1
|
Nikolsky KS, Kopylov AT, Nakhod VI, Potoldykova NV, Enikeev DV, Butkova TV, Kulikova LI, Malsagova KA, Rudnev VR, Petrovskiy DV, Izotov AA, Kaysheva AL. Plasma proteome fingerprint in kidney diseases. Front Mol Biosci 2025; 11:1494779. [PMID: 39896931 PMCID: PMC11782039 DOI: 10.3389/fmolb.2024.1494779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/10/2024] [Indexed: 02/04/2025] Open
Abstract
Introduction Kidney diseases pose a serious healthcare problem because of their high prevalence, worsening of patients' quality of life, and high mortality. Patients with kidney diseases are often asymptomatic until disease progression starts. Expensive renal replacement therapy options, such as dialysis or kidney transplant, are required for end-stage kidney disease. Early diagnosis of kidney pathology is crucial for slowing down or curbing further damage. This study aimed to analyze the features of the protein composition of blood plasma in patients with the most common kidney pathologies: kidney calculus, kidney cyst, and kidney cancer. Methods The study involved 75 subjects. Proteins associated with kidney pathologies (CFB, SERPINA3, HPX, HRG, SERPING1, HBB, ORM2, and CP) were proposed. These proteins are important participants of complement and coagulation cascade activation and lipid metabolism. Results The revealed phosphorylated proteoforms (CFB, C4A/C4B, F2, APOB, TTR, and NRAP) were identified. For them, modification sites were mapped on 3D protein models, and the potential role in formation of complexes with native partner proteins was assessed. Discussion The study demonstrates that the selected kidney pathologies have a similar proteomic profile, and patients can be classified into kidney pathology groups with an accuracy of (70-80)%.
Collapse
Affiliation(s)
- Kirill S. Nikolsky
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Arthur T. Kopylov
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Valeriya I. Nakhod
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Natalia V. Potoldykova
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Dmitry V. Enikeev
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Tatiana V. Butkova
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Liudmila I. Kulikova
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Kristina A. Malsagova
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Vladimir R. Rudnev
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Denis V. Petrovskiy
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Alexander A. Izotov
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Anna L. Kaysheva
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
2
|
Xue C, Zhou C, Sun L, Zhang L, Mao Z. Deciphering interleukin 37's therapeutic potential: insights into alleviating inflammation in autosomal dominant polycystic kidney disease. Kidney Int 2024; 105:1130. [PMID: 38642980 DOI: 10.1016/j.kint.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 04/22/2024]
Affiliation(s)
- Cheng Xue
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China.
| | - Chenchen Zhou
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China; Outpatient Department, Yangpu Third Military Retreat, Shanghai, China
| | - Lijun Sun
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China; Department of Nephrology and Endocrinology, Shanghai 411 Hospital, Shanghai, China
| | - Liming Zhang
- Department of Nephrology, Zhabei Central Hospital of JingAn District of Shanghai, Shanghai, China
| | - Zhiguo Mao
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University (Naval Medical University), Shanghai, China.
| |
Collapse
|
3
|
Chen Y, Lu X, Whitney RL, Li Y, Robson MJ, Blakely RD, Chi JT, Crowley SD, Privratsky JR. Novel anti-inflammatory effects of the IL-1 receptor in kidney myeloid cells following ischemic AKI. Front Mol Biosci 2024; 11:1366259. [PMID: 38693918 PMCID: PMC11061482 DOI: 10.3389/fmolb.2024.1366259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/01/2024] [Indexed: 05/03/2024] Open
Abstract
Introduction: Acute kidney injury (AKI) is one of the most common causes of organ failure in critically ill patients. Following AKI, the canonical pro-inflammatory cytokine interleukin-1β (IL-1β) is released predominantly from activated myeloid cells and binds to the interleukin-1 receptor R1 (IL-1R1) on leukocytes and kidney parenchymal cells. IL-1R1 on kidney tubular cells is known to amplify the immune response and exacerbate AKI. However, the specific role of IL-1R1 on myeloid cells during AKI is poorly understood. The objective of the present study was to elucidate the function of myeloid cell IL-1R1 during AKI. As IL-1R1 is known to signal through the pro-inflammatory Toll-like receptor (TLR)/MyD88 pathway, we hypothesized that myeloid cells expressing IL-1R1 would exacerbate AKI. Methods: IL-1R1 was selectively depleted in CD11c+-expressing myeloid cells with CD11cCre + /IL-1R1 fl/fl (Myel KO) mice. Myel KO and littermate controls (CD11cCre - /IL-1R1 fl/fl-Myel WT) were subjected to kidney ischemia/reperfusion (I/R) injury. Kidney injury was assessed by blood urea nitrogen (BUN), serum creatinine and injury marker neutrophil gelatinase-associated lipocalin (NGAL) protein expression. Renal tubular cells (RTC) were co-cultured with CD11c+ bone marrow-derived dendritic cells (BMDC) from Myel KO and Myel WT mice. Results: Surprisingly, compared to Myel WT mice, Myel KO mice displayed exaggerated I/R-induced kidney injury, as measured by elevated levels of serum creatinine and BUN, and kidney NGAL protein expression. In support of these findings, in vitro co-culture studies showed that RTC co-cultured with Myel KO BMDC (in the presence of IL-1β) exhibited higher mRNA levels of the kidney injury marker NGAL than those co-cultured with Myel WT BMDC. In addition, we observed that IL-1R1 on Myel WT BMDC preferentially augmented the expression of anti-inflammatory cytokine interleukin-1 receptor antagonist (IL-1ra/Il1rn), effects that were largely abrogated in Myel KO BMDC. Furthermore, recombinant IL-1Ra could rescue IL-1β-induced tubular cell injury. Discussion: Our findings suggest a novel function of IL-1R1 is to serve as a critical negative feedback regulator of IL-1 signaling in CD11c+ myeloid cells to dampen inflammation to limit AKI. Our results lend further support for cell-specific, as opposed to global, targeting of immunomodulatory agents.
Collapse
Affiliation(s)
- Yanting Chen
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
| | - Xiaohan Lu
- Department of Medicine, Duke University, Durham, NC, United States
| | - Raeann L. Whitney
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
- Department of Medicine, Duke University, Durham, NC, United States
| | - Yu Li
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
- Department of Anesthesiology, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Shanxi, China
| | - Matthew J. Robson
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Randy D. Blakely
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL, United States
| | - Jen-Tsan Chi
- Department of Microbiology and Molecular Genetics, Duke University, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| | - Steven D. Crowley
- Department of Medicine, Duke University, Durham, NC, United States
- Durham VA Medical Center, Durham, NC, United States
| | - Jamie R. Privratsky
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, United States
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, United States
| |
Collapse
|
4
|
Gao M, Liao C, Fu J, Ning Z, Lv Z, Guo Y. Probiotic cocktails accelerate baicalin metabolism in the ileum to modulate intestinal health in broiler chickens. J Anim Sci Biotechnol 2024; 15:25. [PMID: 38369501 PMCID: PMC10874562 DOI: 10.1186/s40104-023-00974-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/07/2023] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Baicalin and probiotic cocktails are promising feed additives with broad application prospects. While probiotic cocktails are known to enhance intestinal health, the potential synergistic impact of combining baicalin with probiotic cocktails on the gut health of broiler chickens remains largely unexplored. Therefore, this study aims to investigate the influence of the combined administration of baicalin and probiotic cocktails on the composition of ileal and cecal microbiota in broiler chickens to elucidate the underlying mechanisms responsible for the health-promoting effects. RESULTS A total of 320 1-day-old male Arbor Acres broilers were divided into 4 groups, each with 8 replicates of 10 chicks per replicate. Over a period of 42 d, the birds were fed a basal diet or the same diet supplemented with 37.5 g/t baicalin (BC), 1,000 g/t probiotic cocktails (PC), or a combination of both BC (37.5 g/t) and PC (1,000 g/t). The results demonstrated that BC + PC exhibited positive synergistic effects, enhancing intestinal morphology, immune function, and barrier function. This was evidenced by increased VH/CD ratio, sIgA levels, and upregulated expression of occludin and claudin-1 (P < 0.05). 16S rRNA analysis indicated that PC potentiated the effects of BC, particularly in the ileum, where BC + PC significantly increased the α-diversity of the ileal microbiota, altered its β-diversity, and increased the relative abundance of Flavonifractor (P < 0.05), a flavonoid-metabolizing bacterium. Furthermore, Flavonifractor positively correlated with chicken ileum crypt depth (P < 0.05). While BC + PC had a limited effect on cecal microbiota structure, the PC group had a very similar microbial composition to BC + PC, suggesting that the effect of PC at the distal end of the gut overshadowed those of BC. CONCLUSIONS We demonstrated the synergistic enhancement of gut health regulation in broiler chickens by combining baicalin and probiotic cocktails. Probiotic cocktails enhanced the effects of baicalin and accelerated its metabolism in the ileum, thereby influencing the ileal microbiota structure. This study elucidates the interaction mechanism between probiotic cocktails and plant extract additives within the host microbiota. These findings provide compelling evidence for the future development of feed additive combinations.
