1
|
Liu J, Pang Y, Li W, Sun J, He Y, Guo Y, Dong J. Impact of hepatic impairment and renal failure on the pharmacokinetics of linezolid and its metabolites: contribution of hepatic metabolism and renal excretion. Antimicrob Agents Chemother 2025:e0189224. [PMID: 40227039 DOI: 10.1128/aac.01892-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/21/2025] [Indexed: 04/15/2025] Open
Abstract
Linezolid, an oxazolidinone antibiotic, is used in patients with liver or kidney disease. However, the effects and mechanisms of hepatic impairment or renal failure on the pharmacokinetics of linezolid and its metabolites (PNU-142586 and PNU-142300) remain unclear. We used carbon tetrachloride-induced impaired hepatic function and 5/6 nephrectomy-induced renal failure rat models to investigate linezolid and metabolite pharmacokinetics. Isolated primary rat hepatocytes were used to evaluate the impact of hepatic impairment or renal failure on linezolid metabolism. Uptake and efflux transport studies were also conducted. The influence of hepatic impairment or renal failure on the pharmacokinetics of linezolid and two metabolites did not differ between intragastric gavage and intravenous administration in rats. Linezolid did not accumulate in the brain, heart, lung, liver, kidney, and small intestinal tissues of the hepatic impairment or renal failure rats. And PNU-142300 did not accumulate in the liver or kidney tissue. Compared to the isolated normal rat hepatocytes, the in vitro hepatic clearance of linezolid in hepatic impairment and renal failure rat hepatocytes decreased by 61.3% and 44.1%, respectively. Organic anion transporting polypeptide (OATP)1B1, OATP1B3, OATP2B1, Na+-taurocholate co-transporting polypeptide (NTCP), organic anion transporter (OAT)1, OAT3, multidrug resistance-associated protein 2 (MRP2), or multidrug resistance protein 1 (MDR) did not mediate linezolid transport. Hepatic impairment primarily increases linezolid exposure through reduced hepatic metabolism, whereas renal failure increases both linezolid and two metabolites exposure through reduced hepatic metabolism and renal glomerular filtration. These findings guide adjusting the dose of linezolid in patients with hepatic and renal insufficiency.
Collapse
Affiliation(s)
- Jinyao Liu
- Postgraduate Training Base at Shanghai Pudong New Area Gongli Hospital, Ningxia Medical University, Shanghai, China
| | - Yingying Pang
- Postgraduate Training Base at Shanghai Pudong New Area Gongli Hospital, Ningxia Medical University, Shanghai, China
| | - Wenyan Li
- Department of Pharmacy, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Juanjuan Sun
- Department of Pharmacy, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Yujie He
- Department of Pathology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Yonghong Guo
- Department of Infectious Diseases, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Jing Dong
- Department of Pharmacy, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| |
Collapse
|
2
|
Akhter A, Md. Sheikh A, Yoshino J, Kanda T, Nagai A, Matsuo M, Yano S. Inhibiting Myostatin Expression by the Antisense Oligonucleotides Improves Muscle Wasting in a Chronic Kidney Disease Mouse Model. Int J Mol Sci 2025; 26:3098. [PMID: 40243849 PMCID: PMC11988723 DOI: 10.3390/ijms26073098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Sarcopenia, a serious consequence of chronic kidney disease (CKD), is driven by elevated myostatin (MSTN), a key inhibitor of muscle growth. This study explored the potential of an MSTN-specific antisense oligonucleotide (ASO) in reversing CKD-induced muscle wasting in a mouse model. Thirty-two male C57BL/6J mice were randomly assigned to a non-CKD group (n = 8, regular diet) and a CKD group (n = 24, adenine diet). CKD was induced using a 0.2% adenine-supplemented diet for 4 weeks. Following this, the mice were sub-grouped into CKD (saline, n = 8), CKD + Low-Dose ASO (25 mg/kg ASO, n = 8), and CKD + High-Dose ASO (50 mg/kg ASO, n = 8). ASO was administered via subcutaneous injections for 8 weeks. Muscle mass, treadmill performance, grip strength, and muscle fiber morphology were assessed alongside qPCR and Western blot analysis for MSTN, atrogin-1, and MuRF-1 expression. ASO therapy significantly enhanced muscle mass and function and enlarged muscle fibers while effectively downregulating muscle degradation markers. These improvements occurred without compromising renal function, as confirmed by BUN, creatinine, kidney weight, and histological analysis. This study is the first to demonstrate the efficacy of ASO therapy in mitigating CKD-induced sarcopenia, offering a promising targeted gene therapy with significant clinical implications for improving nutritional status and physical performance in CKD.
Collapse
MESH Headings
- Animals
- Myostatin/genetics
- Myostatin/metabolism
- Myostatin/antagonists & inhibitors
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/genetics
- Oligonucleotides, Antisense/pharmacology
- Oligonucleotides, Antisense/genetics
- Male
- Mice
- Disease Models, Animal
- Mice, Inbred C57BL
- Muscular Atrophy/metabolism
- Muscular Atrophy/etiology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Sarcopenia/etiology
- Sarcopenia/metabolism
Collapse
Affiliation(s)
- Arju Akhter
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan; (A.A.); (A.M.S.)
| | - Abdullah Md. Sheikh
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan; (A.A.); (A.M.S.)
| | - Jun Yoshino
- Department of Nephrology, Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan
- The Center for Integrated Kidney Research and Advance (IKRA), Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan
| | - Takeshi Kanda
- Department of Nephrology, Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan
- The Center for Integrated Kidney Research and Advance (IKRA), Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan
| | - Atsushi Nagai
- Department of Neurology, Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan;
| | - Masafumi Matsuo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
| | - Shozo Yano
- Department of Laboratory Medicine, Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan; (A.A.); (A.M.S.)
- The Center for Integrated Kidney Research and Advance (IKRA), Faculty of Medicine, Shimane University, 89-1 Enya-Cho, Izumo 693-8501, Japan
| |
Collapse
|
3
|
Tan B, Tang W, Zeng Y, Liu J, Du X, Su H, Pang X, Liao L, Hu Q. Development of animal models with chronic kidney disease-mineral and bone disorder based on clinical characteristics and pathogenesis. Front Endocrinol (Lausanne) 2025; 16:1549562. [PMID: 40201764 PMCID: PMC11975589 DOI: 10.3389/fendo.2025.1549562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
Chronic kidney disease-mineral and bone disorder (CKD-MBD) is a systemic complication of chronic kidney disease (CKD), resulting in high morbidity and mortality. However, effective treatment strategies are lacking. The pathogenesis of CKD-MBD is unclear but involves feedback mechanisms between calcium, phosphorus, parathyroid hormone, vitamin D and other factors, in addition to FGF23, Klotho, Wnt inhibitors, and activin A. Construction of a perfect animal model of CKD-MBD with clinical characteristics is important for in-depth study of disease development, pathological changes, targeted drug screening, and management of patients. Currently, the modeling methods of CKD-MBD include surgery, feeding and radiation. Additionally, the method of CKD-MBD modeling by surgical combined feeding is worth promoting because of short time, simplicity, and low mortality. Therefore, this review based on the pathogenesis and clinical features of CKD-MBD, combined with the current status of animal models, outlines the advantages and disadvantages of modeling methods, and provides a reference for further CKD-MBD research.
Collapse
Affiliation(s)
- Biyu Tan
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Weili Tang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Yan Zeng
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Jian Liu
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Xiaomei Du
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Hongwei Su
- Department of Urology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Xianlun Pang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Sichuan, China
| | - Lishang Liao
- Department of Neurosurgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| | - Qiongdan Hu
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Sichuan, China
| |
Collapse
|
4
|
Yuan X, Nie S, Yang Y, Liu C, Xia D, Meng L, Xia Y, Su H, Zhang C, Bu L, Deng M, Ye K, Xiong J, Chen L, Zhang Z. Propagation of pathologic α-synuclein from kidney to brain may contribute to Parkinson's disease. Nat Neurosci 2025; 28:577-588. [PMID: 39849144 DOI: 10.1038/s41593-024-01866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/05/2024] [Indexed: 01/25/2025]
Abstract
The pathogenesis of Lewy body diseases (LBDs), including Parkinson's disease (PD), involves α-synuclein (α-Syn) aggregation that originates in peripheral organs and spreads to the brain. PD incidence is increased in individuals with chronic renal failure, but the underlying mechanisms remain unknown. Here we observed α-Syn deposits in the kidneys of patients with LBDs and in the kidney and central nervous system of individuals with end-stage renal disease without documented LBDs. In male mice, we found that the kidney removes α-Syn from the blood, which is reduced in renal failure, causing α-Syn deposition in the kidney and subsequent spread into the brain. Intrarenal injection of α-Syn fibrils induces the propagation of α-Syn pathology from the kidney to the brain, which is blocked by renal denervation. Deletion of α-Syn in blood cells alleviates pathology in α-Syn A53T transgenic mice. Thus, the kidney may act as an initiation site for pathogenic α-Syn spread, and compromised renal function may contribute to the onset of LBDs.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuke Nie
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingxu Yang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Congcong Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Danhao Xia
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yue Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lihong Bu
- PET-CT/MRI Center, Faculty of Radiology and Nuclear Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Deng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Shenzhen, China
| | - Jing Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liam Chen
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Fan X, Li J, Gao Y, Li L, Zhang H, Bi Z. The mechanism of enterogenous toxin methylmalonic acid aggravating calcium-phosphorus metabolic disorder in uremic rats by regulating the Wnt/β-catenin pathway. Mol Med 2025; 31:19. [PMID: 39844078 PMCID: PMC11756144 DOI: 10.1186/s10020-025-01067-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/03/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Uremia (UR) is caused by increased UR-related toxins in the bloodstream. We explored the mechanism of enterogenous toxin methylmalonic acid (MMA) in calcium-phosphorus metabolic disorder in UR rats via the Wnt/β-catenin pathway. METHODS The UR rat model was established by 5/6 nephrectomy. The fecal bacteria of UR rats were transplanted into Sham rats. Sham rats were injected with exogenous MMA or Salinomycin (SAL). Pathological changes in renal/colon tissues were analyzed. MMA concentration, levels of renal function indicators, serum inflammatory factors, Ca2+/P3+, and parathyroid hormone, intestinal flora structure, fecal metabolic profile, intestinal permeability, and glomerular filtration rate (GFR) were assessed. Additionally, rat glomerular podocytes were cultured, with cell viability and apoptosis measured. RESULTS Intestinal flora richness and diversity in UR rats were decreased, along with unbalanced flora structure. Among the screened 133 secondary differential metabolites, the MMA concentration rose, showing the most significant difference. UR rat fecal transplantation caused elevated MMA concentration in the serum and renal tissues of Sham rats. The intestinal flora metabolite MMA or exogenous MMA promoted intestinal barrier impairment, increased intestinal permeability, induced glomerular podocyte loss, and reduced GFR, causing calcium-phosphorus metabolic disorder. The intestinal flora metabolite MMA or exogenous MMA induced inflammatory responses and facilitated glomerular podocyte apoptosis by activating the Wnt/β-catenin pathway, which could be counteracted by repressing the Wnt/β-catenin pathway. CONCLUSIONS Enterogenous toxin MMA impelled intestinal barrier impairment in UR rats, enhanced intestinal permeability, and activated the Wnt/β-catenin pathway to induce glomerular podocyte loss and reduce GFR, thus aggravating calcium-phosphorus metabolic disorder.
Collapse
Affiliation(s)
- Xing Fan
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
| | - Jing Li
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
| | - Yan Gao
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China.
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China.
| | - Lin Li
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China.
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China.
| | - Haisong Zhang
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
| | - Zhaoyu Bi
- Department of Nephrology, The Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, No. 212 Yuhua East Road, Lianchi District, Baoding, 071000, Hebei Province, China
| |
Collapse
|
6
|
Wang Y, Di Y, Li Y, Lu J, Ji B, Zhang Y, Chen Z, Chen S, Liu B, Tang R. Role of sphingolipid metabolism signaling in a novel mouse model of renal osteodystrophy based on transcriptomic approach. Chin Med J (Engl) 2025; 138:68-78. [PMID: 39149978 PMCID: PMC11717504 DOI: 10.1097/cm9.0000000000003261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Renal osteodystrophy (ROD) is a skeletal pathology associated with chronic kidney disease-mineral and bone disorder (CKD-MBD) that is characterized by aberrant bone mineralization and remodeling. ROD increases the risk of fracture and mortality in CKD patients. The underlying mechanisms of ROD remain elusive, partially due to the absence of an appropriate animal model. To address this gap, we established a stable mouse model of ROD using an optimized adenine-enriched diet and conducted exploratory analyses through ribonucleic acid sequencing (RNA-seq). METHODS Eight-week-old male C57BL/6J mice were randomly allocated into three groups: control group ( n = 5), adenine and high-phosphate (HP) diet group ( n = 20), and the optimized adenine-containing diet group ( n = 20) for 12 weeks. We assessed the skeletal characteristics of model mice through blood biochemistry, microcomputed tomography (micro-CT), and bone histomorphometry. RNA-seq was utilized to profile gene expression changes of ROD. We elucidated the functions of differentially expressed genes (DEGs) using gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and gene set enrichment analysis (GSEA). DEGs were validated via quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS By the fifth week, adenine followed by an HP diet induced rapid weight loss and high mortality rates in the mouse group, precluding further model development. Mice with optimized adenine diet-induced ROD displayed significant abnormalities in serum creatinine and blood urea nitrogen levels, accompanied by pronounced hyperparathyroidism and hyperphosphatemia. The femur bone mineral density (BMD) of the model mice was lower than that of control mice, with substantial bone loss and cortical porosity. ROD mice exhibited substantial bone turnover with an increase in osteoblast and osteoclast markers. Transcriptomic profiling revealed 1907 genes with upregulated expression and 723 genes with downregulated expression in the femurs of ROD mice relative to those of control mice. Pathway analyses indicated significant enrichment of upregulated genes in the sphingolipid metabolism pathway. The significant upregulation of alkaline ceramidase 1 ( Acer1 ), alkaline ceramidase 2 ( Acer2 ), prosaposin-like 1 ( Psapl1 ), adenosine A1 receptor ( Adora1 ), and sphingosine-1-phosphate receptor 5 ( S1pr5 ) were successfully validated in mouse femurs by qRT-PCR. CONCLUSIONS Optimized adenine diet mouse model may be a valuable proxy for studying ROD. RNA-seq analysis revealed that the sphingolipid metabolism pathway is likely a key player in ROD pathogenesis, thereby providing new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Yujia Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
- Institute of Nephrology, NanJing LiShui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University School of Medicine, Nanjing, Jiangsu 211200, China
| | - Yan Di
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
- Institute of Nephrology, NanJing LiShui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University School of Medicine, Nanjing, Jiangsu 211200, China
| | - Yongqi Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
- Institute of Nephrology, NanJing LiShui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University School of Medicine, Nanjing, Jiangsu 211200, China
| | - Jing Lu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
- Institute of Nephrology, NanJing LiShui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University School of Medicine, Nanjing, Jiangsu 211200, China
| | - Bofan Ji
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
- Institute of Nephrology, NanJing LiShui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University School of Medicine, Nanjing, Jiangsu 211200, China
| | - Yuxia Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
- Institute of Nephrology, NanJing LiShui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University School of Medicine, Nanjing, Jiangsu 211200, China
| | - Zhiqing Chen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
- Institute of Nephrology, NanJing LiShui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University School of Medicine, Nanjing, Jiangsu 211200, China
| | - Sijie Chen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
- Institute of Nephrology, NanJing LiShui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University School of Medicine, Nanjing, Jiangsu 211200, China
| | - Bicheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu 210003, China
| | - Rining Tang
- Institute of Nephrology, NanJing LiShui People’s Hospital, Zhongda Hospital Lishui Branch, Southeast University School of Medicine, Nanjing, Jiangsu 211200, China
| |
Collapse
|
7
|
Chen H, Zhou Y, Liu Y, Zhou W, Xu L, Shang D, Ni J, Song Z. Indoxyl sulfate exacerbates alveolar bone loss in chronic kidney disease through ferroptosis. Oral Dis 2025; 31:264-277. [PMID: 38934473 DOI: 10.1111/odi.15050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVES The purpose of this study was to determine whether indoxyl sulfate (IS) is involved in alveolar bone deterioration and to elucidate the mechanism underlying alveolar bone loss in chronic kidney disease (CKD) patients. MATERIALS AND METHODS Mice were divided into the control group, CP group (ligature-induced periodontitis), CKD group (5/6 nephrectomy), and CKD + CP group. The concentration of IS in the gingival crevicular fluid (GCF) was determined by HPLC. The bone microarchitecture was evaluated by micro-CT. MC3T3-E1 cells were stimulated with IS, and changes in mitochondrial morphology and ferroptosis-related factors were detected. RT-PCR, western blotting, alkaline phosphatase activity assays, and alizarin red S staining were utilized to assess how IS affects osteogenic differentiation. RESULTS Compared with that in the other groups, alveolar bone destruction in the CKD + CP group was more severe. IS accumulated in the GCF of mice with CKD. IS activated the aryl hydrocarbon receptor (AhR) in vitro, inhibited MC3T3-E1 cell osteogenic differentiation, caused changes in mitochondrial morphology, and activated the SLC7A11/GPX4 signaling pathway. An AhR inhibitor attenuated the aforementioned changes induced by IS. CONCLUSIONS IS activated the AhR/SLC7A11/GPX4 signaling pathway, inhibited osteogenesis in MC3T3-E1 cells, and participated in alveolar bone resorption in CKD model mice through ferroptosis.
