absorbing peak that showed responsiveness to PF-3845 treatment. The biologic activities of the PF-3845-induced product (PIP) isolated by HPLC were investigated in anesthetized, normotensive surgically instrumented mice. Intramedullary and intravenous infusion of PIP at low dose rates (0.5-1 area units under the peak/10 min) stimulated diuresis and natriuresis, whereas these parameters returned toward baseline at higher doses but mean arterial pressure (MAP) was lowered. Whereas intravenous bolus doses of PIP stimulated diuresis, the glomerular filtration rate, and medullary blood flow (MBF) and reduced or had no effect on MAP, an intraperitoneal bolus injection of PIP reduced MAP, increased MBF, and had no effect on urine parameters. These data support a model whereby PF-3845 treatment of MMICs results in increased secretion of a neutral lipid that acts directly to promote diuresis and natriuresis and indirectly through metabolites to produce vasodepression. Efforts to identify the structure of the PF-3845-induced lipid and its relationship to the previously proposed renomedullary antihypertensive lipids are ongoing.
Collapse
Affiliation(s)
- Zdravka Daneva
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Sara K Dempsey
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Ashfaq Ahmad
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Joseph K Ritter
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|