Collapse
Affiliation(s)
- Mingkun Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Chaoyong Liao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianyang Fu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Zhu J, Liu F, Mao J. Clinical findings, underlying pathogenetic processes and treatment of vascular dysfunction in autosomal dominant polycystic kidney disease. Ren Fail 2023; 45:2282027. [PMID: 37970664 PMCID: PMC11001366 DOI: 10.1080/0886022x.2023.2282027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited disorder characterized by the development of fluid-filled cysts in the kidneys. The primary cause of ADPKD is mutations in the PKD1 (polycystic kidney disease 1) or PKD2 (polycystic kidney disease 2) gene. Patients with ADPKD often develop a variety of vascular abnormalities, which have a major impact on the structure and function of the blood vessels and can lead to complications such as hypertension, intracranial aneurysm (ICAN), and atherosclerosis. The progression of ADPKD involves intricate molecular and cellular processes that lead to the development of these vascular abnormalities. Our understanding of these processes remains incomplete, and available treatment options are limited. The aim of this review is to delve into the underlying mechanisms of these vascular abnormalities and to explore potential interventions.
Collapse
Affiliation(s)
- Jinjun Zhu
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Fei Liu
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
6
|
Moak R, Boone N, Eidson N, Rohrer A, Engevik M, Williams K, Chetta K. Exploring the links between necrotizing enterocolitis and cow's milk protein allergy in preterm infants: a narrative review. Front Pediatr 2023; 11:1274146. [PMID: 38027265 PMCID: PMC10663262 DOI: 10.3389/fped.2023.1274146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
A broad range of allergic disorders and intolerance are associated with cow's milk protein in the infant diet. Allergy and intolerance to cow's milk proteins are commonly recognized in the healthy term infant, and the prevalence cow's milk protein intolerance (CMPI) varies widely but 5 challenge confirmed studies free from selection bias ranged from 1.9%-4.9%. These disorders are classified by the presence of IgE, non-IgE or T-cell-mediated signaling. Additionally, the severity of these adverse food reactions can range from mild gastrointestinal symptoms to severe sepsis-like episodes, as in the case of food protein-induced enterocolitis syndrome (FPIES). Food protein-induced intolerance in the healthy young infant lies in stark contrast to enterocolitis that typically occurs in the preterm neonate. Necrotizing enterocolitis (NEC) is a distinct progressive disease process, usually characterized by a high mortality rate, with a risk of death from 30% to 50%. While its exact etiology is unclear, its main triggers include formula (cow's milk protein), hypoxia, perfusion-related issues, and unregulated inflammation in the premature intestine. The distinction between NEC and cow's milk protein intolerance is difficult to discern in some cases. In the late preterm population, infants with colitis can have both NEC and cow's milk intolerance on the differential. In infants with multiple episodes of mild NEC, cow's milk protein intolerance may be the underlying diagnosis. In this review, we compare the pathophysiological characteristics, diagnosis and treatment of disorders of cow's milk protein intolerance with the entity of preterm NEC. This review highlights similarities in both entities and may inspire future cross-disciplinary research.
