1
|
Lu J, Liu G, Sun W, Jia G, Zhao H, Chen X, Wang J. Dietary α-Ketoglutarate Alleviates Escherichia coli LPS-Induced Intestinal Barrier Injury by Modulating the Endoplasmic Reticulum-Mitochondrial System Pathway in Piglets. J Nutr 2024; 154:2087-2096. [PMID: 38453028 DOI: 10.1016/j.tjnut.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND α-Ketoglutarate (AKG) plays a pivotal role in mitigating inflammation and enhancing intestinal health. OBJECTIVES This study aimed to investigate whether AKG could protect against lipopolysaccharide (LPS)-induced intestinal injury by alleviating disorders in mitochondria-associated endoplasmic reticulum (MAM) membranes, dysfunctional mitochondrial dynamics, and endoplasmic reticulum (ER) stress in a piglet model. METHODS Twenty-four piglets were subjected to a 2 × 2 factorial design with dietary factors (basal diet or 1% AKG diet) and LPS treatment (LPS or saline). After 21 d of consuming either the basal diet or AKG diet, piglets received injections of LPS or saline. The experiment was divided into 4 treatment groups [control (CON) group: basal diet + saline; LPS group: basal diet +LPS; AKG group: AKG diet + saline; and AKG_LPS group: AKG + LPS], each consisting of 6 piglets. RESULTS The results demonstrated that compared with the CON group, AKG enhanced jejunal morphology, antioxidant capacity, and the messenger RNA and protein expression of tight junction proteins. Moreover, it has shown a reduction in serum diamine oxidase activity and D-lactic acid content in piglets. In addition, fewer disorders in the ER-mitochondrial system were reflected by AKG, as evidenced by AKG regulating the expression of key molecules of mitochondrial dynamics (mitochondrial calcium uniporter, optic atrophy 1, fission 1, and dynamin-related protein 1), ER stress [activating transcription factor (ATF) 4, ATF 6, CCAAT/enhancer binding protein homologous protein, eukaryotic initiation factor 2α, glucose-regulated protein (GRP) 78, and protein kinase R-like ER kinase], and MAM membranes [mitofusin (Mfn)-1, Mfn-2, GRP 75, and voltage-dependent anion channel-1]. CONCLUSIONS Dietary AKG can prevent mitochondrial dynamic dysfunction, ER stress, and MAM membrane disorder, ultimately alleviating LPS-induced intestinal damage in piglets.
Collapse
Affiliation(s)
- Jiajia Lu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China.
| | - Weixiao Sun
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Mak A, Sung CC, Pisitkun T, Khositseth S, Knepper MA. 'Aquaporin-omics': mechanisms of aquaporin-2 loss in polyuric disorders. J Physiol 2024; 602:3191-3206. [PMID: 37114282 PMCID: PMC10603215 DOI: 10.1113/jp284634] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023] Open
Abstract
Animal models of a variety of acquired nephrogenic diabetes insipidus (NDI) disorders have identified a common feature: all such models are associated with the loss of aquaporin-2 (AQP2) from collecting duct principal cells, explaining the associated polyuria. To discover mechanisms of AQP2 loss, previous investigators have carried out either transcriptomics (lithium-induced NDI, unilateral ureteral obstruction, endotoxin-induced NDI) or proteomics (hypokalaemia-associated NDI, hypercalcaemia-associated NDI, bilateral ureteral obstruction), yielding contrasting views. Here, to address whether there may be common mechanisms underlying loss of AQP2 in acquired NDI disorders, we have used bioinformatic data integration techniques to combine information from all transcriptomic and proteomic data sets. The analysis reveals roles for autophagy/apoptosis, oxidative stress and inflammatory signalling as key elements of the mechanism that results in loss of AQP2. These processes can cause AQP2 loss through the combined effects of repression of Aqp2 gene transcription, generalized translational repression, and increased autophagic degradation of proteins including AQP2. Two possible types of stress-sensor proteins, namely death receptors and stress-sensitive protein kinases of the EIF2AK family, are discussed as potential triggers for signalling processes that result in loss of AQP2. KEY POINTS: Prior studies have shown in a variety of animal models of acquired nephrogenic diabetes insipidus (NDI) that loss of the aquaporin-2 (AQP2) protein is a common feature. Investigations of acquired NDI using transcriptomics (RNA-seq) and proteomics (protein mass spectrometry) have led to differing conclusions regarding mechanisms of AQP2 loss. Bioinformatic integration of transcriptomic and proteomic data from these prior studies now reveals that acquired NDI models map to three core processes: oxidative stress, apoptosis/autophagy and inflammatory signalling. These processes cause loss of AQP2 through translational repression, accelerated degradation of proteins, and transcriptional repression.