Collapse
Affiliation(s)
- Huiwen Chen
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yining Zhou
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yingli Liu
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhou
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lina Xu
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Dihua Shang
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jing Ni
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
8
|
Amioka N, Franklin MK, Kukida M, Zhu L, Moorleghen JJ, Howatt DA, Katsumata Y, Mullick AE, Yanagita M, Martinez-Irizarry MM, Sandoval RM, Dunn KW, Sawada H, Daugherty A, Lu HS. Renal Proximal Tubule Cell-Specific Megalin Deletion Does Not Affect Atherosclerosis But Induces Tubulointerstitial Nephritis in Mice Fed a Western Diet. Arterioscler Thromb Vasc Biol 2025; 45:74-89. [PMID: 39569521 PMCID: PMC11668626 DOI: 10.1161/atvbaha.124.321366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/31/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Pharmacological inhibition of megalin (also known as LRP2 [low-density lipoprotein receptor-related protein-2]) attenuates atherosclerosis in hypercholesterolemic mice. Since megalin is abundant in renal proximal tubule cells (PTCs), the purpose of this study was to determine whether PTC-specific deletion of megalin reduces hypercholesterolemia-induced atherosclerosis in mice. METHODS Female Lrp2 f/f mice were bred with male Ndrg1-Cre ERT2 +/0 mice to develop PTC-LRP2 +/+ and PTC-LRP2 -/- littermates. To study atherosclerosis, all mice were bred to an LDL (low-density lipoprotein) receptor -/- background and fed a Western diet to induce atherosclerosis. RESULTS PTC-specific megalin deletion did not attenuate atherosclerosis in LDL receptor -/- mice in either sex. Serendipitously, we discovered that PTC-specific megalin deletion led to interstitial infiltration of CD68+ cells and tubular atrophy. The pathology was only evident in male PTC-LRP2 -/- mice fed a Western diet but not in mice fed a normal laboratory diet. Renal pathologies were also observed in male PTC-LRP2 -/- mice in an LDL receptor +/+ background fed the same Western diet, demonstrating that the renal pathologies were dependent on diet and not on hypercholesterolemia. In contrast, female PTC-LRP2 -/- mice had no apparent renal pathologies. In vivo multiphoton microscopy demonstrated that PTC-specific megalin deletion dramatically diminished ALB (albumin) accumulation in PTCs within 10 days of Western diet feeding. RNA-sequencing analyses demonstrated the upregulation of inflammation-related pathways in the kidney. CONCLUSIONS PTC-specific megalin deletion does not affect atherosclerosis but leads to tubulointerstitial nephritis in mice fed a Western diet, with severe pathologies in male mice.
Collapse
MESH Headings
- Animals
- Low Density Lipoprotein Receptor-Related Protein-2/genetics
- Low Density Lipoprotein Receptor-Related Protein-2/metabolism
- Low Density Lipoprotein Receptor-Related Protein-2/deficiency
- Diet, Western/adverse effects
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Female
- Male
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/prevention & control
- Mice, Knockout
- Disease Models, Animal
- Nephritis, Interstitial/genetics
- Nephritis, Interstitial/pathology
- Nephritis, Interstitial/metabolism
- Mice
- Mice, Inbred C57BL
- Hypercholesterolemia/genetics
- Hypercholesterolemia/complications
- Hypercholesterolemia/metabolism
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Antigens, Differentiation, Myelomonocytic/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Plaque, Atherosclerotic
- CD68 Molecule
Collapse
Affiliation(s)
- Naofumi Amioka
- Saha Cardiovascular Research Center and Saha Aortic Center, University of Kentucky, Lexington, Kentucky, USA
| | - Michael K. Franklin
- Saha Cardiovascular Research Center and Saha Aortic Center, University of Kentucky, Lexington, Kentucky, USA
| | - Masayoshi Kukida
- Saha Cardiovascular Research Center and Saha Aortic Center, University of Kentucky, Lexington, Kentucky, USA
| | - Liyuan Zhu
- Saha Cardiovascular Research Center and Saha Aortic Center, University of Kentucky, Lexington, Kentucky, USA
| | - Jessica J. Moorleghen
- Saha Cardiovascular Research Center and Saha Aortic Center, University of Kentucky, Lexington, Kentucky, USA
| | - Deborah A. Howatt
- Saha Cardiovascular Research Center and Saha Aortic Center, University of Kentucky, Lexington, Kentucky, USA
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | | | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | | | - Ruben M. Sandoval
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Kenneth W. Dunn
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Hisashi Sawada
- Saha Cardiovascular Research Center and Saha Aortic Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center and Saha Aortic Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Hong S. Lu
- Saha Cardiovascular Research Center and Saha Aortic Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
9
|
French BW, Breidenbach JD, Yassine SG, Khatib-Shahidi BZ, Kazmi S, Murphy CM, Bashir HS, Benson EM, Timalsina B, Shrestha U, Faleel D, Boyapalli S, Dube P, Lad A, Syed I, Malhotra D, Gohara A, Kennedy DJ, Haller ST. A Simplified Model of Adenine-Induced Chronic Kidney Disease Using SKH1 Mice. Cells 2024; 13:2117. [PMID: 39768208 PMCID: PMC11726765 DOI: 10.3390/cells13242117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Commonly used adenine-induced chronic kidney disease (CKD) murine models often employ C57BL/6 mice; however, this strain has inherent limitations due to its natural resistance to developing key pathological features of CKD, such as tubulointerstitial fibrosis and inflammation. There have been attempts to overcome these barriers by using multiple concentrations of adenine-supplemented diets or by performing prolonged experiments up to 20 weeks. Here, we demonstrate that SKH1 Elite mice develop clinically relevant CKD phenotypes (e.g., polyuria, proteinuria, inflammation, and renal fibrosis) over the course of only 6 weeks of low-dose (0.15%) adenine supplementation. As a docile, immunocompetent, and hairless strain, SKH1 Elite mice offer several logistical advantages over C57BL/6 mice, including ease of handling and the ability to study dermal conditions, which are often secondary to CKD.
Collapse
Affiliation(s)
- Benjamin W. French
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.D.B.); (S.G.Y.); (B.Z.K.-S.); (S.K.); (C.M.M.); (H.S.B.); (E.M.B.); (B.T.); (U.S.); (D.F.); (S.B.); (P.D.); (A.L.); (D.M.)
| | - Joshua D. Breidenbach
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.D.B.); (S.G.Y.); (B.Z.K.-S.); (S.K.); (C.M.M.); (H.S.B.); (E.M.B.); (B.T.); (U.S.); (D.F.); (S.B.); (P.D.); (A.L.); (D.M.)
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Shereen G. Yassine
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.D.B.); (S.G.Y.); (B.Z.K.-S.); (S.K.); (C.M.M.); (H.S.B.); (E.M.B.); (B.T.); (U.S.); (D.F.); (S.B.); (P.D.); (A.L.); (D.M.)
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43607, USA
| | - Bella Z. Khatib-Shahidi
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.D.B.); (S.G.Y.); (B.Z.K.-S.); (S.K.); (C.M.M.); (H.S.B.); (E.M.B.); (B.T.); (U.S.); (D.F.); (S.B.); (P.D.); (A.L.); (D.M.)
| | - Sara Kazmi
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.D.B.); (S.G.Y.); (B.Z.K.-S.); (S.K.); (C.M.M.); (H.S.B.); (E.M.B.); (B.T.); (U.S.); (D.F.); (S.B.); (P.D.); (A.L.); (D.M.)
| | - Caitlin M. Murphy
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.D.B.); (S.G.Y.); (B.Z.K.-S.); (S.K.); (C.M.M.); (H.S.B.); (E.M.B.); (B.T.); (U.S.); (D.F.); (S.B.); (P.D.); (A.L.); (D.M.)
| | - Humza S. Bashir
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.D.B.); (S.G.Y.); (B.Z.K.-S.); (S.K.); (C.M.M.); (H.S.B.); (E.M.B.); (B.T.); (U.S.); (D.F.); (S.B.); (P.D.); (A.L.); (D.M.)
| | - Evan M. Benson
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.D.B.); (S.G.Y.); (B.Z.K.-S.); (S.K.); (C.M.M.); (H.S.B.); (E.M.B.); (B.T.); (U.S.); (D.F.); (S.B.); (P.D.); (A.L.); (D.M.)
| | - Bivek Timalsina
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.D.B.); (S.G.Y.); (B.Z.K.-S.); (S.K.); (C.M.M.); (H.S.B.); (E.M.B.); (B.T.); (U.S.); (D.F.); (S.B.); (P.D.); (A.L.); (D.M.)
| | - Upasana Shrestha
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.D.B.); (S.G.Y.); (B.Z.K.-S.); (S.K.); (C.M.M.); (H.S.B.); (E.M.B.); (B.T.); (U.S.); (D.F.); (S.B.); (P.D.); (A.L.); (D.M.)
| | - Dhilhani Faleel
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.D.B.); (S.G.Y.); (B.Z.K.-S.); (S.K.); (C.M.M.); (H.S.B.); (E.M.B.); (B.T.); (U.S.); (D.F.); (S.B.); (P.D.); (A.L.); (D.M.)
| | - Satkeerth Boyapalli
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.D.B.); (S.G.Y.); (B.Z.K.-S.); (S.K.); (C.M.M.); (H.S.B.); (E.M.B.); (B.T.); (U.S.); (D.F.); (S.B.); (P.D.); (A.L.); (D.M.)
| | - Prabhatchandra Dube
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.D.B.); (S.G.Y.); (B.Z.K.-S.); (S.K.); (C.M.M.); (H.S.B.); (E.M.B.); (B.T.); (U.S.); (D.F.); (S.B.); (P.D.); (A.L.); (D.M.)
| | - Apurva Lad
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.D.B.); (S.G.Y.); (B.Z.K.-S.); (S.K.); (C.M.M.); (H.S.B.); (E.M.B.); (B.T.); (U.S.); (D.F.); (S.B.); (P.D.); (A.L.); (D.M.)
| | - Irum Syed
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA;
| | - Deepak Malhotra
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.D.B.); (S.G.Y.); (B.Z.K.-S.); (S.K.); (C.M.M.); (H.S.B.); (E.M.B.); (B.T.); (U.S.); (D.F.); (S.B.); (P.D.); (A.L.); (D.M.)
| | - Amira Gohara
- Department of Pathology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA;
| | - David J. Kennedy
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.D.B.); (S.G.Y.); (B.Z.K.-S.); (S.K.); (C.M.M.); (H.S.B.); (E.M.B.); (B.T.); (U.S.); (D.F.); (S.B.); (P.D.); (A.L.); (D.M.)
| | - Steven T. Haller
- Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (B.W.F.); (J.D.B.); (S.G.Y.); (B.Z.K.-S.); (S.K.); (C.M.M.); (H.S.B.); (E.M.B.); (B.T.); (U.S.); (D.F.); (S.B.); (P.D.); (A.L.); (D.M.)
| |
Collapse
|
10
|
Yang Q, Su S, Luo N, Cao G. Adenine-induced animal model of chronic kidney disease: current applications and future perspectives. Ren Fail 2024; 46:2336128. [PMID: 38575340 PMCID: PMC10997364 DOI: 10.1080/0886022x.2024.2336128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Chronic kidney disease (CKD) with high morbidity and mortality all over the world is characterized by decreased kidney function, a condition which can result from numerous risk factors, including diabetes, hypertension and obesity. Despite significant advances in our understanding of the pathogenesis of CKD, there are still no treatments that can effectively combat CKD, which underscores the urgent need for further study into the pathological mechanisms underlying this condition. In this regard, animal models of CKD are indispensable. This article reviews a widely used animal model of CKD, which is induced by adenine. While a physiologic dose of adenine is beneficial in terms of biological activity, a high dose of adenine is known to induce renal disease in the organism. Following a brief description of the procedure for disease induction by adenine, major mechanisms of adenine-induced CKD are then reviewed, including inflammation, oxidative stress, programmed cell death, metabolic disorders, and fibrillation. Finally, the application and future perspective of this adenine-induced CKD model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given the simplicity and reproducibility of this animal model, it remains a valuable tool for studying the pathological mechanisms of CKD and identifying therapeutic targets to fight CKD.
Collapse
Affiliation(s)
- Qiao Yang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Songya Su
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Nan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gang Cao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Khalaily N, Hassan A, Khream Y, Naveh‐Many T, Ben‐Dov IZ. The roles of mTORC1 in parathyroid gland function in chronic kidney disease-induced secondary hyperparathyroidism: Evidence from male genetic mouse models and clinical data. FASEB J 2024; 38:e70184. [PMID: 39570083 PMCID: PMC11580712 DOI: 10.1096/fj.202401547rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Secondary hyperparathyroidism (SHP) associated with chronic kidney disease (CKD) contributes to morbidity and mortality, yet the related parathyroid signaling pathways are not fully understood. Previous studies have indicated that the parathyroid mTORC1 pathway is activated in both experimental CKD and hypocalcemia-induced SHP. Furthermore, mice with parathyroid-specific mTOR deficiency (PT-mTOR-/-) exhibit disrupted parathyroid glands, but maintain normal serum PTH levels. Conversely, PT-Tsc1-/- mice, with mTORC1 hyperactivation, have enlarged glands and high serum PTH and calcium levels. We now uncover links between mTORC1 function, parathyroid gland morphology, and the response to CKD. Despite impaired gland structure, PT-mTOR-/- mice increased serum PTH to levels similar to controls in response to CKD, but not to acute kidney injury (AKI), highlighting the adaptability of their parathyroid glands to chronic but not acute stimulation. PT-Tsc1-/- mice, with enlarged glands also exhibited a CKD-induced rise in serum PTH comparable to controls, but with a reduced magnitude, suggesting compromised secretion capacity. Parathyroid glands from PT-Tsc1-/- mice displayed sustained high PTH secretion in culture, with no further increase when exposed to calcium-depleted media, unlike control glands. Complementing these findings, human data from 106 healthcare organizations demonstrated that drug-induced mTORC1 inhibition is associated with reduced serum PTH and a lower incidence of SHP in kidney transplant recipients. Collectively, our findings underscore the complex interplay between mTORC1 signaling and gland structure in the pathogenesis of SHP.