Collapse
Affiliation(s)
- Rosemary Moak
- Department of Internal Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Neal Boone
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Natalie Eidson
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Allison Rohrer
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Mindy Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC, United States
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Kelli Williams
- Department of Pediatrics, Division of Pediatric Pulmonology, Allergy and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Katherine Chetta
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Medical University of South Carolina, Charleston, SC, United States
- C.P. Darby Children’s Research Institute, Medical University of South Carolina, Shawn Jenkins Children’s Hospital, Charleston, SC, United States
| |
Collapse
|
7
|
Sanz AB, Sanchez-Niño MD, Ramos AM, Ortiz A. Regulated cell death pathways in kidney disease. Nat Rev Nephrol 2023; 19:281-299. [PMID: 36959481 PMCID: PMC10035496 DOI: 10.1038/s41581-023-00694-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 03/25/2023]
Abstract
Disorders of cell number that result from an imbalance between the death of parenchymal cells and the proliferation or recruitment of maladaptive cells contributes to the pathogenesis of kidney disease. Acute kidney injury can result from an acute loss of kidney epithelial cells. In chronic kidney disease, loss of kidney epithelial cells leads to glomerulosclerosis and tubular atrophy, whereas interstitial inflammation and fibrosis result from an excess of leukocytes and myofibroblasts. Other conditions, such as acquired cystic disease and kidney cancer, are characterized by excess numbers of cyst wall and malignant cells, respectively. Cell death modalities act to clear unwanted cells, but disproportionate responses can contribute to the detrimental loss of kidney cells. Indeed, pathways of regulated cell death - including apoptosis and necrosis - have emerged as central events in the pathogenesis of various kidney diseases that may be amenable to therapeutic intervention. Modes of regulated necrosis, such as ferroptosis, necroptosis and pyroptosis may cause kidney injury directly or through the recruitment of immune cells and stimulation of inflammatory responses. Importantly, multiple layers of interconnections exist between different modalities of regulated cell death, including shared triggers, molecular components and protective mechanisms.
Collapse
Affiliation(s)
- Ana B Sanz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Adrian M Ramos
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain.
- RICORS2040, Madrid, Spain.
- Departamento de Farmacología, Universidad Autonoma de Madrid, Madrid, Spain.
| |
Collapse
|
8
|
Abstract
Cell death, particularly that of tubule epithelial cells, contributes critically to the pathophysiology of kidney disease. A body of evidence accumulated over the past 15 years has ascribed a central pathophysiological role to a particular form of regulated necrosis, termed necroptosis, to acute tubular necrosis, nephron loss and maladaptive renal fibrogenesis. Unlike apoptosis, which is a non-immunogenic process, necroptosis results in the release of cellular contents and cytokines, which triggers an inflammatory response in neighbouring tissue. This necroinflammatory environment can lead to severe organ dysfunction and cause lasting tissue injury in the kidney. Despite evidence of a link between necroptosis and various kidney diseases, there are no available therapeutic options to target this process. Greater understanding of the molecular mechanisms, triggers and regulators of necroptosis in acute and chronic kidney diseases may identify shortcomings in current approaches to therapeutically target necroptosis regulators and lead to the development of innovative therapeutic approaches.
Collapse
|
9
|
IL-18 deficiency ameliorates the progression from AKI to CKD. Cell Death Dis 2022; 13:957. [PMID: 36379914 PMCID: PMC9666542 DOI: 10.1038/s41419-022-05394-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
Inflammation is an important factor in the progression from acute kidney injury (AKI) to chronic kidney disease (CKD). The role of interleukin (IL)-18 in this progression has not been examined. We aimed to clarify whether and how IL-18 limits this progression. In a folic acid induced renal injury mouse model, we studied the time course of kidney injury and renal IL-18 expression. In wild-type mice following injection, renal IL-18 expression increased. In parallel, we characterized other processes, including at day 2, renal tubular necroptosis assessed by receptor-interacting serine/threonine-protein kinase1 (RIPK1) and RIPK3; at day 14, transdifferentiation (assessed by transforming growth factor β1, vimentin and E-cadherin); and at day 30, fibrosis (assessed by collagen 1). In IL-18 knockout mice given folate, compared to wild-type mice, tubular damage and necroptosis, transdifferentiation, and renal fibrosis were attenuated. Importantly, IL-18 deletion decreased numbers of renal M1 macrophages and M1 macrophage cytokine levels at day 14, and reduced M2 macrophages numbers and macrophage cytokine expression at day 30. In HK-2 cells, IL-18 knockdown attenuated necroptosis, transdifferentiating and fibrosis.In patients with tubulointerstitial nephritis, IL-18 protein expression was increased on renal biopsies using immunohistochemistry. We conclude that genetic IL-18 deficiency ameliorates renal tubular damage, necroptosis, cell transdifferentiation, and fibrosis. The renoprotective role of IL-18 deletion in the progression from AKI to fibrosis may be mediated by reducing a switch in predominance from M1 to profibrotic M2 macrophages during the process of kidney repair.