Collapse
Affiliation(s)
- Angela Mak
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chih-Chien Sung
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Trairak Pisitkun
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sookkasem Khositseth
- Department of Pediatrics, Faculty of Medicine, Thammasat University, Bangkok,Thailand
| | - Mark A. Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
3
|
Guo X, Kong Y, Kwon TH, Li C, Wang W. Autophagy and regulation of aquaporins in the kidneys. Kidney Res Clin Pract 2023; 42:676-685. [PMID: 37098672 DOI: 10.23876/j.krcp.22.247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/20/2022] [Indexed: 04/27/2023] Open
Abstract
Aquaporins (AQPs) are water channel proteins that facilitate the transport of water molecules across cell membranes. To date, seven AQPs have been found to be expressed in mammal kidneys. The cellular localization and regulation of the transport properties of AQPs in the kidney have been widely investigated. Autophagy is known as a highly conserved lysosomal pathway, which degrades cytoplasmic components. Through basal autophagy, kidney cells maintain their functions and structure. As a part of the adaptive responses of the kidney, autophagy may be altered in response to stress conditions. Recent studies revealed that autophagic degradation of AQP2 in the kidney collecting ducts leads to impaired urine concentration in animal models with polyuria. Therefore, the modulation of autophagy could be a therapeutic approach to treat water balance disorders. However, as autophagy is either protective or deleterious, it is crucial to establish an optimal condition and therapeutic window where autophagy induction or inhibition could yield beneficial effects. Further studies are needed to understand both the regulation of autophagy and the interaction between AQPs and autophagy in the kidneys in renal diseases, including nephrogenic diabetes insipidus.
Collapse
Affiliation(s)
- Xiangdong Guo
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yonglun Kong
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chunling Li
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Physiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Weidong Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Xu C, Yi X, Tang L, Wang H, Chu S, Yu J. Differential regulation of autophagy on urine-concentrating capability through modulating the renal AQP2 expression and renin-angiotensin system in mice. Am J Physiol Renal Physiol 2023; 325:F503-F518. [PMID: 37589054 DOI: 10.1152/ajprenal.00018.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023] Open
Abstract
Autophagy, a cellular process of "self-eating," plays an essential role in renal pathophysiology. However, the effect of autophagy on urine-concentrating ability in physiological conditions is still unknown. This study aimed to determine the relevance and mechanisms of autophagy for maintaining urine-concentrating capability during antidiuresis. The extent of the autophagic response to water deprivation (WD) was different between the renal cortex and medulla in mice. Autophagy activity levels in the renal cortex were initially suppressed and then stimulated by WD in a time-dependent manner. During 48 h WD, the urine-concentrating capability of mice was impaired by rapamycin (Rapa) but not by 3-methyladenine (3-MA), accompanied by suppressed renal aquaporin 2 (AQP2), V2 receptor (V2R), renin, and angiotensin-converting enzyme (ACE) expression, and levels of prorenin/renin, angiotensin II (ANG II), and aldosterone in the plasma and urine. In contrast, 3-MA and chloroquine (CQ) suppressed the urine-concentrating capability in WD72 mice, accompanied by downregulation of AQP2 and V2R expression in the renal cortex. 3-MA and CQ further increased AQP2 and V2R expression in the renal medulla of WD72 mice. Compared with 3-MA and CQ, Rapa administration yielded completely opposite results on the above parameters in WD72 mice. In addition, 3-MA and CQ abolished the upregulation of prorenin/renin, ANG II, and aldosterone levels in the plasma and urine in WD72 mice. Taken together, our study demonstrated that autophagy regulated urine-concentrating capability through differential regulation of renal AQP2/V2R and ACE/ANG II signaling during WD.NEW & NOTEWORTHY Autophagy exhibits a double-edged effect on cell survival and plays an essential role in renal pathophysiology. We for the first time reported a novel function of autophagy that controls the urine-concentrating capability in physiological conditions. We found that water deprivation (WD) differentially regulated autophagy in the kidneys of mice in a time-dependent manner and autophagy regulates the urine-concentrating capability mainly by regulating AQP2/V2R and ACE/ANG II signaling in the renal cortex in WD mice.