Collapse
Affiliation(s)
- Nareman Khalaily
- Minerva Center for Bone and Mineral Research, Nephrology ServicesHadassah Hebrew University Medical Center and Faculty of MedicineJerusalemIsrael
| | - Alia Hassan
- Minerva Center for Bone and Mineral Research, Nephrology ServicesHadassah Hebrew University Medical Center and Faculty of MedicineJerusalemIsrael
| | - Yasmeen Khream
- Minerva Center for Bone and Mineral Research, Nephrology ServicesHadassah Hebrew University Medical Center and Faculty of MedicineJerusalemIsrael
| | - Tally Naveh‐Many
- Minerva Center for Bone and Mineral Research, Nephrology ServicesHadassah Hebrew University Medical Center and Faculty of MedicineJerusalemIsrael
- Wohl Institute for Translational MedicineHadassah Hebrew University Medical CenterJerusalemIsrael
| | - Iddo Z. Ben‐Dov
- Laboratory of Medical Transcriptomics, Nephrology and Internal Medicine BHadassah Hebrew University Medical Center and Faculty of MedicineJerusalemIsrael
| |
Collapse
|
12
|
Liu S, Cao Y, Yuan Q, Xie Y, Zhu Y, Yao L, Zhang C. Yishen paidu pills attenuates 5/6 nephrectomy induced kidney disease via inhibiting the PI3K/AKT/mTOR signaling pathway. Front Pharmacol 2024; 15:1510098. [PMID: 39669205 PMCID: PMC11634598 DOI: 10.3389/fphar.2024.1510098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Introduction Chronic kidney disease (CKD) is a substantial global health issue with high morbidity and mortality. Yishen Paidu Pills (YSPDP) are effective concentrated water pills composed of four herbs developed by Wuhan Union Hospital to treat CKD. However, the mechanism of YSPDP action is largely unknown. This study combined metabolomics, network pharmacology, transcriptomics, and experimental verification to elucidate and identify the effects and potential mechanisms of YSPDP against CKD. Methods Firstly, we used metabolomics analyses to identify the chemical components of YSPDP. Then, network pharmacology was conducted and indicated the predicted signaling pathways regulated by YSPDP. Next, we conducted a 5/6 subtotal nephrectomy (5/6 SNx) rat model and treated these rats with YSPDP or Losartan for 10 weeks to evaluate the effect of YSPDP on CKD. To further analyze the underlying mechanism of YSPDP in CKD, the kidney tissues of 5/6 SNx rats treated with vehicle and YSPDP were performed with transcriptome sequencing. Finally, the western blot was performed to validate the signaling pathways of YSPDP against CKD. Results Twenty-four classes of chemicals were identified by metabolomics in YSPDP. YSPDP markedly hindered CKD progression, characterized by the restoration of body weight and serum albumin levels, improved renal function, diminished tissue injury, and hampered renal fibrosis in 5/6 SNx rats. The efficacy of YSPDP in ameliorating the progression of CKD was comparable to that of losartan. Furthermore, network pharmacology, transcriptomics, and functional enrichment analysis indicated the PI3K/AKT/mTOR signaling pathway was the key pathway regulated by YSPDP. Western blot validated the inhibition of PI3K/AKT/mTOR signaling in the kidney of 5/6 SNx rats treated by YSPDP. Conclusion The study identified the chemicals of YSPDP and revealed that YSPDP prevented the progression of CKD by inhibiting PI3K/AKT/mTOR signaling in 5/6 SNx rats.
Collapse
Affiliation(s)
| | | | | | | | | | - Lijun Yao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Sun CC, Xiao JL, Sun C, Tang CF. Ferroptosis and Its Potential Role in the Physiopathology of Skeletal Muscle Atrophy. Int J Mol Sci 2024; 25:12463. [PMID: 39596528 PMCID: PMC11595065 DOI: 10.3390/ijms252212463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Skeletal muscle atrophy is a major health concern, severely affecting the patient's mobility and life quality. In the pathological process of skeletal muscle atrophy, with the progressive decline in muscle quality, strength, and function, the incidence of falling, fracture, and death is greatly increased. Unfortunately, there are no effective treatments for this devastating disease. Thus, it is imperative to investigate the exact pathological molecular mechanisms underlying the development of skeletal muscle atrophy and to identify new therapeutic targets. Decreased muscle mass, strength, and muscle fiber cross-sectional area are typical pathological features and manifestations of skeletal muscle atrophy. Ferroptosis, an emerging type of programmed cell death, is characterized by iron-dependent oxidative damage, lipid peroxidation, and reactive oxygen species accumulation. Notably, the understanding of its role in skeletal muscle atrophy is emerging. Ferroptosis has been found to play an important role in the intricate interplay between the pathological mechanisms of skeletal muscle atrophy and its progression caused by multiple factors. This provides new opportunities and challenges in the treatment of skeletal muscle atrophy. Therefore, we systematically elucidated the ferroptosis mechanism and its progress in skeletal muscle atrophy, aiming to provide a comprehensive insight into the intricate relationship between ferroptosis and skeletal muscle atrophy from the perspectives of iron metabolism and lipid peroxidation and to provide new insights for targeting the pathways related to ferroptosis and the treatment of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Chen-Chen Sun
- School of Physical Education, Hunan First Normal University, Changsha 410205, China;
| | - Jiang-Ling Xiao
- College of Physical Education, Hunan Normal University, Changsha, 410012, China; (J.-L.X.); (C.S.)
| | - Chen Sun
- College of Physical Education, Hunan Normal University, Changsha, 410012, China; (J.-L.X.); (C.S.)
| | - Chang-Fa Tang
- College of Physical Education, Hunan Normal University, Changsha, 410012, China; (J.-L.X.); (C.S.)
| |
Collapse
|
14
|
Dargam V, Sanchez A, Kolengaden A, Perez Y, Arias R, Valentin Cabrera AM, Chaparro D, Tarafa C, Coba A, Yapaolo N, da Silva Nogueira P, Todd EA, Williams MM, Shehadeh LA, Hutcheson JD. Sex-Specific Changes in Cardiac Function and Electrophysiology During Progression of Adenine-Induced Chronic Kidney Disease in Mice. J Cardiovasc Dev Dis 2024; 11:362. [PMID: 39590205 PMCID: PMC11594452 DOI: 10.3390/jcdd11110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/22/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Chronic kidney disease (CKD) and cardiovascular disease (CVD) often co-exist, with notable sex-dependent differences in manifestation and progression despite both sexes sharing similar risk factors. Identifying sex-specific diagnostic markers in CKD-induced CVD could elucidate why the development and progression of these diseases differ by sex. Adult, C57BL/6J male and female mice were fed a high-adenine diet for 12 weeks to induce CKD, while control mice were given a normal diet. Adenine-treated males showed more severe CKD than females. Cardiac physiology was evaluated using electrocardiogram (ECG) and echocardiogram markers. Only adenine-treated male mice showed markers of left ventricular (LV) hypertrophy. Adenine males showed markers of LV systolic and diastolic dysfunction throughout regimen duration, worsening as the disease progressed. Adenine males had prolonged QTc interval compared to adenine females and control males. We identified a new ECG marker, Speak-J duration, which increased with disease progression and appeared earlier in adenine-treated males than in females. We identified sex-dependent differences in cardiac structure, function, and electrophysiology in a CKD-induced CVD mouse model, with adenine-treated males displaying markers of LV hypertrophy, dysfunction, and electrophysiological changes. This study demonstrates the feasibility of using this model to investigate sex-dependent cardiac differences resulting from CKD.
Collapse
Affiliation(s)
- Valentina Dargam
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (V.D.)
| | - Anet Sanchez
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (V.D.)
| | - Aashiya Kolengaden
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (V.D.)
| | - Yency Perez
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (V.D.)
| | - Rebekah Arias
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (V.D.)
| | - Ana M. Valentin Cabrera
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (V.D.)
| | - Daniel Chaparro
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (V.D.)
| | - Christopher Tarafa
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (V.D.)
| | - Alexandra Coba
- Department of Biological Science, Florida International University, Miami, FL 33199, USA
| | - Nathan Yapaolo
- Department of Biological Science, Florida International University, Miami, FL 33199, USA
| | | | - Emily A. Todd
- Department of Medical Education, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Monique M. Williams
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Lina A. Shehadeh
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (V.D.)
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
15
|
Wang S, Pan Y, Pang Q, Zhang A. Irisin Ameliorates Muscle Atrophy by Inhibiting the Upregulation of the Ubiquitin‒Proteasome System in Chronic Kidney Disease. Calcif Tissue Int 2024; 115:712-724. [PMID: 39283327 DOI: 10.1007/s00223-024-01283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/29/2024] [Indexed: 11/03/2024]
Abstract
Muscle atrophy is a common complication of chronic kidney disease (CKD). Irisin, a novel muscle cytokine, protects against muscle atrophy, but its specific role in CKD-associated muscle atrophy requires further elucidation. Because the ubiquitin-proteasome system (UPS) plays an important role in CKD muscle atrophy, our study will explore whether irisin affects UPS and alleviate CKD-associated muscle atrophy. In this study, an adenine-fed mouse model of CKD and urotension II (UII)-induced C2C12 myotubes were used as in vivo and in vitro models of muscle atrophy. The results showed that renal function, mouse weight, and the cross-sectional area (CSA) of skeletal muscles were significantly improved in CKD mice treated with irisin. Moreover, irisin effectively mitigated the decreases in phosphorylated Forkhead box O 3a (p-FOXO3A) levels and increases in the levels of E3 ubiquitin ligases, such as muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx/atrogin1), in both the muscles of CKD mice and UII-induced C2C12 myotubes. In addition, irisin significantly increased the expression levels of myogenic differentiation factor D (MyoD) in the muscles of CKD mice. Our study is the first to demonstrate that irisin ameliorates skeletal muscle atrophy by inhibiting UPS upregulation and improving satellite cell differentiation in CKD.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Fibronectins/metabolism
- Mice, Inbred C57BL
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/pathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscular Atrophy/metabolism
- Proteasome Endopeptidase Complex/metabolism
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/pathology
- Ubiquitin/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Shiyuan Wang
- Department of Nephrology, Xuanwu Hospital Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 10000, China
| | - Yajing Pan
- Department of Nephrology, Xuanwu Hospital Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 10000, China
| | - Qi Pang
- Department of Nephrology, Xuanwu Hospital Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 10000, China
| | - Aihua Zhang
- Department of Nephrology, Xuanwu Hospital Capital Medical University, 45 Changchun Street, Xicheng District, Beijing, 10000, China.
| |
Collapse
|
16
|
Amioka N, Franklin MK, Kukida M, Zhu L, Moorleghen JJ, Howatt DA, Katsumata Y, Mullick AE, Yanagita M, Martinez-Irizarry MM, Sandoval RM, Dunn KW, Sawada H, Daugherty A, Lu HS. Renal Proximal Tubule Cell-specific Megalin Deletion Does Not Affect Atherosclerosis But Induces Tubulointerstitial Nephritis in Mice Fed Western Diet. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.592234. [PMID: 38798535 PMCID: PMC11118422 DOI: 10.1101/2024.05.11.592234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Pharmacological inhibition of megalin (also known as low-density lipoprotein receptor-related protein 2: LRP2) attenuates atherosclerosis in hypercholesterolemic mice. Since megalin is abundant in renal proximal tubule cells (PTCs), the purpose of this study was to determine whether PTC-specific deletion of megalin reduces hypercholesterolemia-induced atherosclerosis in mice. Methods Female Lrp2 f/f mice were bred with male Ndrg1-Cre ERT2 +/0 mice to develop PTC-LRP2 +/+ and -/- littermates. To study atherosclerosis, all mice were bred to an LDL receptor -/- background and fed a Western diet to induce atherosclerosis. Results PTC-specific megalin deletion did not attenuate atherosclerosis in LDL receptor -/- mice in either sex. Serendipitously, we discovered that PTC-specific megalin deletion led to interstitial infiltration of CD68+ cells and tubular atrophy. The pathology was only evident in male PTC-LRP2 -/- mice fed the Western diet, but not in mice fed a normal laboratory diet. Renal pathologies were also observed in male PTC-LRP2 -/- mice in an LDL receptor +/+ background fed the same Western diet, demonstrating that the renal pathologies were dependent on diet and not hypercholesterolemia. In contrast, female PTC-LRP2 -/- mice had no apparent renal pathologies. In vivo multiphoton microscopy demonstrated that PTC-specific megalin deletion dramatically diminished albumin accumulation in PTCs within 10 days of Western diet feeding. RNA sequencing analyses demonstrated the upregulation of inflammation-related pathways in kidney. Conclusions PTC-specific megalin deletion does not affect atherosclerosis, but leads to tubulointerstitial nephritis in mice fed Western diet, with severe pathologies in male mice.
Collapse
Affiliation(s)
- Naofumi Amioka
- Saha Cardiovascular Research Center and Saha Aortic Center
| | | | | | - Liyuan Zhu
- Saha Cardiovascular Research Center and Saha Aortic Center
| | | | | | | | | | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | | | - Ruben M. Sandoval
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Kenneth W. Dunn
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Hisashi Sawada
- Saha Cardiovascular Research Center and Saha Aortic Center
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Alan Daugherty
- Saha Cardiovascular Research Center and Saha Aortic Center
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Hong S. Lu
- Saha Cardiovascular Research Center and Saha Aortic Center
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
17
|
Commey KL, Enaka A, Nakamura R, Yamamoto A, Tsukigawa K, Nishi K, Otagiri M, Yamasaki K. 7-Phenylheptanoic Acid-Hydroxypropyl β-Cyclodextrin Complex Slows the Progression of Renal Failure in Adenine-Induced Chronic Kidney Disease Mice. Toxins (Basel) 2024; 16:316. [PMID: 39057956 PMCID: PMC11281668 DOI: 10.3390/toxins16070316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The characteristic accumulation of circulating uremic toxins, such as indoxyl sulfate (IS), in chronic kidney disease (CKD) further exacerbates the disease progression. The gut microbiota, particularly gut bacterial-specific enzymes, represents a selective and attractive target for suppressing uremic toxin production and slowing the progression of renal failure. This study investigates the role of 4-phenylbutyrate (PB) and structurally related compounds, which are speculated to possess renoprotective properties in suppressing IS production and slowing or reversing renal failure in CKD. In vitro enzyme kinetic studies showed that 7-phenylheptanoic acid (PH), a PB homologue, suppresses the tryptophan indole lyase (TIL)-catalyzed decomposition of tryptophan to indole, the precursor of IS. A hydroxypropyl β-cyclodextrin (HPβCD) inclusion complex formulation of PH was prepared to enhance its biopharmaceutical properties and to facilitate in vivo evaluation. Prophylactic oral administration of the PH-HPβCD complex formulation reduced circulating IS and attenuated the deterioration of renal function and tubulointerstitial fibrosis in adenine-induced CKD mice. Additionally, treatment of moderately advanced adenine-induced CKD mice with the formulation ameliorated renal failure, although tissue fibrosis was not improved. These findings suggest that PH-HPβCD can slow the progression of renal failure and may have implications for preventing or managing CKD, particularly in early-stage disease.
Collapse
Affiliation(s)
- Kindness Lomotey Commey
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Airi Enaka
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (M.O.)
| | - Ryota Nakamura
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (M.O.)
| | - Asami Yamamoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (M.O.)
| | - Kenji Tsukigawa
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Koji Nishi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan; (K.L.C.); (A.E.); (R.N.); (A.Y.); (K.T.); (K.N.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Kumamoto 860-0082, Japan
| |
Collapse
|
18
|
Bai H, Varsanik MA, Thaxton C, Ohashi Y, Gonzalez L, Zhang W, Aoyagi Y, Kano M, Yatsula B, Li Z, Pocivavsek L, Dardik A. Disturbed flow in the juxta-anastomotic area of an arteriovenous fistula correlates with endothelial loss, acute thrombus formation, and neointimal hyperplasia. Am J Physiol Heart Circ Physiol 2024; 326:H1446-H1461. [PMID: 38578237 PMCID: PMC11380968 DOI: 10.1152/ajpheart.00054.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Clinical failure of arteriovenous neointimal hyperplasia (NIH) fistulae (AVF) is frequently due to juxta-anastomotic NIH (JANIH). Although the mouse AVF model recapitulates human AVF maturation, previous studies focused on the outflow vein distal to the anastomosis. We hypothesized that the juxta-anastomotic area (JAA) has increased NIH compared with the outflow vein. AVF was created in C57BL/6 mice without or with chronic kidney disease (CKD). Temporal and spatial changes of the JAA were examined using histology and immunofluorescence. Computational techniques were used to model the AVF. RNA-seq and bioinformatic analyses were performed to compare the JAA with the outflow vein. The jugular vein to carotid artery AVF model was created in Wistar rats. The neointima in the JAA shows increased volume compared with the outflow vein. Computational modeling shows an increased volume of disturbed flow at the JAA compared with the outflow vein. Endothelial cells are immediately lost from the wall contralateral to the fistula exit, followed by thrombus formation and JANIH. Gene Ontology (GO) enrichment analysis of the 1,862 differentially expressed genes (DEG) between the JANIH and the outflow vein identified 525 overexpressed genes. The rat jugular vein to carotid artery AVF showed changes similar to the mouse AVF. Disturbed flow through the JAA correlates with rapid endothelial cell loss, thrombus formation, and JANIH; late endothelialization of the JAA channel correlates with late AVF patency. Early thrombus formation in the JAA may influence the later development of JANIH.NEW & NOTEWORTHY Disturbed flow and focal endothelial cell loss in the juxta-anastomotic area of the mouse AVF colocalizes with acute thrombus formation followed by late neointimal hyperplasia. Differential flow patterns between the juxta-anastomotic area and the outflow vein correlate with differential expression of genes regulating coagulation, proliferation, collagen metabolism, and the immune response. The rat jugular vein to carotid artery AVF model shows changes similar to the mouse AVF model.