Collapse
|
10
|
Talaat RM, Tabll AA, Gamal-Eldeen AM, Russo RC. Editorial: Importance of cytokines and receptor members from the IL-1 family in the context of chronic autoimmune inflammatory diseases. Front Immunol 2022; 13:974261. [PMID: 35928823 PMCID: PMC9344862 DOI: 10.3389/fimmu.2022.974261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Roba M. Talaat
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat City, Egypt
- *Correspondence: Roba M. Talaat, ; Remo C. Russo,
| | - Ashraf A. Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, Cairo, Egypt
- Egypt Center for Research and Regenerative Medicine, Cairo, Egypt
| | - Amira M. Gamal-Eldeen
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
- High Altitude Research Center, Prince Sultan Medical Complex, Al-Hawiyah, Taif University, Taif, Saudi Arabia
| | - Remo C. Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
- *Correspondence: Roba M. Talaat, ; Remo C. Russo,
| |
Collapse
|
11
|
Wu J, Sun Z, Bi Q, Wang W. A Ferroptosis-Related Genes Model Allows for Prognosis and Treatment Stratification of Clear Cell Renal Cell Carcinoma: A Bioinformatics Analysis and Experimental Verification. Front Oncol 2022; 12:815223. [PMID: 35155251 PMCID: PMC8828561 DOI: 10.3389/fonc.2022.815223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Clear cell renal cell carcinoma (ccRCC) is a malignant tumor characterized by poor prognosis and difficult treatment. Ferroptosis is a relatively new form of programmed cell death that involved in cancer development and therapy resistance. Studies have shown that targeted ferroptosis may be a novel option for the treatment of ccRCC, but key genes and their roles between ferroptosis and ccRCC are limited so far. This study aims to develop a ccRCC stratified model based on ferroptosis-related genes to provide a reference for the prognosis prediction and the individualized treatment of ccRCC. Materials and Methods The mRNAs expression data of ccRCC and FRGs were obtained from TCGA and FerrDb database, respectively. Through multiple analysis, a 4-FRG based prognostic stratified model was constructed and its predictive performance was validated through various methods. Then, a nomogram based on the model was constructed and ccRCC patients stratified by the model were analyzed for tumor microenvironment, immune infiltration, sensitivity for immune checkpoint inhibitors (ICIs)/traditional anti-tumor therapy and tumor mutation burden (TMB). Functional enrichment analysis was performed to explore potential biological pathways. Finally, we verified our model by RT-qPCR, siRNA transfection, scratch assay and CCK-8 assay. Results In this study, the stratified model and a model-based nomogram can accurately predict the prognosis of ccRCC patients in TCGA database. The patients stratified by the model showed different tumor microenvironments, immune infiltration, TMB, resistance to traditional and ICIs therapy, and sensitivity to ferroptosis. Functional enrichment analysis suggested several biological pathways related to the process and prognosis of ccRCC. RT-qPCR confirmed the differential expression of ferroptosis-related genes. Scratch assay and CCK-8 assay indicated the promotion effects of CD44 on the proliferation and migration of ccRCC. Conclusion In this study, we established a novel ccRCC stratified model based on FRGs, which can accurately predict the prognosis of ccRCC patients and provide a reference for clinical individualized treatment.
Collapse
Affiliation(s)
- Jiyue Wu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Zejia Sun
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Qing Bi
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.,Institute of Urology, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Kaminsky LW, Al-Sadi R, Ma TY. IL-1β and the Intestinal Epithelial Tight Junction Barrier. Front Immunol 2021; 12:767456. [PMID: 34759934 PMCID: PMC8574155 DOI: 10.3389/fimmu.2021.767456] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelial tight junction (TJ) barrier controls the paracellular permeation of contents from the intestinal lumen into the intestinal tissue and systemic circulation. A defective intestinal TJ barrier has been implicated as an important pathogenic factor in inflammatory diseases of the gut including Crohn's disease, ulcerative colitis, necrotizing enterocolitis, and celiac disease. Previous studies have shown that pro-inflammatory cytokines, which are produced during intestinal inflammation, including interleukin-1β (IL-1β), tumor necrosis factor-α, and interferon-γ, have important intestinal TJ barrier-modulating actions. Recent studies have shown that the IL-1β-induced increase in intestinal TJ permeability is an important contributing factor of intestinal inflammation. The IL-1β-induced increase in intestinal TJ permeability is mediated by regulatory signaling pathways and activation of nuclear transcription factor nuclear factor-κB, myosin light chain kinase gene activation, and post-transcriptional occludin gene modulation by microRNA and contributes to the intestinal inflammatory process. In this review, the regulatory role of IL-1β on intestinal TJ barrier, the intracellular mechanisms that mediate the IL-1β modulation of intestinal TJ permeability, and the potential therapeutic targeting of the TJ barrier are discussed.