Collapse
Affiliation(s)
- Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Xiaoli Yi
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Le Tang
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Hui Wang
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Shuhan Chu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, People's Republic of China
| | - Jun Yu
- Center for Metabolic Disease Research and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
5
|
Deng Z, Tan J, Zhang R, Zeng J, Yin G, Jiang X. Mechanism and influencing factors of crystal-cell interaction in the formation of calcium oxalate stones. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:555-561. [PMID: 35753725 PMCID: PMC10929918 DOI: 10.11817/j.issn.1672-7347.2022.210319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 06/15/2023]
Abstract
Kidney stone is a disease with complex etiology and high incidence, and the most common chemical composition type of it is calcium oxalate stone. The formation of calcium oxalate stones includes crystal formation, crystal growth and aggregation, crystal interaction with renal tubular epithelial cells, and crystal invasion of renal interstitial extracellular matrix and so on. In these processes, crystal-cell interactions are essential for kidney crystal retention and kidney stone formation. Recently many studies have found that the interaction between crystal and renal tubular epithelial cells is closely related to various key binding molecules, endoplasmic reticulum stress of tubular cells, extracellular matrix proteins, and various lithotriptic drugs. Understanding the mechanism of crystal-cell interaction is of great significance for the prevention and early treatment of calcium oxalate stones.
Collapse
Affiliation(s)
- Zhijun Deng
- Department of Urology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Jing Tan
- Department of Urology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| | - Rui Zhang
- Department of Urology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jia Zeng
- Department of Urology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Guangming Yin
- Department of Urology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xianzhen Jiang
- Department of Urology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| |
Collapse
|
6
|
Noda Y, Sasaki S. Updates and Perspectives on Aquaporin-2 and Water Balance Disorders. Int J Mol Sci 2021; 22:ijms222312950. [PMID: 34884753 PMCID: PMC8657825 DOI: 10.3390/ijms222312950] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022] Open
Abstract
Ensuring the proper amount of water inside the body is essential for survival. One of the key factors in the maintenance of body water balance is water reabsorption in the collecting ducts of the kidney, a process that is regulated by aquaporin-2 (AQP2). AQP2 is a channel that is exclusively selective for water molecules and impermeable to ions or other small molecules. Impairments of AQP2 result in various water balance disorders, including nephrogenic diabetes insipidus (NDI), which is a disease characterized by a massive loss of water through the kidney and consequent severe dehydration. Dysregulation of AQP2 is also a cause of water retention with hyponatremia in heart failure, hepatic cirrhosis, and syndrome of inappropriate antidiuretic hormone secretion (SIADH). Antidiuretic hormone vasopressin is an upstream regulator of AQP2. Its binding to the vasopressin V2 receptor promotes AQP2 targeting to the apical membrane and thus enables water reabsorption. Tolvaptan, a vasopressin V2 receptor antagonist, is effective and widely used for water retention with hyponatremia. However, there are no studies showing improvement in hard outcomes or long-term prognosis. A possible reason is that vasopressin receptors have many downstream effects other than AQP2 function. It is expected that the development of drugs that directly target AQP2 may result in increased treatment specificity and effectiveness for water balance disorders. This review summarizes recent progress in studies of AQP2 and drug development challenges for water balance disorders.
Collapse
Affiliation(s)
- Yumi Noda
- Department of Nephrology, Nitobe Memorial Nakano General Hospital, Tokyo 164-8607, Japan
- Department of Nephrology, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Correspondence: ; Tel.: +81-3-3382-1231; Fax: +81-3-3382-1588
| | - Sei Sasaki
- Department of Nephrology, Cellular and Structural Physiology Laboratory, Tokyo Medical and Dental University, Tokyo 113-8519, Japan;
| |
Collapse
|