Collapse
MESH Headings
- Animals
- Neointima
- Hyperplasia
- Arteriovenous Shunt, Surgical
- Thrombosis/physiopathology
- Thrombosis/pathology
- Thrombosis/genetics
- Thrombosis/etiology
- Thrombosis/metabolism
- Mice, Inbred C57BL
- Rats, Wistar
- Male
- Jugular Veins/metabolism
- Jugular Veins/pathology
- Jugular Veins/physiopathology
- Disease Models, Animal
- Carotid Arteries/pathology
- Carotid Arteries/physiopathology
- Carotid Arteries/metabolism
- Carotid Arteries/surgery
- Mice
- Rats
- Regional Blood Flow
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Endothelium, Vascular/pathology
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/physiopathology
- Renal Insufficiency, Chronic/genetics
- Renal Insufficiency, Chronic/metabolism
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
Collapse
Affiliation(s)
- Hualong Bai
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - M Alyssa Varsanik
- Section of Vascular Surgery, Department of Surgery, University of Chicago Medicine, Chicago, Illinois, United States
| | - Carly Thaxton
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - Yuichi Ohashi
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - Luis Gonzalez
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - Weichang Zhang
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - Yukihiko Aoyagi
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - Masaki Kano
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - Bogdan Yatsula
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - Zhuo Li
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
| | - Luka Pocivavsek
- Section of Vascular Surgery, Department of Surgery, University of Chicago Medicine, Chicago, Illinois, United States
| | - Alan Dardik
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Cellular and Molecular Physiology, Yale University; New Haven, Connecticut, United States
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, Connecticut, United States
| |
Collapse
|
19
|
Malheiro LFL, Fernandes MM, Oliveira CA, Barcelos IDS, Fernandes AJV, Silva BS, Ávila JS, Soares TDJ, Amaral LSDB. Renoprotective mechanisms of exercise training against acute and chronic renal diseases - A perspective based on experimental studies. Life Sci 2024; 346:122628. [PMID: 38614303 DOI: 10.1016/j.lfs.2024.122628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/22/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Regular exercise training can lead to several health benefits, reduce mortality risk, and increase life expectancy. On the other hand, a sedentary lifestyle is a known risk factor for chronic diseases and increased mortality. Acute kidney injury (AKI) and chronic kidney disease (CKD) represent a significant global health problem, affecting millions of people worldwide. The progression from AKI to CKD is well-recognized in the literature, and exercise training has emerged as a potential renoprotective strategy. Thus, this article aims to review the main molecular mechanisms underlying the renoprotective actions of exercise training in the context of AKI and CKD, focusing on its antioxidative, anti-inflammatory, anti-apoptotic, anti-fibrotic, and autophagy regulatory effects. For that, bibliographical research was carried out in Medline/PubMed and Scielo databases. Although the pathophysiological mechanisms involved in renal diseases are not fully understood, experimental studies demonstrate that oxidative stress, inflammation, apoptosis, and dysregulation of fibrotic and autophagic processes play central roles in the development of tissue damage. Increasing evidence has suggested that exercise can beneficially modulate these mechanisms, potentially becoming a safe and effective non-pharmacological strategy for kidney health protection and promotion. Thus, the evidence base discussed in this review suggests that an adequate training program emerges as a valuable tool for preserving renal function in experimental animals, mainly through the production of antioxidant enzymes, nitric oxide (NO), irisin, IL-10, and IL-11. Future research can continue to explore these mechanisms to develop specific guidelines for the prescription of exercise training in different populations of patients with kidney diseases.
Collapse
Affiliation(s)
- Lara Fabiana Luz Malheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Brazil
| | - Mariana Masimessi Fernandes
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil
| | - Caroline Assunção Oliveira
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Brazil
| | - Isadora de Souza Barcelos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil
| | - Ana Jullie Veiga Fernandes
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil
| | - Bruna Santos Silva
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil
| | - Júlia Spínola Ávila
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil
| | - Telma de Jesus Soares
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Brazil; Programa de Pós-Graduação em Biociências, Brazil
| | - Liliany Souza de Brito Amaral
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Bahia 45029-094, Brazil; Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Brazil; Programa de Pós-Graduação em Biociências, Brazil.
| |
Collapse
|
20
|
Heitman K, Alexander MS, Faul C. Skeletal Muscle Injury in Chronic Kidney Disease-From Histologic Changes to Molecular Mechanisms and to Novel Therapies. Int J Mol Sci 2024; 25:5117. [PMID: 38791164 PMCID: PMC11121428 DOI: 10.3390/ijms25105117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic kidney disease (CKD) is associated with significant reductions in lean body mass and in the mass of various tissues, including skeletal muscle, which causes fatigue and contributes to high mortality rates. In CKD, the cellular protein turnover is imbalanced, with protein degradation outweighing protein synthesis, leading to a loss of protein and cell mass, which impairs tissue function. As CKD itself, skeletal muscle wasting, or sarcopenia, can have various origins and causes, and both CKD and sarcopenia share common risk factors, such as diabetes, obesity, and age. While these pathologies together with reduced physical performance and malnutrition contribute to muscle loss, they cannot explain all features of CKD-associated sarcopenia. Metabolic acidosis, systemic inflammation, insulin resistance and the accumulation of uremic toxins have been identified as additional factors that occur in CKD and that can contribute to sarcopenia. Here, we discuss the elevation of systemic phosphate levels, also called hyperphosphatemia, and the imbalance in the endocrine regulators of phosphate metabolism as another CKD-associated pathology that can directly and indirectly harm skeletal muscle tissue. To identify causes, affected cell types, and the mechanisms of sarcopenia and thereby novel targets for therapeutic interventions, it is important to first characterize the precise pathologic changes on molecular, cellular, and histologic levels, and to do so in CKD patients as well as in animal models of CKD, which we describe here in detail. We also discuss the currently known pathomechanisms and therapeutic approaches of CKD-associated sarcopenia, as well as the effects of hyperphosphatemia and the novel drug targets it could provide to protect skeletal muscle in CKD.
Collapse
Affiliation(s)
- Kylie Heitman
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Matthew S. Alexander
- Division of Neurology, Department of Pediatrics, The University of Alabama at Birmingham and Children’s of Alabama, Birmingham, AL 35294, USA
- Center for Exercise Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christian Faul
- Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
21
|
Thome T, Vugman NA, Stone LE, Wimberly K, Scali ST, Ryan TE. A tryptophan-derived uremic metabolite/Ahr/Pdk4 axis governs skeletal muscle mitochondrial energetics in chronic kidney disease. JCI Insight 2024; 9:e178372. [PMID: 38652558 PMCID: PMC11141944 DOI: 10.1172/jci.insight.178372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Chronic kidney disease (CKD) causes accumulation of uremic metabolites that negatively affect skeletal muscle. Tryptophan-derived uremic metabolites are agonists of the aryl hydrocarbon receptor (AHR), which has been shown to be activated in CKD. This study investigated the role of the AHR in skeletal muscle pathology of CKD. Compared with controls with normal kidney function, AHR-dependent gene expression (CYP1A1 and CYP1B1) was significantly upregulated in skeletal muscle of patients with CKD, and the magnitude of AHR activation was inversely correlated with mitochondrial respiration. In mice with CKD, muscle mitochondrial oxidative phosphorylation (OXPHOS) was markedly impaired and strongly correlated with the serum level of tryptophan-derived uremic metabolites and AHR activation. Muscle-specific deletion of the AHR substantially improved mitochondrial OXPHOS in male mice with the greatest uremic toxicity (CKD + probenecid) and abolished the relationship between uremic metabolites and OXPHOS. The uremic metabolite/AHR/mitochondrial axis in skeletal muscle was verified using muscle-specific AHR knockdown in C57BL/6J mice harboring a high-affinity AHR allele, as well as ectopic viral expression of constitutively active mutant AHR in mice with normal renal function. Notably, OXPHOS changes in AHRmKO mice were present only when mitochondria were fueled by carbohydrates. Further analyses revealed that AHR activation in mice led to significantly increased pyruvate dehydrogenase kinase 4 (Pdk4) expression and phosphorylation of pyruvate dehydrogenase enzyme. These findings establish a uremic metabolite/AHR/Pdk4 axis in skeletal muscle that governs mitochondrial deficits in carbohydrate oxidation during CKD.
Collapse
Affiliation(s)
- Trace Thome
- Department of Applied Physiology and Kinesiology and
| | | | | | - Keon Wimberly
- Department of Applied Physiology and Kinesiology and
| | - Salvatore T. Scali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida, USA
- Malcom Randall VA Medical Center, Gainesville, Florida, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology and
- Center for Exercise Science and
- Myology Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
22
|
Liu Y, Qin Y, Zhang Y. circRNA-PTPN4 mediated regulation of FOXO3 and ZO-1 expression: implications for blood-brain barrier integrity and cognitive function in uremic encephalopathy. Cell Biol Toxicol 2024; 40:22. [PMID: 38630149 PMCID: PMC11024022 DOI: 10.1007/s10565-024-09865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Uremic encephalopathy (UE) poses a significant challenge in neurology, leading to the need to investigate the involvement of non-coding RNA (ncRNA) in its development. This study employed ncRNA-seq and RNA-seq approaches to identify fundamental ncRNAs, specifically circRNA and miRNA, in the pathogenesis of UE using a mouse model. In vitro and in vivo experiments were conducted to explore the circRNA-PTPN4/miR-301a-3p/FOXO3 axis and its effects on blood-brain barrier (BBB) function and cognitive abilities. The research revealed that circRNA-PTPN4 binds to and inhibits miR-301a-3p, leading to an increase in FOXO3 expression. This upregulation results in alterations in the transcriptional regulation of ZO-1, affecting the permeability of human brain microvascular endothelial cells (HBMECs). The axis also influences the growth, proliferation, and migration of HBMECs. Mice with UE exhibited cognitive deficits, which were reversed by overexpression of circRNA-PTPN4, whereas silencing FOXO3 exacerbated these deficits. Furthermore, the uremic mice showed neuronal loss, inflammation, and dysfunction in the BBB, with the expression of circRNA-PTPN4 demonstrating therapeutic effects. In conclusion, circRNA-PTPN4 plays a role in promoting FOXO3 expression by sequestering miR-301a-3p, ultimately leading to the upregulation of ZO-1 expression and restoration of BBB function in mice with UE. This process contributes to the restoration of cognitive abilities.
Collapse
Affiliation(s)
- Yuhan Liu
- Department of Nephrology, General Hospital of the Northern Theatre, No. 83, Wenhua Road, Shenhe District, Shenyang, 110000, Liaoning Province, People's Republic of China
| | - Yanling Qin
- Department of Nephrology, General Hospital of the Northern Theatre, No. 83, Wenhua Road, Shenhe District, Shenyang, 110000, Liaoning Province, People's Republic of China
| | - Yanning Zhang
- Department of Nephrology, General Hospital of the Northern Theatre, No. 83, Wenhua Road, Shenhe District, Shenyang, 110000, Liaoning Province, People's Republic of China.
| |
Collapse
|
23
|
Kim K, Fazzone B, Cort TA, Kunz EM, Alvarez S, Moerschel J, Palzkill VR, Dong G, Anderson EM, O'Malley KA, Berceli SA, Ryan TE, Scali ST. Mitochondrial targeted catalase improves muscle strength following arteriovenous fistula creation in mice with chronic kidney disease. Sci Rep 2024; 14:8288. [PMID: 38594299 PMCID: PMC11004135 DOI: 10.1038/s41598-024-58805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Hand dysfunction is a common observation after arteriovenous fistula (AVF) creation for hemodialysis access and has a variable clinical phenotype; however, the underlying mechanism responsible is unclear. Grip strength changes are a common metric used to assess AVF-associated hand disability but has previously been found to poorly correlate with the hemodynamic perturbations post-AVF placement implicating other tissue-level factors as drivers of hand outcomes. In this study, we sought to test if expression of a mitochondrial targeted catalase (mCAT) in skeletal muscle could reduce AVF-related limb dysfunction in mice with chronic kidney disease (CKD). Male and female C57BL/6J mice were fed an adenine-supplemented diet to induce CKD prior to placement of an AVF in the iliac vascular bundle. Adeno-associated virus was used to drive expression of either a green fluorescent protein (control) or mCAT using the muscle-specific human skeletal actin (HSA) gene promoter prior to AVF creation. As expected, the muscle-specific AAV-HSA-mCAT treatment did not impact blood urea nitrogen levels (P = 0.72), body weight (P = 0.84), or central hemodynamics including infrarenal aorta and inferior vena cava diameters (P > 0.18) or velocities (P > 0.38). Hindlimb perfusion recovery and muscle capillary densities were also unaffected by AAV-HSA-mCAT treatment. In contrast to muscle mass and myofiber size which were not different between groups, both absolute and specific muscle contractile forces measured via a nerve-mediated in-situ preparation were significantly greater in AAV-HSA-mCAT treated mice (P = 0.0012 and P = 0.0002). Morphological analysis of the post-synaptic neuromuscular junction uncovered greater acetylcholine receptor cluster areas (P = 0.0094) and lower fragmentation (P = 0.0010) in AAV-HSA-mCAT treated mice. Muscle mitochondrial oxidative phosphorylation was not different between groups, but AAV-HSA-mCAT treated mice had lower succinate-fueled mitochondrial hydrogen peroxide emission compared to AAV-HSA-GFP mice (P < 0.001). In summary, muscle-specific scavenging of mitochondrial hydrogen peroxide significantly improves neuromotor function in mice with CKD following AVF creation.
Collapse
Affiliation(s)
- Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Brian Fazzone
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Tomas A Cort
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Eric M Kunz
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Samuel Alvarez
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Jack Moerschel
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Victoria R Palzkill
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Gengfu Dong
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA
| | - Erik M Anderson
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Kerri A O'Malley
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Scott A Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL, 32611, USA.
- Center for Exercise Science, University of Florida, Gainesville, FL, USA.
| | - Salvatore T Scali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, P.O. Box 100128, Gainesville, FL, 32610, USA.
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA.
| |
Collapse
|
24
|
Lair B, Lac M, Frassin L, Brunet M, Buléon M, Feuillet G, Maslo C, Marquès M, Monbrun L, Bourlier V, Montastier E, Viguerie N, Tavernier G, Laurens C, Moro C. Common mouse models of chronic kidney disease are not associated with cachexia. Commun Biol 2024; 7:346. [PMID: 38509307 PMCID: PMC10954638 DOI: 10.1038/s42003-024-06021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
The 5/6 nephrectomy and adenine-induced nephropathy mouse models have been extensively used to study Chronic Kidney Disease (CKD)-related cachexia. One common caveat of these CKD models is the cross-sectional nature of comparisons made versus controls. We here performed a comprehensive longitudinal assessment of body composition and energy metabolism in both models. The most striking finding is that weight loss is largely driven by reduced food intake which promotes rapid loss of lean and fat mass. However, in both models, mice catch up weight and lean mass a few days after the surgery or when they are switched back to standard chow diet. Muscle force and mass are fully recovered and no sign of cachexia is observed. Our data demonstrate that the time-course of kidney failure and weight loss are unrelated in these common CKD models. These data highlight the need to reconsider the relative contribution of direct and indirect mechanisms to muscle wasting observed in CKD.