Collapse
Affiliation(s)
- Lauren W Kaminsky
- Section of Allergy, Asthma, and Immunology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Rana Al-Sadi
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Thomas Y Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, United States
| |
Collapse
|
13
|
Cantero-Navarro E, Rayego-Mateos S, Orejudo M, Tejedor-Santamaria L, Tejera-Muñoz A, Sanz AB, Marquez-Exposito L, Marchant V, Santos-Sanchez L, Egido J, Ortiz A, Bellon T, Rodrigues-Diez RR, Ruiz-Ortega M. Role of Macrophages and Related Cytokines in Kidney Disease. Front Med (Lausanne) 2021; 8:688060. [PMID: 34307414 PMCID: PMC8295566 DOI: 10.3389/fmed.2021.688060] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a key characteristic of kidney disease, but this immune response is two-faced. In the acute phase of kidney injury, there is an activation of the immune cells to fight against the insult, contributing to kidney repair and regeneration. However, in chronic kidney diseases (CKD), immune cells that infiltrate the kidney play a deleterious role, actively participating in disease progression, and contributing to nephron loss and fibrosis. Importantly, CKD is a chronic inflammatory disease. In early CKD stages, patients present sub-clinical inflammation, activation of immune circulating cells and therefore, anti-inflammatory strategies have been proposed as a common therapeutic target for renal diseases. Recent studies have highlighted the plasticity of immune cells and the complexity of their functions. Among immune cells, monocytes/macrophages play an important role in all steps of kidney injury. However, the phenotype characterization between human and mice immune cells showed different markers; therefore the extrapolation of experimental studies in mice could not reflect human renal diseases. Here we will review the current information about the characteristics of different macrophage phenotypes, mainly focused on macrophage-related cytokines, with special attention to the chemokine CCL18, and its murine functional homolog CCL8, and the macrophage marker CD163, and their role in kidney pathology.
Collapse
Affiliation(s)
- Elena Cantero-Navarro
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Macarena Orejudo
- Renal, Vascular and Diabetes Research Laboratory, Fundación IIS -Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Lucía Tejedor-Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Tejera-Muñoz
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belén Sanz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Nephrology and Hypertension, Fundación IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Laura Marquez-Exposito
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Santos-Sanchez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, Fundación IIS -Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Nephrology and Hypertension, Fundación IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
| | - Teresa Bellon
- La Paz Hospital Health Research Institute, Madrid, Spain
| | - Raúl R Rodrigues-Diez
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, Madrid, Spain
- Red de Investigación Renal, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Abstract
In the last decade, the role of apoptosis in the pathophysiology of acute kidney injury (AKI) and AKI to chronic kidney disease (CKD) progression has been revisited as our understanding of ferroptosis and necroptosis has emerged. A growing body of evidence, reviewed here, ascribes a central pathophysiological role for ferroptosis and necroptosis to AKI, nephron loss, and acute tubular necrosis. We will introduce concepts to the non-cell-autonomous manner of kidney tubular injury during ferroptosis, a phenomenon that we refer to as a "wave of death." We hypothesize that necroptosis might initiate cell death propagation through ferroptosis. The remaining necrotic debris requires effective removal processes to prevent a secondary inflammatory response, referred to as necroinflammation. Open questions include the differences in the immunogenicity of ferroptosis and necroptosis, and the specificity of necrostatins and ferrostatins to therapeutically target these processes to prevent AKI-to-CKD progression and end-stage renal disease.