Collapse
Affiliation(s)
- Benjamin Lair
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Marlène Lac
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Lucas Frassin
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Manon Brunet
- Team Renal Fibrosis and Chronic Kidney Diseases, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Marie Buléon
- Team Renal Fibrosis and Chronic Kidney Diseases, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Guylène Feuillet
- Team Renal Fibrosis and Chronic Kidney Diseases, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Claire Maslo
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Marie Marquès
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Laurent Monbrun
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Virginie Bourlier
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Emilie Montastier
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Nathalie Viguerie
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Geneviève Tavernier
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Claire Laurens
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France
| | - Cedric Moro
- Team MetaDiab, Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University UMR1297, Toulouse, France.
| |
Collapse
|
25
|
Sugai K, Hirano M, Oda A, Fujisawa M, Shono S, Ishioka K, Tamura T, Katsumata Y, Sano M, Kobayashi E, Hakamata Y. Establishment and application of a new 4/6 infarct nephrectomy rat model for moderate chronic kidney disease. Acta Cir Bras 2024; 39:e391324. [PMID: 38477787 DOI: 10.1590/acb391324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/15/2023] [Indexed: 03/14/2024] Open
Abstract
PURPOSE To develop a new 4/6 infarct nephrectomy (INx) model rat mimicking moderate chronic kidney disease (CKD) and to evaluate its application. METHODS We modified the conventional 5/6 INx rat model to create the 4/6 INx model by ligating the renal artery branch to induce infarction of one-third of the left kidney after right kidney removal and compared biochemically and histologically both models. To demonstrate the application of the 4/6 INx model, the effects of a supplementary compound containing calcium carbonate, chitosan, palm shell activated charcoal etc., that is effective for both CKD and its complications, were compared between both models. RESULTS Impairment of renal function in the 4/6 INx group was significantly more moderate than in the 5/6 INx group (P < 0.05). The 4/6 INx group showed less histological damage in kidney than in the 5/6 INx group. The supplementary compound did not improve CKD in the 5/6 INx group, but ameliorated elevation of blood urea nitrogen in the 4/6 INx group. CONCLUSIONS We developed the 4/6 INx model, which is more moderate than the conventional 5/6 INx model. This model could potentially demonstrate the effectiveness of drugs and supplements intended to prevent CKD and its progression.
Collapse
Affiliation(s)
- Kazuhisa Sugai
- Nippon Veterinary and Life Science University - School of Veterinary Nursing and Technology - Department of Basic Science - Tokyo, Japan
| | - Momoko Hirano
- Nippon Veterinary and Life Science University - School of Veterinary Nursing and Technology - Department of Basic Science - Tokyo, Japan
| | - Asahi Oda
- Nippon Veterinary and Life Science University - School of Veterinary Nursing and Technology - Department of Basic Science - Tokyo, Japan
| | - Masahiko Fujisawa
- Nippon Veterinary and Life Science University - School of Veterinary Nursing and Technology - Department of Basic Science - Tokyo, Japan
| | - Saori Shono
- Nippon Veterinary and Life Science University - School of Veterinary Nursing and Technology - Department of Applied Science - Tokyo, Japan
| | - Katsumi Ishioka
- Nippon Veterinary and Life Science University - School of Veterinary Nursing and Technology - Department of Veterinary Nursing - Tokyo, Japan
| | - Tomoyoshi Tamura
- Keio University - School of Medicine - Department of Emergency and Critical Care Medicine - Tokyo, Japan
| | - Yoshinori Katsumata
- Keio University - School of Medicine - Department of Cardiology - Tokyo, Japan
- Keio University - School of Medicine - Institute for Integrated Sports Medicine - Tokyo, Japan
| | - Motoaki Sano
- Keio University - School of Medicine - Department of Cardiology - Tokyo, Japan
| | - Eiji Kobayashi
- Nippon Veterinary and Life Science University - School of Veterinary Nursing and Technology - Department of Basic Science - Tokyo, Japan
- Keio University - School of Medicine - Department of Cardiology - Tokyo, Japan
- Jikei University - School of Medicine - Department of Kidney Regenerative Medicine - Tokyo, Japan
| | - Yoji Hakamata
- Nippon Veterinary and Life Science University - School of Veterinary Nursing and Technology - Department of Basic Science - Tokyo, Japan
- Nippon Veterinary and Life Science University - Research Center for Animal Life Science - Tokyo, Japan
| |
Collapse
|
26
|
Troutman AD, Arroyo E, Sheridan EM, D'Amico DJ, Brandt PR, Hinrichs R, Chen X, Lim K, Avin KG. Skeletal muscle atrophy in clinical and preclinical models of chronic kidney disease: A systematic review and meta-analysis. J Cachexia Sarcopenia Muscle 2024; 15:21-35. [PMID: 38062879 PMCID: PMC10834351 DOI: 10.1002/jcsm.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 02/03/2024] Open
Abstract
Patients with chronic kidney disease (CKD) are often regarded as experiencing wasting of muscle mass and declining muscle strength and function, collectively termed sarcopenia. The extent of skeletal muscle wasting in clinical and preclinical CKD populations is unclear. We evaluated skeletal muscle atrophy in preclinical and clinical models of CKD, with multiple sub-analyses for muscle mass assessment methods, CKD severity, sex and across the different preclinical models of CKD. We performed a systematic literature review of clinical and preclinical studies that measured muscle mass/size using the following databases: Ovid Medline, Embase and Scopus. A random effects meta-analysis was utilized to determine standard mean difference (SMD; Hedges' g) between healthy and CKD. Heterogeneity was evaluated using the I2 statistic. Preclinical study quality was assessed via the Systematic Review Centre for Laboratory Animal Experimentation and clinical studies quality was assessed via the Newcastle-Ottawa Scale. This study was registered in PROSPERO (CRD42020180737) prior to initiation of the search. A total of 111 studies were included in this analysis using the following subgroups: 106 studies in the primary CKD analysis, 18 studies that accounted for diabetes and 7 kidney transplant studies. Significant atrophy was demonstrated in 78% of the preclinical studies and 49% of the clinical studies. The random effects model demonstrated a medium overall SMD (SMD = 0.58, 95% CI = 0.52-0.64) when combining clinical and preclinical studies, a medium SMD for the clinical population (SMD = 0.48, 95% CI = 0.42-0.55; all stages) and a large SMD for preclinical CKD (SMD = 0.95, 95% CI = 0.76-1.14). Further sub-analyses were performed based upon assessment methods, disease status and animal model. Muscle atrophy was reported in 49% of the clinical studies, paired with small mean differences. Preclinical studies reported significant atrophy in 78% of studies, with large mean differences. Across multiple clinical sub-analyses such as severity of CKD, dialysis modality and diabetes, a medium mean difference was found. Sub-analyses in both clinical and preclinical studies found a large mean difference for males and medium for females suggesting sex-specific implications. Muscle atrophy differences varied based upon assessment method for clinical and preclinical studies. Limitations in study design prevented conclusions to be made about the extent of muscle loss with disease progression, or the impact of dialysis. Future work would benefit from the use of standardized measurement methods and consistent clinical staging to improve our understanding of atrophy changes in CKD progression, and analysis of biological sex differences.
Collapse
Affiliation(s)
- Ashley D Troutman
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, Indiana, USA
| | - Eliott Arroyo
- Department of Medicine, Division of Nephrology & Hypertension, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elizabeth M Sheridan
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, Indiana, USA
| | - Duncan J D'Amico
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, Indiana, USA
| | - Peyton R Brandt
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, Indiana, USA
| | - Rachel Hinrichs
- University Library, Indiana University-Purdue University Indianapolis, Indiana, USA
| | - Xiwei Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Kenneth Lim
- Department of Medicine, Division of Nephrology & Hypertension, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Keith G Avin
- Department of Physical Therapy, School of Health and Human Sciences, Indiana University Purdue University, Indianapolis, Indiana, USA
- Department of Medicine, Division of Nephrology & Hypertension, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
27
|
Palzkill VR, Tan J, Yang Q, Morcos J, Laitano O, Ryan TE. Deletion of the aryl hydrocarbon receptor in endothelial cells improves ischemic angiogenesis in chronic kidney disease. Am J Physiol Heart Circ Physiol 2024; 326:H44-H60. [PMID: 37921663 PMCID: PMC11213484 DOI: 10.1152/ajpheart.00530.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Chronic kidney disease (CKD) is a strong risk factor for peripheral artery disease (PAD) that is associated with worsened clinical outcomes. CKD leads to the accumulation of tryptophan metabolites that are associated with adverse limb events in PAD and are ligands of the aryl hydrocarbon receptor (AHR), which may regulate ischemic angiogenesis. To test if endothelial cell-specific deletion of the AHR (AHRecKO) alters ischemic angiogenesis and limb function in mice with CKD subjected to femoral artery ligation. Male AHRecKO mice with CKD displayed better limb perfusion recovery and enhanced ischemic angiogenesis compared with wild-type mice with CKD. However, the improved limb perfusion did not result in better muscle performance. In contrast to male mice, deletion of the AHR in female mice with CKD had no impact on perfusion recovery or angiogenesis. With the use of primary endothelial cells from male and female mice, treatment with indoxyl sulfate uncovered sex-dependent differences in AHR activating potential and RNA sequencing revealed wide-ranging sex differences in angiogenic signaling pathways. Endothelium-specific deletion of the AHR improved ischemic angiogenesis in male, but not female, mice with CKD. There are sex-dependent differences in Ahr activating potential within endothelial cells that are independent of sex hormones.NEW & NOTEWORTHY This study provides novel insights into the mechanisms by which chronic kidney disease worsens ischemic limb outcomes in an experimental model of peripheral artery disease. Deletion of the aryl hydrocarbon receptor (AHR) in the endothelium improved ischemic angiogenesis suggesting that AHR inhibition could be a viable therapeutic target; however, this effect was only observed in male mice. Subsequent analysis in primary endothelial cells reveals sex differences in Ahr activating potential independent of sex hormones.
Collapse
Affiliation(s)
- Victoria R Palzkill
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Jianna Tan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Qingping Yang
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Juliana Morcos
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
- Center for Exercise Science, University of Florida, Gainesville, Florida, United States
- The Myology Institute, University of Florida, Gainesville, Florida, United States
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
- Center for Exercise Science, University of Florida, Gainesville, Florida, United States
- The Myology Institute, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
28
|
Moellmann J, Krueger K, Wong DWL, Klinkhammer BM, Buhl EM, Dehairs J, Swinnen JV, Noels H, Jankowski J, Lebherz C, Boor P, Marx N, Lehrke M. 2,8-Dihydroxyadenine-induced nephropathy causes hexosylceramide accumulation with increased mTOR signaling, reduced levels of protective SirT3 expression and impaired renal mitochondrial function. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166825. [PMID: 37536502 DOI: 10.1016/j.bbadis.2023.166825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
AIM Chronic kidney disease (CKD) is accompanied by increased cardiovascular risk and heart failure (HF). In rodents, 2,8-dihydroxyadenine (DHA)-induced nephropathy is a frequently used CKD model. Cardiac and kidney tubular cells share high energy demand to guarantee constant contractive force of the heart or reabsorption/secretion of primary filtrated molecules and waste products by the kidney. Here we analyze time-dependent mechanisms of kidney damage and cardiac consequences under consideration of energetic pathways with the focus on mitochondrial function and lipid metabolism in mice. METHODS AND RESULTS CKD was induced by alternating dietary adenine supplementation (0.2 % or 0.05 % of adenine) in C57BL/6J mice for 9 weeks. Progressive kidney damage led to reduced creatinine clearance, kidney fibrosis and renal inflammation after 3, 6, and 9 weeks. No difference in cardiac function, mitochondrial respiration nor left ventricular fibrosis was observed at any time point. Investigating mechanisms of renal damage, protective SirT3 was decreased in CKD, which contrasted an increase in protein kinase B (AKT) expression, mechanistic target of rapamycin (mTOR) downstream signaling, induction of oxidative and endoplasmic reticulum (ER) stress. This occurred together with impaired renal mitochondrial function and accumulation of hexosylceramides (HexCer) as an established mediator of inflammation and mitochondrial dysfunction in the kidney. CONCLUSIONS 2,8-DHA-induced CKD results in renal activation of the mTOR downstream signaling, endoplasmic reticulum stress, tubular injury, fibrosis, inflammation, oxidative stress and impaired kidney mitochondrial function in conjunction with renal hexosylceramide accumulation in C57BL/6J mice.
Collapse
Affiliation(s)
- Julia Moellmann
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Katja Krueger
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Dickson W L Wong
- Institute of Pathology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Barbara M Klinkhammer
- Institute of Pathology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Eva M Buhl
- Institute of Pathology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany; Department of Nephrology, RWTH Aachen University, Aachen, Germany; Electron Microscopy Facility, RWTH Aachen University, Aachen, Germany
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Johan V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Aachen, Germany
| | - Corinna Lebherz
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany; Department of Nephrology, RWTH Aachen University, Aachen, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Michael Lehrke
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
29
|
Liu Y, Hong X, Liu L, Li X, Huang S, Luo Q, Huang Q, Qiu J, Qiu P, Li C. Shen Qi Wan ameliorates nephritis in chronic kidney disease via AQP1 and DEFB1 regulation. Biomed Pharmacother 2024; 170:116027. [PMID: 38113630 DOI: 10.1016/j.biopha.2023.116027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
Shen Qi Wan (SQW) has been proven to exert anti-inflammatory effects in the kidneys of CKD models accompanied by unclear therapeutic mechanisms. This study aims to evaluate the kidney-protective and anti-inflammatory effects of SQW and to elucidate its fundamental mechanisms for CKD treatment. Firstly, the main active components of SQW were identified by UPLC-Q-TOF/MS technique. Subsequently, we evaluated inflammatory factors, renal function and renal pathology changes following SQW treatment utilizing adenine-induced CKD mice and aquaporin 1 knockout (AQP1-/-) mice. Additionally, we conducted RNA-seq analysis and bioinformatics analysis to predict the SQW potential therapeutic targets and anti-nephritis pathways. Simultaneously, WGCNA analysis method and machine learning algorithms were used to perform a clinical prognostic analysis of potential biomarkers in CKD patients from the GEO database and validated through clinical samples. Lipopolysaccharide-induced HK-2 cells were further used to explore the mechanism. We found that renal collagen deposition was reduced, serum inflammatory cytokine levels decreased, and renal function was improved after SQW intervention. It can be inferred that β-defensin 1 (DEFB1) may be a pivotal target, as confirmed by serum and renal tissue samples from CKD patients. Furthermore, SQW assuages inflammatory responses by fostering AQP1-mediated DEFB1 expression was confirmed in in vitro and in vivo studies. Significantly, the renal-protective effect of SQW is to some extent attenuated after AQP1 gene knockout. SQW could reduce inflammatory responses by modulating AQP1 and DEFB1. These findings underscore the potential of SQW as a promising contender for novel prevention and treatment strategies within the ambit of CKD management.