Collapse
|
15
|
Zhan L, Lu X, Xu W, Sun W, Xu E. Inhibition of MLKL-dependent necroptosis via downregulating interleukin-1R1 contributes to neuroprotection of hypoxic preconditioning in transient global cerebral ischemic rats. J Neuroinflammation 2021; 18:97. [PMID: 33879157 PMCID: PMC8056617 DOI: 10.1186/s12974-021-02141-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/26/2021] [Indexed: 11/30/2022] Open
Abstract
Background Our previous study indicated that hypoxic preconditioning reduced receptor interacting protein (RIP) 3-mediated necroptotic neuronal death in hippocampal CA1 of adult rats after transient global cerebral ischemia (tGCI). Although mixed lineage kinase domain-like (MLKL) has emerged as a crucial molecule for necroptosis induction downstream of RIP3, how MLKL executes necroptosis is not yet well understood. In this study, we aim to elucidate the molecular mechanism underlying hypoxic preconditioning that inactivates MLKL-dependent neuronal necroptosis after tGCI. Methods Transient global cerebral ischemia was induced by the four-vessel occlusion method. Twenty-four hours before ischemia, rats were exposed to systemic hypoxia with 8% O2 for 30 min. Western blotting was used to detect the expression of MLKL and interleukin-1 type 1 receptor (IL-1R1) in CA1. Immunoprecipitation was used to assess the interactions among IL-1R1, RIP3, and phosphorylated MLKL (p-MLKL). The concentration of intracellular free calcium ion (Ca2+) was measured using Fluo-4 AM. Silencing and overexpression studies were used to study the role of p-MLKL in tGCI-induced neuronal death. Results Hypoxic preconditioning decreased the phosphorylation of MLKL both in neurons and microglia of CA1 after tGCI. The knockdown of MLKL with siRNA decreased the expression of p-MLKL and exerted neuroprotective effects after tGCI, whereas treatment with lentiviral delivery of MLKL showed opposite results. Mechanistically, hypoxic preconditioning or MLKL siRNA attenuated the RIP3-p-MLKL interaction, reduced the plasma membrane translocation of p-MLKL, and blocked Ca2+ influx after tGCI. Furthermore, hypoxic preconditioning downregulated the expression of IL-1R1 in CA1 after tGCI. Additionally, neutralizing IL-1R1 with its antagonist disrupted the interaction between IL-1R1 and the necrosome, attenuated the expression and the plasma membrane translocation of p-MLKL, thus alleviating neuronal death after tGCI. Conclusions These data support that the inhibition of MLKL-dependent neuronal necroptosis through downregulating IL-1R1 contributes to neuroprotection of hypoxic preconditioning against tGCI. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02141-y.
Collapse
Affiliation(s)
- Lixuan Zhan
- Institute of Neurosciences and Department of Neurology of The Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, 250 Changgang Dong RD, Guangzhou, 510260, People's Republic of China
| | - Xiaomei Lu
- Institute of Neurosciences and Department of Neurology of The Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, 250 Changgang Dong RD, Guangzhou, 510260, People's Republic of China
| | - Wensheng Xu
- Institute of Neurosciences and Department of Neurology of The Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, 250 Changgang Dong RD, Guangzhou, 510260, People's Republic of China
| | - Weiwen Sun
- Institute of Neurosciences and Department of Neurology of The Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, 250 Changgang Dong RD, Guangzhou, 510260, People's Republic of China
| | - En Xu
- Institute of Neurosciences and Department of Neurology of The Second Affiliated Hospital of Guangzhou Medical University and Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, 250 Changgang Dong RD, Guangzhou, 510260, People's Republic of China.
| |
Collapse
|
16
|
Martin-Sanchez D, Fontecha-Barriuso M, Martinez-Moreno JM, Ramos AM, Sanchez-Niño MD, Guerrero-Hue M, Moreno JA, Ortiz A, Sanz AB. Ferroptosis and kidney disease. Nefrologia 2020; 40:384-394. [PMID: 32624210 DOI: 10.1016/j.nefro.2020.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/04/2020] [Indexed: 02/08/2023] Open
Abstract
Cell death is a finely regulated process occurring through different pathways. Regulated cell death, either through apoptosis or regulated necrosis offers the possibility of therapeutic intervention. Necroptosis and ferroptosis are among the best studied forms of regulated necrosis in the context of kidney disease. We now review the current evidence supporting a role for ferroptosis in kidney disease and the implications of this knowledge for the design of novel therapeutic strategies. Ferroptosis is defined functionally, as a cell modality characterized by peroxidation of certain lipids, constitutively suppressed by GPX4 and inhibited by iron chelators and lipophilic antioxidants. There is functional evidence of the involvement of ferroptosis in diverse forms of kidneys disease. In a well characterized nephrotoxic acute kidney injury model, ferroptosis caused an initial wave of death, triggering an inflammatory response that in turn promoted necroptotic cell death that perpetuated kidney dysfunction. This suggests that ferroptosis inhibitors may be explored as prophylactic agents in clinical nephrotoxicity or ischemia-reperfusion injury such as during kidney transplantation. Transplantation offers the unique opportunity of using anti-ferroptosis agent ex vivo, thus avoiding bioavailability and in vivo pharmacokinetics and pharmacodynamics issues.
Collapse
Affiliation(s)
- Diego Martin-Sanchez
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain; REDINREN, Madrid, Spain
| | - Miguel Fontecha-Barriuso
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain; REDINREN, Madrid, Spain
| | - Julio M Martinez-Moreno
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain; REDINREN, Madrid, Spain
| | - Adrian M Ramos
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain; REDINREN, Madrid, Spain
| | - Maria D Sanchez-Niño
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain; REDINREN, Madrid, Spain
| | | | - Juan A Moreno
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain; Department of Cell Biology, Physiology and Immunology, University of Cordoba, Spain; Hospital Universitario Reina Sofia, Cordoba, Spain; Centre of Biomedical Research in Network of Cardiovascular Disease (CIBERCV), Madrid, Spain
| | - Alberto Ortiz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain; REDINREN, Madrid, Spain; School of Medicine, UAM, Madrid, Spain
| | - Ana B Sanz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain; REDINREN, Madrid, Spain.
| |
Collapse
|
17
|
Natoli TA, Modur V, Ibraghimov-Beskrovnaya O. Glycosphingolipid metabolism and polycystic kidney disease. Cell Signal 2020; 69:109526. [PMID: 31911181 DOI: 10.1016/j.cellsig.2020.109526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/21/2022]
Abstract
Sphingolipids and glycosphingolipids are classes of structurally and functionally important lipids that regulate multiple cellular processes, including membrane organization, proliferation, cell cycle regulation, apoptosis, transport, migration, and inflammatory signalling pathways. Imbalances in sphingolipid levels or subcellular localization result in dysregulated cellular processes and lead to the development and progression of multiple disorders, including polycystic kidney disease. This review will describe metabolic pathways of glycosphingolipids with a focus on the evidence linking glycosphingolipid mediated regulation of cell signalling, lipid microdomains, cilia, and polycystic kidney disease. We will discuss molecular mechanisms of glycosphingolipid dysregulation and their impact on cystogenesis. We will further highlight how modulation of sphingolipid metabolism can be translated into new approaches for the treatment of polycystic kidney disease and describe current clinical studies with glucosylceramide synthase inhibitors in Autosomal Dominant Polycystic Kidney Disease.
Collapse
Affiliation(s)
- Thomas A Natoli
- Rare and Neurological Disease Research, Sanofi-Genzyme, 49 New York Ave., Framingham, MA 01701, USA
| | - Vijay Modur
- Rare Disease Development, Sanofi-Genzyme, 50 Binney St., Cambridge, MA 02142, USA
| | | |
Collapse
|
18
|
Molnár T, Mázló A, Tslaf V, Szöllősi AG, Emri G, Koncz G. Current translational potential and underlying molecular mechanisms of necroptosis. Cell Death Dis 2019; 10:860. [PMID: 31719524 PMCID: PMC6851151 DOI: 10.1038/s41419-019-2094-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/27/2022]
Abstract
Cell death has a fundamental impact on the evolution of degenerative disorders, autoimmune processes, inflammatory diseases, tumor formation and immune surveillance. Over the past couple of decades extensive studies have uncovered novel cell death pathways, which are independent of apoptosis. Among these is necroptosis, a tightly regulated, inflammatory form of cell death. Necroptosis contribute to the pathogenesis of many diseases and in this review, we will focus exclusively on necroptosis in humans. Necroptosis is considered a backup mechanism of apoptosis, but the in vivo appearance of necroptosis indicates that both caspase-mediated and caspase-independent mechanisms control necroptosis. Necroptosis is regulated on multiple levels, from the transcription, to the stability and posttranslational modifications of the necrosome components, to the availability of molecular interaction partners and the localization of receptor-interacting serine/threonine-protein kinase 1 (RIPK1), receptor-interacting serine/threonine-protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL). Accordingly, we classified the role of more than seventy molecules in necroptotic signaling based on consistent in vitro or in vivo evidence to understand the molecular background of necroptosis and to find opportunities where regulating the intensity and the modality of cell death could be exploited in clinical interventions. Necroptosis specific inhibitors are under development, but >20 drugs, already used in the treatment of various diseases, have the potential to regulate necroptosis. By listing necroptosis-modulated human diseases and cataloging the currently available drug-repertoire to modify necroptosis intensity, we hope to kick-start approaches with immediate translational potential. We also indicate where necroptosis regulating capacity should be considered in the current applications of these drugs.
Collapse
Affiliation(s)
- Tamás Molnár
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Anett Mázló
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Debrecen, Hungary
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Vera Tslaf
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Gábor Szöllősi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabriella Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|