Collapse
Affiliation(s)
- Yiming Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiao Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liu Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xinyue Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shuo Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qihan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiaoyan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiang Qiu
- Department of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Ping Qiu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
30
|
Yang X, Liu Y, Zhu X, Chen P, Xie X, Xu T, Zhang X, Zhao Y. Vascular, valvular and kidney calcification manifested in mouse models of adenine-induced chronic kidney disease. Ren Fail 2023; 45:2228920. [PMID: 37369635 DOI: 10.1080/0886022x.2023.2228920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Ectopic calcification (EC) involves multiple organ systems in chronic kidney disease (CKD). Previous CKD-animal models primarily focused on a certain histological abnormality but did not show the correlation with calcified development among various tissues. This study compared calcified deposition in various tissues during CKD progression in mice. METHODS Male 8-week-old C57BL/6J mice were randomly allocated to the seven groups: a basic, adenine, high-phosphorus, or adenine and high-phosphorus diet for 12-16 weeks (Ctl16, A12, P16, or AP16, respectively); an adenine diet for 4-6 weeks; and a high-phosphorus or adenine and high-phosphorus diet for 10-12 weeks (A6 + P10, A4 + P12, or A4 + AP12, respectively). RESULTS Compared to the Ctl16 mice, the P16 mice only displayed a slight abnormality in serum calcium and phosphorus; the A12 mice had the most serious kidney impairment; the A4 + P12 and A6 + P10 mice had similar conditions of CKD, mineral abnormalities, and mild calcification in the kidney and aortic valves; the A4 + AP12 and AP16 groups had severe kidney impairment, mineral abnormalities and calcification in the kidneys, aortic valves and aortas. Furthermore, calcium-phosphate particles were deposited not only in the tubulointerstitial compartment but in the glomerular and tubular basement membrane. The elemental composition of EC in various tissues matched the calcification of human cardiovascular tissue as determined by energy dispersive spectroscopy. CONCLUSIONS The severity of CKD was unparalleled with the progression of mineral metabolism disorder and EC. Calcification was closely related in different tissues and observed in the glomerular and tubular basement membranes.
Collapse
Affiliation(s)
- Xin Yang
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yuqiu Liu
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Xiaodong Zhu
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Pingsheng Chen
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Xiaotong Xie
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Tian Xu
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Xiaoliang Zhang
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Yu Zhao
- Department of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
31
|
Khattri RB, Louis LZ, Kim K, Anderson EM, Fazzone B, Harland KC, Hu Q, O'Malley KA, Berceli SA, Wymer J, Ryan TE, Scali ST. Temporal serum metabolomic and lipidomic analyses distinguish patients with access-related hand disability following arteriovenous fistula creation. Sci Rep 2023; 13:16811. [PMID: 37798334 PMCID: PMC10555997 DOI: 10.1038/s41598-023-43664-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
For end-stage kidney disease (ESKD) patients, hemodialysis requires durable vascular access which is often surgically created using an arteriovenous fistula (AVF). However, some ESKD patients that undergo AVF placement develop access-related hand dysfunction (ARHD) through unknown mechanisms. In this study, we sought to determine if changes in the serum metabolome could distinguish ESKD patients that develop ARHD from those that have normal hand function following AVF creation. Forty-five ESKD patients that underwent first-time AVF creation were included in this study. Blood samples were obtained pre-operatively and 6-weeks post-operatively and metabolites were extracted and analyzed using nuclear magnetic resonance spectroscopy. Patients underwent thorough examination of hand function at both timepoints using the following assessments: grip strength manometry, dexterity, sensation, motor and sensory nerve conduction testing, hemodynamics, and the Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire. Nineteen of the forty-five patients displayed overt weakness using grip strength manometry (P < 0.0001). Unfortunately, the serum metabolome was indistinguishable between patients with and without weakness following AVF surgery. However, a significant correlation was found between the change in tryptophan levels and the change in grip strength suggesting a possible role of tryptophan-derived uremic metabolites in post-AVF hand-associated weakness. Compared to grip strength, changes in dexterity and sensation were smaller than those observed in grip strength, however, post-operative decreases in phenylalanine, glycine, and alanine were unique to patients that developed signs of motor or sensory disability following AVF creation.
Collapse
Affiliation(s)
- Ram B Khattri
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - Lauryn Z Louis
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - Erik M Anderson
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, 32611, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Brian Fazzone
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, 32611, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Kenneth C Harland
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, 32611, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Qiongyao Hu
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, 32611, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Kerri A O'Malley
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, 32611, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - Scott A Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, 32611, USA
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA
| | - James Wymer
- Department of Neurology, University of Florida, Gainesville, FL, 32611, USA
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
- Center for Exercise Science, University of Florida, Gainesville, FL, 32611, USA
| | - Salvatore T Scali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL, 32611, USA.
- Malcom Randall Veteran Affairs Medical Center, Gainesville, FL, USA.
- , Gainesville, USA.
| |
Collapse
|
32
|
Belghasem M, Yin W, Lotfollahzadeh S, Yang X, Meyer RD, Napoleon MA, Sellinger IE, Vazirani A, Metrikova E, Jose A, Zhebrun A, Whelan SA, Lee N, Rahimi N, Chitalia VC. Tryptophan Metabolites Target Transmembrane and Immunoglobulin Domain-Containing 1 Signaling to Augment Renal Tubular Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1501-1516. [PMID: 37676196 PMCID: PMC10548275 DOI: 10.1016/j.ajpath.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 09/08/2023]
Abstract
Chronic kidney disease (CKD) is characterized by the accumulation of uremic toxins and renal tubular damage. Tryptophan-derived uremic toxins [indoxyl sulfate (IS) and kynurenine (Kyn)] are well-characterized tubulotoxins. Emerging evidence suggests that transmembrane and immunoglobulin domain-containing 1 (TMIGD1) protects tubular cells and promotes survival. However, the direct molecular mechanism(s) underlying how these two opposing pathways crosstalk remains unknown. We posited that IS and Kyn mediate tubular toxicity through TMIGD1 and the loss of TMIGD1 augments tubular injury. Results from the current study showed that IS and Kyn suppressed TMIGD1 transcription in tubular cells in a dose-dependent manner. The wild-type CCAAT enhancer-binding protein β (C/EBPβ) enhanced, whereas a dominant-negative C/EBPβ suppressed, TMIGD1 promoter activity. IS down-regulated C/EBPβ in primary human renal tubular cells. The adenine-induced CKD, unilateral ureteric obstruction, and deoxycorticosterone acetate salt unilateral nephrectomy models showed reduced TMIGD1 expression in the renal tubules, which correlated with C/EBPβ expression. C/EBPβ levels negatively correlated with the IS and Kyn levels. Inactivation of TMIGD1 in mice significantly lowered acetylated tubulin, decreased tubular cell proliferation, caused severe tubular damage, and worsened renal function. Thus, the current results demonstrate that TMIGD1 protects renal tubular cells from renal injury in different models of CKD and uncovers a novel mechanism of tubulotoxicity of tryptophan-based uremic toxins.
Collapse
Affiliation(s)
- Mostafa Belghasem
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Wenqing Yin
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Saran Lotfollahzadeh
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Xiaosheng Yang
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Rosana D Meyer
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Marc A Napoleon
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Isaac E Sellinger
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Aniket Vazirani
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts; Department of Surgery, Boston University School of Medicine, Boston, Massachusetts
| | - Elena Metrikova
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Asha Jose
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Anna Zhebrun
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Stephen A Whelan
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts; Chemistry Instrumentation Core, School of Chemistry, Boston University, Boston, Massachusetts
| | - Norman Lee
- Department of Surgery, Boston University School of Medicine, Boston, Massachusetts; Chemistry Instrumentation Core, School of Chemistry, Boston University, Boston, Massachusetts
| | - Nader Rahimi
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Vipul C Chitalia
- Renal Section, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts; Veterans Affairs Boston Healthcare System, Boston, Massachusetts; Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts; Center of Cross-Organ Vascular Pathology, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
33
|
Zhou T, Wang S, Pan Y, Dong X, Wu L, Meng J, Zhang J, Pang Q, Zhang A. Irisin Ameliorated Skeletal Muscle Atrophy by Inhibiting Fatty Acid Oxidation and Pyroptosis Induced by Palmitic Acid in Chronic Kidney Disease. Kidney Blood Press Res 2023; 48:628-641. [PMID: 37717561 PMCID: PMC10614467 DOI: 10.1159/000533926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
INTRODUCTION Protein-energy waste (PEW) is a common complication in patients with chronic kidney disease (CKD), among which skeletal muscle atrophy is one of the most important clinical features of PEW. Pyroptosis is a type of proinflammatory, programmed cell death associated with skeletal muscle disease. Irisin, as a novel myokine, has attracted extensive attention for its protective role in the complications associated with CKD, but its role in muscle atrophy in CKD is unclear. METHODS Palmitic acid (PA)-induced muscular atrophy was evaluated by a reduction in C2C12 myotube diameter. Muscle atrophy model was established in male C57BL/6J mice treated with 0.2% adenine for 4 weeks and then fed a 45% high-fat diet. Blood urea nitrogen and creatinine levels, body and muscle weight, and muscle histology were assessed. The expression of carnitine palmitoyltransferase 1A (CPT1A) and pyroptosis-related protein was analysed by Western blots or immunohistochemistry. The release of IL-1β was detected by enzyme-linked immunosorbent assay. RESULTS In this study, we showed that PA-induced muscular atrophy manifested as a reduction in C2C12 myotube diameter. During this process, PA can also induce pyroptosis, as shown by the upregulation of NLRP3, cleaved caspase-1 and GSDMD-N expression and the increased IL-1β release and PI-positive cell rate. Inhibition of caspase-1 or NLRP3 attenuated PA-induced pyroptosis and myotube atrophy in C2C12 cells. Importantly, irisin treatment significantly ameliorated PA-induced skeletal muscle pyroptosis and atrophy. In terms of mechanism, PA upregulated CPT1A, a key enzyme of fatty acid oxidation (FAO), and irisin attenuated this effect, which was consistent with etomoxir (CPT1A inhibitor) treatment. Moreover, irisin improved skeletal muscle atrophy and pyroptosis in adenine-induced mice by regulating FAO. CONCLUSION Our study firstly verifies that pyroptosis is a novel mechanism of skeletal muscle atrophy in CKD. Irisin ameliorates skeletal muscle atrophy by inhibiting FAO and pyroptosis in CKD, and irisin may be developed as a potential therapeutic agent for the treatment of muscle wasting in CKD patients.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shiyuan Wang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yajing Pan
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xingtong Dong
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Leiyun Wu
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiali Meng
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jialing Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Pang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Aihua Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Kim K, Cort TA, Kunz EM, Moerschel J, Palzkill VR, Dong G, Moparthy CN, Anderson EM, Fazzone B, O'Malley KA, Robinson ST, Berceli SA, Ryan TE, Scali ST. N-acetylcysteine treatment attenuates hemodialysis access-related limb pathophysiology in mice with chronic kidney disease. Am J Physiol Renal Physiol 2023; 325:F271-F282. [PMID: 37439200 PMCID: PMC10511162 DOI: 10.1152/ajprenal.00083.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
The objective of the present study was to determine if treatment with N-acetylcysteine (NAC) could reduce access-related limb dysfunction in mice. Male and female C57BL6J mice were fed an adenine-supplemented diet to induce chronic kidney disease (CKD) prior to the surgical creation of an arteriovenous fistula (AVF) in the iliac vascular bundle. AVF creation significantly increased peak aortic and infrarenal vena cava blood flow velocities, but NAC treatment had no significant impact, indicating that fistula maturation was not impacted by NAC treatment. Hindlimb muscle and paw perfusion recovery and muscle capillary density in the AVF limb were unaffected by NAC treatment. However, NAC treatment significantly increased the mass of the tibialis anterior (P = 0.0120) and soleus (P = 0.0452) muscles post-AVF. There was a significant main effect of NAC treatment on hindlimb grip strength at postoperative day 12 (POD 12) (P = 0.0003), driven by significantly higher grip strength in both male (P = 0.0273) and female (P = 0.0031) mice treated with NAC. There was also a significant main effect of NAC treatment on the walking speed at postoperative day 12 (P = 0.0447), and post hoc testing revealed an improvement in NAC-treated male mice (P = 0.0091). The area of postsynaptic acetylcholine receptors (P = 0.0263) and motor endplates (P = 0.0240) was also increased by NAC treatment. Interestingly, hindlimb skeletal muscle mitochondrial oxidative phosphorylation trended higher in NAC-treated female mice but was not statistically significant (P = 0.0973). Muscle glutathione levels and redox status were not significantly impacted by NAC treatment in either sex. In summary, NAC treatment attenuated some aspects of neuromotor pathology in mice with chronic kidney disease following AVF creation.NEW & NOTEWORTHY Hemodialysis via autogenous arteriovenous fistula (AVF) is the preferred first-line modality for renal replacement therapy in patients with end-stage kidney disease. However, patients undergoing AVF surgery frequently experience a spectrum of hand disability symptoms postsurgery including weakness and neuromotor dysfunction. Unfortunately, no treatment is currently available to prevent or mitigate these symptoms. Here, we provide evidence that daily N-acetylcysteine supplementation can attenuate some aspects of limb neuromotor function in a preclinical mouse model of AVF.
Collapse
Affiliation(s)
- Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Tomas A Cort
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Eric M Kunz
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Jack Moerschel
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Victoria R Palzkill
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Gengfu Dong
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Chatick N Moparthy
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Erik M Anderson
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida, United States
- Malcom Randall Veteran Affairs Medical Center, University of Florida, Gainesville, Florida, United States
| | - Brian Fazzone
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida, United States
- Malcom Randall Veteran Affairs Medical Center, University of Florida, Gainesville, Florida, United States
| | - Kerri A O'Malley
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida, United States
- Malcom Randall Veteran Affairs Medical Center, University of Florida, Gainesville, Florida, United States
| | - Scott T Robinson
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida, United States
- Malcom Randall Veteran Affairs Medical Center, University of Florida, Gainesville, Florida, United States
| | - Scott A Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida, United States
- Malcom Randall Veteran Affairs Medical Center, University of Florida, Gainesville, Florida, United States
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
- Center for Exercise Science, University of Florida, Gainesville, Florida, United States
| | - Salvatore T Scali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida, United States
- Malcom Randall Veteran Affairs Medical Center, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
35
|
Palzkill VR, Tan J, Yang Q, Morcos J, Laitano O, Ryan TE. Activation of the Aryl Hydrocarbon Receptor in Endothelial Cells Impairs Ischemic Angiogenesis in Chronic Kidney Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550410. [PMID: 37546909 PMCID: PMC10401998 DOI: 10.1101/2023.07.24.550410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Rationale Chronic kidney disease (CKD) is a strong risk factor for peripheral artery disease (PAD) that is associated with worsened clinical outcomes. CKD leads to accumulation of tryptophan metabolites that associate with adverse limb events in PAD and are ligands of the aryl hydrocarbon receptor (AHR) which may regulate ischemic angiogenesis. Objectives To test if endothelial cell-specific deletion of the AHR (AHRecKO) alters ischemic angiogenesis and limb function in mice with CKD subjected to femoral artery ligation. Findings Male AHRecKO mice with CKD displayed better limb perfusion recovery and enhanced ischemic angiogenesis compared to wildtype mice with CKD. However, the improved limb perfusion did not result in better muscle performance. In contrast to male mice, deletion of the AHR in female mice with CKD had no impact on perfusion recovery or angiogenesis. Using primary endothelial cells from male and female mice, treatment with indoxyl sulfate uncovered sex-dependent differences in AHR activating potential and RNA sequencing revealed wide ranging sex-differences in angiogenic signaling pathways. Conclusion Endothelium-specific deletion of the AHR improved ischemic angiogenesis in male, but not female, mice with CKD. There are sex-dependent differences in Ahr activating potential within endothelial cells that are independent of sex hormones.
Collapse
Affiliation(s)
- Victoria R. Palzkill
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Jianna Tan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Qingping Yang
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Juliana Morcos
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Orlando Laitano
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
- Center for Exercise Science, The University of Florida, Gainesville, FL, USA
- The Myology Institute, The University of Florida, Gainesville, FL, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
- Center for Exercise Science, The University of Florida, Gainesville, FL, USA
- The Myology Institute, The University of Florida, Gainesville, FL, USA
| |
Collapse
|
36
|
Hung KC, Yao WC, Liu YL, Yang HJ, Liao MT, Chong K, Peng CH, Lu KC. The Potential Influence of Uremic Toxins on the Homeostasis of Bones and Muscles in Chronic Kidney Disease. Biomedicines 2023; 11:2076. [PMID: 37509715 PMCID: PMC10377042 DOI: 10.3390/biomedicines11072076] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Patients with chronic kidney disease (CKD) often experience a high accumulation of protein-bound uremic toxins (PBUTs), specifically indoxyl sulfate (IS) and p-cresyl sulfate (pCS). In the early stages of CKD, the buildup of PBUTs inhibits bone and muscle function. As CKD progresses, elevated PBUT levels further hinder bone turnover and exacerbate muscle wasting. In the late stage of CKD, hyperparathyroidism worsens PBUT-induced muscle damage but can improve low bone turnover. PBUTs play a significant role in reducing both the quantity and quality of bone by affecting osteoblast and osteoclast lineage. IS, in particular, interferes with osteoblastogenesis by activating aryl hydrocarbon receptor (AhR) signaling, which reduces the expression of Runx2 and impedes osteoblast differentiation. High PBUT levels can also reduce calcitriol production, increase the expression of Wnt antagonists (SOST, DKK1), and decrease klotho expression, all of which contribute to low bone turnover disorders. Furthermore, PBUT accumulation leads to continuous muscle protein breakdown through the excessive production of reactive oxygen species (ROS) and inflammatory cytokines. Interactions between muscles and bones, mediated by various factors released from individual tissues, play a crucial role in the mutual modulation of bone and muscle in CKD. Exercise and nutritional therapy have the potential to yield favorable outcomes. Understanding the underlying mechanisms of bone and muscle loss in CKD can aid in developing new therapies for musculoskeletal diseases, particularly those related to bone loss and muscle wasting.
Collapse
Affiliation(s)
- Kuo-Chin Hung
- Division of Nephrology, Department of Medicine, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
- Department of Pharmacy, Tajen University, Pingtung 907, Taiwan
| | - Wei-Cheng Yao
- Department of Anesthesiology, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
- Department of Medical Education and Clinical Research, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
| | - Yi-Lien Liu
- Department of Family Medicine, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
| | - Hung-Jen Yang
- Department of General Medicine, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital Hsinchu Branch, Hsinchu City 300, Taiwan
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Keong Chong
- Division of Endocrinology and Metabolism, Department of Medicine, Min-Sheng General Hospital, Taoyuan City 330, Taiwan
| | - Ching-Hsiu Peng
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
37
|
Balestrieri N, Palzkill V, Pass C, Tan J, Salyers ZR, Moparthy C, Murillo A, Kim K, Thome T, Yang Q, O’Malley KA, Berceli SA, Yue F, Scali ST, Ferreira LF, Ryan TE. Activation of the Aryl Hydrocarbon Receptor in Muscle Exacerbates Ischemic Pathology in Chronic Kidney Disease. Circ Res 2023; 133:158-176. [PMID: 37325935 PMCID: PMC10330629 DOI: 10.1161/circresaha.123.322875] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Chronic kidney disease (CKD) accelerates the development of atherosclerosis, decreases muscle function, and increases the risk of amputation or death in patients with peripheral artery disease (PAD). However, the mechanisms underlying this pathobiology are ill-defined. Recent work has indicated that tryptophan-derived uremic solutes, which are ligands for AHR (aryl hydrocarbon receptor), are associated with limb amputation in PAD. Herein, we examined the role of AHR activation in the myopathy of PAD and CKD. METHODS AHR-related gene expression was evaluated in skeletal muscle obtained from mice and human PAD patients with and without CKD. AHRmKO (skeletal muscle-specific AHR knockout) mice with and without CKD were subjected to femoral artery ligation, and a battery of assessments were performed to evaluate vascular, muscle, and mitochondrial health. Single-nuclei RNA sequencing was performed to explore intercellular communication. Expression of the constitutively active AHR was used to isolate the role of AHR in mice without CKD. RESULTS PAD patients and mice with CKD displayed significantly higher mRNA expression of classical AHR-dependent genes (Cyp1a1, Cyp1b1, and Aldh3a1) when compared with either muscle from the PAD condition with normal renal function (P<0.05 for all 3 genes) or nonischemic controls. AHRmKO significantly improved limb perfusion recovery and arteriogenesis, preserved vasculogenic paracrine signaling from myofibers, increased muscle mass and strength, as well as enhanced mitochondrial function in an experimental model of PAD/CKD. Moreover, viral-mediated skeletal muscle-specific expression of a constitutively active AHR in mice with normal kidney function exacerbated the ischemic myopathy evidenced by smaller muscle masses, reduced contractile function, histopathology, altered vasculogenic signaling, and lower mitochondrial respiratory function. CONCLUSIONS These findings establish AHR activation in muscle as a pivotal regulator of the ischemic limb pathology in CKD. Further, the totality of the results provides support for testing of clinical interventions that diminish AHR signaling in these conditions.
Collapse
Affiliation(s)
- Nicholas Balestrieri
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Victoria Palzkill
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Caroline Pass
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Jianna Tan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Zachary R. Salyers
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Chatick Moparthy
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Ania Murillo
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Trace Thome
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Qingping Yang
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
| | - Kerri A. O’Malley
- Department of Surgery, The University of Florida, Gainesville, FL, USA
| | - Scott A. Berceli
- Department of Surgery, The University of Florida, Gainesville, FL, USA
| | - Feng Yue
- Department of Animal Sciences, The University of Florida, Gainesville, FL, USA
- Myology Institute, The University of Florida, Gainesville, FL, USA
| | | | - Leonardo F. Ferreira
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
- Center for Exercise Science, The University of Florida, Gainesville, FL, USA
- Myology Institute, The University of Florida, Gainesville, FL, USA
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, The University of Florida, Gainesville, FL, USA
- Center for Exercise Science, The University of Florida, Gainesville, FL, USA
- Myology Institute, The University of Florida, Gainesville, FL, USA
| |
Collapse
|
38
|
Balestrieri N, Palzkill V, Pass C, Tan J, Salyers ZR, Moparthy C, Murillo A, Kim K, Thome T, Yang Q, O'Malley KA, Berceli SA, Yue F, Scali ST, Ferreira LF, Ryan TE. Chronic activation of the aryl hydrocarbon receptor in muscle exacerbates ischemic pathology in chronic kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.541060. [PMID: 37292677 PMCID: PMC10245783 DOI: 10.1101/2023.05.16.541060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chronic kidney disease (CKD) accelerates the development of atherosclerosis, decreases muscle function, and increases the risk of amputation or death in patients with peripheral artery disease (PAD). However, the cellular and physiological mechanisms underlying this pathobiology are ill-defined. Recent work has indicated that tryptophan-derived uremic toxins, many of which are ligands for the aryl hydrocarbon receptor (AHR), are associated with adverse limb outcomes in PAD. We hypothesized that chronic AHR activation, driven by the accumulation of tryptophan-derived uremic metabolites, may mediate the myopathic condition in the presence of CKD and PAD. Both PAD patients with CKD and mice with CKD subjected to femoral artery ligation (FAL) displayed significantly higher mRNA expression of classical AHR-dependent genes ( Cyp1a1 , Cyp1b1 , and Aldh3a1 ) when compared to either muscle from the PAD condition with normal renal function ( P <0.05 for all three genes) or non-ischemic controls. Skeletal-muscle-specific AHR deletion in mice (AHR mKO ) significantly improved limb muscle perfusion recovery and arteriogenesis, preserved vasculogenic paracrine signaling from myofibers, increased muscle mass and contractile function, as well as enhanced mitochondrial oxidative phosphorylation and respiratory capacity in an experimental model of PAD/CKD. Moreover, viral-mediated skeletal muscle-specific expression of a constitutively active AHR in mice with normal kidney function exacerbated the ischemic myopathy evidenced by smaller muscle masses, reduced contractile function, histopathology, altered vasculogenic signaling, and lower mitochondrial respiratory function. These findings establish chronic AHR activation in muscle as a pivotal regulator of the ischemic limb pathology in PAD. Further, the totality of the results provide support for testing of clinical interventions that diminish AHR signaling in these conditions.
Collapse
|
39
|
Diao HY, Zhu W, Liu J, Yin S, Wang JH, Li CL. Salvianolic Acid A Improves Rat Kidney Injury by Regulating MAPKs and TGF-β1/Smads Signaling Pathways. Molecules 2023; 28:3630. [PMID: 37110864 PMCID: PMC10144349 DOI: 10.3390/molecules28083630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Salvianolic acid A (SAA) is one of the major components in Salvia miltiorrhiza Bge., with various pharmacological activities, and is likely to be a promising agent for the treatment of kidney diseases. The purpose of this study was to explore the protective effect and mechanisms of SAA on kidney disease. In this study, the improvement effects of SAA (10, 20, 40 mg/kg, i.g.) on kidney injury rats were investigated by detecting the levels of KIM-1, NGAL in serum and UP in the urine of AKI model rats established with gentamicin, as well as the levels of SCr and UREA in serum and IL-6, IL-12, MDA and T-SOD in the kidneys of CKD model rats established with 5/6 nephrectomy. HE and Masson staining were used to observe the histopathological changes in the kidney. Network pharmacology and Western blotting were used to explore the mechanism of SAA in improving kidney injury. The results showed that SAA improved kidney function in kidney injury rats by reducing the kidney index and pathological injury by HE and Masson staining, reducing the levels of KIM-1, NGAL and UP in AKI rats and UREA, SCr and UP in CKD rats, as well as exerting anti-inflammatory and anti-oxidative stress effects by inhibiting the release of IL-6 and IL-12, reducing MDA and increasing T-SOD. Western blotting results showed that SAA significantly reduced the phosphorylation levels of ERK1/2, p38, JNK and smad2/3, and the expression of TLR-4 and smad7. In conclusion, SAA plays a significant role in improving kidney injury in rats and the mechanism may be achieved by regulating the MAPKs and TGF-β1/smads signaling pathways.
Collapse
Affiliation(s)
- Hai-Yang Diao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wei Zhu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jie Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sheng Yin
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin-Hui Wang
- Department of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Chun-Li Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
40
|
Kawao N, Kawaguchi M, Ohira T, Ehara H, Mizukami Y, Takafuji Y, Kaji H. Comment on "Renail failure suppresses muscle irisin expression, and irisin blunts cortical bone loss in mice" by Kawao et al. - the authors' reply. J Cachexia Sarcopenia Muscle 2023; 14:661-662. [PMID: 36451538 PMCID: PMC9891966 DOI: 10.1002/jcsm.13135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Ohnohigashi, Osakasayama, Osaka, Japan
| | - Miku Kawaguchi
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Ohnohigashi, Osakasayama, Osaka, Japan
| | - Takashi Ohira
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Ohnohigashi, Osakasayama, Osaka, Japan
| | - Hiroki Ehara
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Ohnohigashi, Osakasayama, Osaka, Japan
| | - Yuya Mizukami
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Ohnohigashi, Osakasayama, Osaka, Japan
| | - Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Ohnohigashi, Osakasayama, Osaka, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Ohnohigashi, Osakasayama, Osaka, Japan
| |
Collapse
|
41
|
King BMN, Mintz S, Lin X, Morley GE, Schlamp F, Khodadadi-Jamayran A, Fishman GI. Chronic Kidney Disease Induces Proarrhythmic Remodeling. Circ Arrhythm Electrophysiol 2023; 16:e011466. [PMID: 36595632 PMCID: PMC9852080 DOI: 10.1161/circep.122.011466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) are at increased risk of developing cardiac arrhythmogenesis and sudden cardiac death; however, the basis for this association is incompletely known. METHODS Here, using murine models of CKD, we examined interactions between kidney disease progression and structural, electrophysiological, and molecular cardiac remodeling. RESULTS C57BL/6 mice with adenine supplemented in their diet developed progressive CKD. Electrocardiographically, CKD mice developed significant QT prolongation and episodes of bradycardia. Optical mapping of isolated-perfused hearts using voltage-sensitive dyes revealed significant prolongation of action potential duration with no change in epicardial conduction velocity. Patch-clamp studies of isolated ventricular cardiomyocytes revealed changes in sodium and potassium currents consistent with action potential duration prolongation. Global transcriptional profiling identified dysregulated expression of cellular stress response proteins RBM3 (RNA-binding motif protein 3) and CIRP (cold-inducible RNA-binding protein) that may underlay the ion channel remodeling. Unexpectedly, we found that female sex is a protective factor in the progression of CKD and its cardiac sequelae. CONCLUSIONS Our data provide novel insights into the association between CKD and pathologic proarrhythmic cardiac remodeling. Cardiac cellular stress response pathways represent potential targets for pharmacologic intervention for CKD-induced heart rhythm disorders.
Collapse
Affiliation(s)
- Benjamin M N King
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY
| | - Shana Mintz
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY
| | - Xianming Lin
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY
| | - Gregory E Morley
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY
| | - Florencia Schlamp
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY
| | | | - Glenn I Fishman
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY
| |
Collapse
|
42
|
Serrano E, Whitaker-Menezes D, Lin Z, Roche M, Martinez Cantarin MP. Uremic Myopathy and Mitochondrial Dysfunction in Kidney Disease. Int J Mol Sci 2022; 23:ijms232113515. [PMID: 36362298 PMCID: PMC9653774 DOI: 10.3390/ijms232113515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Alterations in muscle structure and function in chronic kidney disease (CKD) patients are associated with poor outcomes. As key organelles in muscle cell homeostasis, mitochondrial metabolism has been studied in the context of muscle dysfunction in CKD. We conducted a study to determine the contribution of oxidative metabolism, glycolysis and fatty acid oxidation to the muscle metabolism in CKD. Mice developed CKD by exposure to adenine in the diet. Muscle of CKD mice showed significant weight loss compared to non-CKD mice, but only extensor digitorum longus (EDL) muscle showed a decreased number of fibers. There was no difference in the proportion of the various muscle fibers in CKD and non-CKD mice. Muscle of CKD mice had decreased expression of proteins associated with oxidative phosphorylation but increased expression of enzymes and transporters associated with glycolysis. In cell culture, myotubes exposed to uremic serum demonstrated decreased oxygen consumption rates (OCR) when glucose was used as substrate, conserved OCR when fatty acids were used and increased lactate production. In conclusion, mice with adenine-induced CKD developed sarcopenia and with increased glycolytic metabolism but without gross changes in fiber structure. In vitro models of uremic myopathy suggest fatty acid utilization is preserved compared to decreased glucose utilization.
Collapse
Affiliation(s)
- Eurico Serrano
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 33 S 9th Street, Suite 700, Philadelphia, PA 19107, USA
| | | | - Zhao Lin
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Megan Roche
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Maria Paula Martinez Cantarin
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 33 S 9th Street, Suite 700, Philadelphia, PA 19107, USA
- Correspondence:
| |
Collapse
|
43
|
Khattri RB, Kim K, Anderson EM, Fazzone B, Harland KC, Hu Q, Palzkill VR, Cort TA, O'Malley KA, Berceli SA, Scali ST, Ryan TE. Metabolomic profiling reveals muscle metabolic changes following iliac arteriovenous fistula creation in mice. Am J Physiol Renal Physiol 2022; 323:F577-F589. [PMID: 36007889 PMCID: PMC9602894 DOI: 10.1152/ajprenal.00156.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/31/2022] Open
Abstract
End-stage kidney disease, the most advanced stage of chronic kidney disease (CKD), requires renal replacement therapy or kidney transplant to sustain life. To accomplish durable dialysis access, the creation of an arteriovenous fistula (AVF) has emerged as a preferred approach. Unfortunately, a significant proportion of patients that receive an AVF experience some form of hand dysfunction; however, the mechanisms underlying these side effects are not understood. In this study, we used nuclear magnetic resonance spectroscopy to investigate the muscle metabolome following iliac AVF placement in mice with CKD. To induce CKD, C57BL6J mice were fed an adenine-supplemented diet for 3 wk and then randomized to receive AVF or sham surgery. Two weeks following surgery, the quadriceps muscles were rapidly dissected and snap frozen for metabolite extraction and subsequent nuclear magnetic resonance analysis. Principal component analysis demonstrated clear separation between groups, confirming a unique metabolome in mice that received an AVF. AVF creation resulted in reduced levels of creatine, ATP, and AMP as well as increased levels of IMP and several tricarboxylic acid cycle metabolites suggesting profound energetic stress. Pearson correlation and multiple linear regression analyses identified several metabolites that were strongly linked to measures of limb function (grip strength, gait speed, and mitochondrial respiration). In summary, AVF creation generates a unique metabolome profile in the distal skeletal muscle indicative of an energetic crisis and myosteatosis.NEW & NOTEWORTHY Creation of an arteriovenous fistula (AVF) is the preferred approach for dialysis access, but some patients experience hand dysfunction after AVF creation. In this study, we provide a detailed metabolomic analysis of the limb muscle in a murine model of AVF. AVF creation resulted in metabolite changes associated with an energetic crisis and myosteatosis that associated with limb function.
Collapse
Affiliation(s)
- Ram B Khattri
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Erik M Anderson
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida
- Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida
| | - Brian Fazzone
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida
- Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida
| | - Kenneth C Harland
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida
- Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida
| | - Qiongyao Hu
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida
- Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida
| | - Victoria R Palzkill
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Tomas A Cort
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Kerri A O'Malley
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida
- Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida
| | - Scott A Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida
- Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida
| | - Salvatore T Scali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, Florida
- Malcom Randall Veterans Affairs Medical Center, Gainesville, Florida
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
- Center for Exercise Science, University of Florida, Gainesville, Florida
| |
Collapse
|
44
|
Anderson EM, Kim K, Fazzone BJ, Harland KC, Hu Q, Salyers Z, Palzkill VR, Cort TA, Kunz EM, Martin AJ, Neal D, O’Malley KA, Berceli SA, Ryan TE, Scali ST. Influences of renal insufficiency and ischemia on mitochondrial bioenergetics and limb dysfunction in a novel murine iliac arteriovenous fistula model. JVS Vasc Sci 2022; 3:345-362. [PMID: 36439698 PMCID: PMC9692039 DOI: 10.1016/j.jvssci.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Objective Hand disability after hemodialysis access surgery has been common yet has remained poorly understood. Arteriovenous fistula (AVF) hemodynamic perturbations have not reliably correlated with the observed measures of hand function. Chronic kidney disease (CKD) is known to precipitate myopathy; however, the interactive influences of renal insufficiency and ischemia on limb outcomes have remained unknown. We hypothesized that CKD would contribute to access-related hand dysfunction via altered mitochondrial bioenergetics. Using a novel murine AVF model, we sought to characterize the skeletal muscle outcomes in mice with and without renal insufficiency. Methods Male, 8-week-old C57BL/6J mice were fed either an adenine-supplemented diet to induce renal insufficiency (CKD) or a casein-based control chow (CON). After 2 weeks of dietary intervention, the mice were randomly assigned to undergo iliac AVF surgery (n = 12/group) or a sham operation (n = 5/group). Measurements of aortoiliac hemodynamics, hindlimb perfusion, and hindlimb motor function were collected for 2 weeks. The mice were sacrificed on postoperative day 14 to assess skeletal muscle histopathologic features and mitochondrial function. To assess the late outcome trends, 20 additional mice had undergone CKD induction and sham (n = 5) or AVF (n = 15) surgery and followed up for 6 weeks postoperatively before sacrifice. Results The adenine-fed mice had had a significantly reduced glomerular filtration rate and elevated blood urea nitrogen, confirming the presence of CKD. The sham mice had a 100% survival rate and AVF cohorts an 82.1% survival rate with an 84.4% AVF patency rate. The aorta and inferior vena cava velocity measurements and the vessel diameter had increased after AVF creation (P < .0001 vs sham). The AVF groups had had a 78.4% deficit in paw perfusion compared with the contralateral limb after surgery (P < .0001 vs sham). Mitochondrial function was influenced by the presence of CKD. The respiratory capacity of the CKD-sham mice (8443 ± 1509 pmol/s/mg at maximal energy demand) was impaired compared with that of the CON-sham mice (12,870 ± 1203 pmol/s/mg; P = .0001). However, this difference was muted after AVF creation (CKD-AVF, 4478 ± 3685 pmol/s/mg; CON-AVF, 5407 ± 3582 pmol/s/mg; P = .198). The AVF cohorts had had impairments in grip strength (vs sham; P < .0001) and gait (vs sham; P = .012). However, the presence of CKD did not significantly alter the measurements of gross muscle function. The paw perfusion deficits had persisted 6 weeks postoperatively for the AVF mice (P < .0001 vs sham); however, the myopathy had resolved (grip strength, P = .092 vs sham; mitochondrial respiration, P = .108 vs sham). Conclusions CKD and AVF-induced distal limb ischemia both impaired skeletal muscle mitochondrial function. Renal insufficiency was associated with a baseline myopathy that was exacerbated by the acute ischemic injury resulting from AVF creation. However, ischemia was the primary driver of the observed phenotype of gross motor impairment. This model reliably reproduced the local and systemic influences that contribute to access-related hand dysfunction and provides a platform for further mechanistic and therapeutic investigation.
Collapse
Affiliation(s)
- Erik M. Anderson
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL
- Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL
| | - Kyoungrae Kim
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, FL
| | - Brian J. Fazzone
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL
- Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL
| | - Kenneth C. Harland
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL
- Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL
| | - Qiongyao Hu
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL
- Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL
| | - Zach Salyers
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, FL
| | - Victoria R. Palzkill
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, FL
| | - Tomas A. Cort
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, FL
| | - Eric M. Kunz
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, FL
| | - Andrew J. Martin
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL
- Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL
| | - Dan Neal
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL
| | - Kerri A. O’Malley
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL
- Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL
| | - Scott A. Berceli
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL
- Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, University of Florida, Gainesville, FL
| | - Salvatore T. Scali
- Division of Vascular Surgery and Endovascular Therapy, University of Florida, Gainesville, FL
- Malcolm Randall Veterans Affairs Medical Center, Gainesville, FL
| |
Collapse
|
45
|
Palzkill VR, Thome T, Murillo AL, Khattri RB, Ryan TE. Increasing plasma L-kynurenine impairs mitochondrial oxidative phosphorylation prior to the development of atrophy in murine skeletal muscle: A pilot study. Front Physiol 2022; 13:992413. [PMID: 36246103 PMCID: PMC9562971 DOI: 10.3389/fphys.2022.992413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
Introduction: L-Kynurenine (L-Kyn), a product of tryptophan (Trp) catabolism, has been linked with impairments in walking speed, muscle strength/size, and physical function. The purpose of this pilot study was to develop a dietary model that elevates plasma L-Kyn levels in mice and characterize its impact on muscle health and function. Methods: Four-month-old C57BL6J male mice were randomized to either a L-Kyn supplemented (150 mg/kg) or chow diet for 10 weeks. Plasma L-Kyn and Trp levels were measured via mass spectrometry. Primary outcomes included assessments of muscle weights, myofiber cross-sectional area (CSA), nerve-stimulated contractile performance, and mitochondrial oxidative phosphorylation (OXPHOS) and hydrogen peroxide (H2O2) production. Additional experiments in cultured myotubes explored the impact of enhancing L-Kyn metabolism. Results: Mice randomized to the L-Kyn diet displayed significant increases in plasma L-Kyn levels (p = 0.0028) and the L-Kyn/Trp ratio (p = 0.011) when compared to chow fed mice. Food intake and body weights were not different between groups. There were no detectable differences in muscle weights, myofiber CSA, or contractile performance. L-Kyn fed mice displayed reductions in mitochondrial OXPHOS (p = 0.05) and maximal ADP-stimulated respiration (p = 0.0498). In cultured myotubes, overexpression of peroxisome proliferator-activated receptor-gamma coactivator 1 alpha prevented atrophy and proteolysis, as well as deficits in mitochondrial respiration with L-Kyn treatment. Conclusion: Dietary feeding of L-Kyn increases plasma L-Kyn levels and the L-Kyn/Trp ratio in healthy male mice. Mitochondrial impairments in muscle were observed in mice with elevated L-Kyn without changes in muscle size or function. Enhancing L-Kyn metabolism can protect against these effects in culture myotubes.
Collapse
Affiliation(s)
- Victoria R. Palzkill
- Department of Applied Physiology and Kinesiology, Gainesville, FL, United States
| | - Trace Thome
- Department of Applied Physiology and Kinesiology, Gainesville, FL, United States
| | - Ania L. Murillo
- Department of Applied Physiology and Kinesiology, Gainesville, FL, United States
| | - Ram B. Khattri
- Department of Applied Physiology and Kinesiology, Gainesville, FL, United States
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, Gainesville, FL, United States
- Center for Exercise Science, Gainesville, FL, United States
- Myology Institute, University of Florida, Gainesville, FL, United States
- *Correspondence: Terence E. Ryan,
| |
Collapse
|
46
|
Bao JF, Hu PP, Li A. Comment on 'Renal failure suppresses muscle irisin expression, and irisin blunts cortical bone loss in mice' by Kawao et al. J Cachexia Sarcopenia Muscle 2022; 13:2259-2260. [PMID: 35667656 PMCID: PMC9397494 DOI: 10.1002/jcsm.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Jing-Fu Bao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Pan-Pan Hu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
47
|
McCrimmon A, Cahill KM, Kruger C, Mangelli ME, Bouffard E, Dobroski T, Michanczyk KN, Burke SJ, Noland RC, Ilatovskaya DV, Stadler K. Intact mitochondrial substrate efflux is essential for prevention of tubular injury in a sex-dependent manner. JCI Insight 2022; 7:e150696. [PMID: 35230975 PMCID: PMC9057616 DOI: 10.1172/jci.insight.150696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 02/23/2022] [Indexed: 11/17/2022] Open
Abstract
The importance of healthy mitochondrial function is implicated in the prevention of chronic kidney disease (CKD) and diabetic kidney disease (DKD). Sex differences also play important roles in DKD. Our previous studies revealed that mitochondrial substrate overload (modeled by homozygous deletion of carnitine acetyl-transferase [CrAT]) in proximal tubules causes renal injury. Here, we demonstrate the importance of intact mitochondrial substrate efflux by titrating the amount of overload through the generation of a heterozygous CrAT-KO model (PT-CrATHET mouse). Intriguingly, these animals developed renal injury similarly to their homozygous counterparts. Mitochondria were structurally and functionally impaired in both sexes. Transcriptomic analyses, however, revealed striking sex differences. Male mice shut down fatty acid oxidation and several other metabolism-related pathways. Female mice had a significantly weaker transcriptional response in metabolism, but activation of inflammatory pathways was prominent. Proximal tubular cells from PT-CrATHET mice of both sexes exhibited a shift toward a more glycolytic phenotype, but female mice were still able to oxidize fatty acid-based substrates. Our results demonstrate that maintaining mitochondrial substrate metabolism balance is crucial to satisfying proximal tubular energy demand. Our findings have potentially broad implications, as both the glycolytic shift and the sexual dimorphisms discovered herein offer potentially new modalities for future interventions for treating kidney disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Robert C. Noland
- Skeletal Muscle Metabolism Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Daria V. Ilatovskaya
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | | |
Collapse
|
48
|
Adam RJ, Williams AC, Kriegel AJ. Comparison of the Surgical Resection and Infarct 5/6 Nephrectomy Rat Models of Chronic Kidney Disease. Am J Physiol Renal Physiol 2022; 322:F639-F654. [PMID: 35379002 DOI: 10.1152/ajprenal.00398.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The 5/6 nephrectomy rat remnant kidney model is commonly employed to study chronic kidney disease (CKD). This model requires removal of one whole kidney and two-thirds of the other. The two most common ways of producing the remnant kidney are surgical resection of poles, known as the polectomy (Pol) model, or ligation of upper and lower renal arterial branches, resulting in pole infarction (Inf). These models have much in common, but also major phenotypic differences, and thus respectively model unique aspects of human CKD. The purpose of this review is to summarize phenotypic similarities and differences between these two models and their relation to human CKD, while emphasizing their vascular phenotype. In this article we review studies that have evaluated arterial blood pressure, the renin-angiotensin-aldosterone-system (RAAS), autoregulation, nitric oxide, single nephron physiology, angiogenic and anti-angiogenic factors, and capillary rarefaction in these two models. Phenotypic similarities: both models spontaneously develop hallmarks of human CKD including uremia, fibrosis, capillary rarefaction, and progressive renal function decline. They both undergo whole-organ hypertrophy, hyperfiltration of functional nephrons, reduced renal expression of angiogenic factor VEGF, increased renal expression of the anti-angiogenic thrombospondin-1, impaired renal autoregulation, and abnormal vascular nitric oxide physiology. Key phenotypic differences: the Inf model develops rapid-onset, moderate-to-severe systemic hypertension, and the Pol model early normotension followed by mild-to-moderate hypertension. The Inf rat has a markedly more active renin-angiotensin-aldosterone-system. Comparison of these two models facilitates understanding of how they can be utilized for studying CKD pathophysiology (e.g., RAAS dependent or independent pathology).
Collapse
Affiliation(s)
- Ryan J Adam
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Adaysha C Williams
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
49
|
Yan L. Folic acid-induced animal model of kidney disease. Animal Model Exp Med 2021; 4:329-342. [PMID: 34977484 PMCID: PMC8690981 DOI: 10.1002/ame2.12194] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023] Open
Abstract
The kidneys are a vital organ that is vulnerable to both acute kidney injury (AKI) and chronic kidney disease (CKD) which can be caused by numerous risk factors such as ischemia, sepsis, drug toxicity and drug overdose, exposure to heavy metals, and diabetes. In spite of the advances in our understanding of the pathogenesis of AKI and CKD as well AKI transition to CKD, there is still no available therapeutics that can be used to combat kidney disease effectively, highlighting an urgent need to further study the pathological mechanisms underlying AKI, CKD, and AKI progression to CKD. In this regard, animal models of kidney disease are indispensable. This article reviews a widely used animal model of kidney disease, which is induced by folic acid (FA). While a low dose of FA is nutritionally beneficial, a high dose of FA is very toxic to the kidneys. Following a brief description of the procedure for disease induction by FA, major mechanisms of FA-induced kidney injury are then reviewed, including oxidative stress, mitochondrial abnormalities such as impaired bioenergetics and mitophagy, ferroptosis, pyroptosis, and increased expression of fibroblast growth factor 23 (FGF23). Finally, application of this FA-induced kidney disease model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given that this animal model is simple to create and is reproducible, it should remain useful for both studying the pathological mechanisms of kidney disease and identifying therapeutic targets to fight kidney disease.
Collapse
Affiliation(s)
- Liang‐Jun Yan
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|
50
|
Thome T, Coleman MD, Ryan TE. Mitochondrial Bioenergetic and Proteomic Phenotyping Reveals Organ-Specific Consequences of Chronic Kidney Disease in Mice. Cells 2021; 10:3282. [PMID: 34943790 PMCID: PMC8699079 DOI: 10.3390/cells10123282] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic kidney disease (CKD) results in reduced kidney function, uremia, and accumulation of uremic metabolites. Mitochondrial alterations have been suggested to play a role in the disease pathology within various tissues. The purpose of this study was to perform a comprehensive bioenergetic and proteomic phenotyping of mitochondria from skeletal muscle (SkM), cardiac muscle (CM), and renal tissue from mice with CKD. The 5-month-old C57BL/6J male mice were fed a casein control or adenine-supplemented diet for 6 months. CKD was confirmed by blood urea nitrogen. A mitochondrial diagnostic workflow was employed to examine respiratory function, membrane and redox potential, reactive oxygen species production, and maximal activities of matrix dehydrogenases and electron transport system (ETS) protein complexes. Additionally, tandem-mass-tag-assisted proteomic analyses were performed to uncover possible differences in mitochondrial protein abundance. CKD negatively impacted mitochondrial energy transduction (all p < 0.05) in SkM, CM, and renal mitochondria, when assessed at physiologically relevant cellular energy demands (ΔGATP) and revealed the tissue-specific impact of CKD on mitochondrial health. Proteomic analyses indicated significant abundance changes in CM and renal mitochondria (115 and 164 proteins, p < 0.05), but no differences in SkM. Taken together, these findings reveal the tissue-specific impact of chronic renal insufficiency on mitochondrial health.
Collapse
Affiliation(s)
- Trace Thome
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (T.T.); (M.D.C.)
| | - Madeline D. Coleman
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (T.T.); (M.D.C.)
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA; (T.T.); (M.D.C.)
- Center for Exercise Science, University of Florida, Gainesville, FL 32611, USA
- Myology Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|