1
|
Xiao Q, Chen Y, Yu X, Nie W, Liu B, Ma C. Fluorescence detection of adenosine triphosphate based on dimeric G-quadruplex. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125267. [PMID: 39406029 DOI: 10.1016/j.saa.2024.125267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 11/28/2024]
Abstract
Adenosine triphosphate (ATP) is a major chemical energy carrier in organisms and is involved in numerous biological processes. ATP levels are associated with many diseases, cell viability, and food freshness. Thus, it has become an important biomarker. Many strategies have been used to detect ATP. However, the problems of difficult-to-prepare materials, too much dependence on instruments, and complicated processes restrict the application of these methods. In this study, we proposed a novel ATP detection sensor. The method is based on the fluorescence enhancement effect of dimeric G-quadruplex (Di-G4) on thioflavin T (ThT). First, the cleavage of Di-G4 by S1 nuclease decreases system fluorescence. However, it can be recovered by increases in ATP concentrations, which act as an inhibitor of S1 nuclease. Under the optimized conditions, a good linear relationship was observed between fluorescence intensity and ATP concentrations within the range of 0.5-120 µM. The detection limit was 245 nM. The method was utilized to measure the ATP content in apples and compared with ATP assay kits, resulting in satisfactory results.
Collapse
Affiliation(s)
- Qiangsheng Xiao
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yangfan Chen
- School of Life Sciences, Central South University, Changsha, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wanpin Nie
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Birong Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital of Central South University, Changsha, China.
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha, China.
| |
Collapse
|
2
|
Semenikhina M, Bohovyk R, Fedoriuk M, Stefanenko M, Klemens CA, Oates JC, Staruschenko A, Palygin O. Renin-angiotensin system-mediated nitric oxide signaling in podocytes. Am J Physiol Renal Physiol 2024; 327:F532-F542. [PMID: 39024356 PMCID: PMC11460333 DOI: 10.1152/ajprenal.00316.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Nitric oxide (NO) is widely recognized for its role in regulating renal function and blood pressure. However, the precise mechanisms by which NO affects renal epithelial cells remain understudied. Our previous research has shown that NO signaling in glomerular podocytes can be initiated by Angiotensin II (ANG II) but not by ATP. This study aims to elucidate the crucial interplay between the renin-angiotensin system (RAS) and NO production in podocytes. To conduct our research, we used cultured human podocytes and freshly isolated rat glomeruli. A variety of RAS peptides were used, alongside confocal microscopy, to detect NO production and NO/Ca2+ cross talk. Dynamic changes in the podocyte cytoskeleton, mediated by RAS-NO intracellular signaling, were observed using fluorescent labeling for F-actin and scanning probe microscopy. The experiments demonstrated that ANG II and ANG III generated high levels of NO by activating the angiotensin II type 2 receptor (AT2R). We did not detect functional MAS receptor presence in podocytes, and the moderate NO response to ANG 1-7 was also mediated through AT2R. Furthermore, NO production impacted intracellular Ca2+ signaling and correlated with an increase in podocyte volume and growth. Scanning probe experiments revealed that AT2R activation and the corresponding NO generation are responsible for the protrusion of podocyte lamellipodia. Taken together, our data indicate that AT2R activation enhances NO production in podocytes and subsequently mediates changes in Ca2+ signaling and podocyte volume dynamics. These mechanisms may play a significant role in both physiological and pathophysiological interactions between the RAS and podocytes.NEW & NOTEWORTHY The renin-angiotensin system plays a crucial role in the production of intracellular nitric oxide within podocytes. This mechanism operates through the activation of the angiotensin II type 2 receptor, leading to dynamic modifications in intracellular calcium levels and the actin filament network. This intricate process is vital for linking the activity of angiotensin receptors to podocyte function.
Collapse
Affiliation(s)
- Marharyta Semenikhina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Ruslan Bohovyk
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Mykhailo Fedoriuk
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Mariia Stefanenko
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Christine A Klemens
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, United States
| | - Jim C Oates
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, United States
- James A. Haley Veterans' Hospital, Tampa, Florida, United States
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
3
|
Kulthinee S, Tasanarong A, Franco M, Navar LG. Interaction of Angiotensin II AT1 Receptors with Purinergic P2X Receptors in Regulating Renal Afferent Arterioles in Angiotensin II-Dependent Hypertension. Int J Mol Sci 2023; 24:11413. [PMID: 37511174 PMCID: PMC10380633 DOI: 10.3390/ijms241411413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
In angiotensin II (Ang II)-dependent hypertension, Ang II activates angiotensin II type 1 receptors (AT1R) on renal vascular smooth muscle cells, leading to renal vasoconstriction with eventual glomerular and tubular injury and interstitial inflammation. While afferent arteriolar vasoconstriction is initiated by the increased intrarenal levels of Ang II activating AT1R, the progressive increases in arterial pressure stimulate the paracrine secretion of adenosine triphosphate (ATP), leading to the purinergic P2X receptor (P2XR)-mediated constriction of afferent arterioles. Thus, the afferent arteriolar tone is maintained by two powerful systems eliciting the co-existing activation of P2XR and AT1R. This raises the conundrum of how the AT1R and P2XR can both be responsible for most of the increased renal afferent vascular resistance existing in angiotensin-dependent hypertension. Its resolution implies that AT1R and P2XR share common receptor or post receptor signaling mechanisms which converge to maintain renal vasoconstriction in Ang II-dependent hypertension. In this review, we briefly discuss (1) the regulation of renal afferent arterioles in Ang II-dependent hypertension, (2) the interaction of AT1R and P2XR activation in regulating renal afferent arterioles in a setting of hypertension, (3) mechanisms regulating ATP release and effect of angiotensin II on ATP release, and (4) the possible intracellular pathways involved in AT1R and P2XR interactions. Emerging evidence supports the hypothesis that P2X1R, P2X7R, and AT1R actions converge at receptor or post-receptor signaling pathways but that P2XR exerts a dominant influence abrogating the actions of AT1R on renal afferent arterioles in Ang II-dependent hypertension. This finding raises clinical implications for the design of therapeutic interventions that will prevent the impairment of kidney function and subsequent tissue injury.
Collapse
Affiliation(s)
- Supaporn Kulthinee
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Adis Tasanarong
- Chulabhorn International College of Medicine, Thammasat University, Klong Luang 12120, Thailand
| | - Martha Franco
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico
| | - Luis Gabriel Navar
- Department of Physiology, Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Xu Y, Li P, Zhu Y, Tang Y, Chen H, Zhu X, Wu C, Zhang Y, Liu M, Yao S. A fluorescence nanoplatform for the determination of hydrogen peroxide and adenosine triphosphate via tuning of the peroxidase-like activity of CuO nanoparticle decorated UiO-66. Mikrochim Acta 2022; 189:119. [PMID: 35195786 DOI: 10.1007/s00604-022-05170-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/29/2021] [Indexed: 01/27/2023]
Abstract
A novel nanocomposite of CuO nanoparticle-modified Zr-MOF (CuO/UiO-66) was synthesized and developed as a fluorescence nanoplatform for H2O2 and adenosine triphosphate (ATP) via the "turn-on-off" mode in the presence of terephthalic acid (TA). The structure of CuO/UiO-66 was thoroughly characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and other techniques. The CuO/UiO-66 with enhanced peroxidase-like (POD) activity obtained due to the Zr4+ in UiO-66 is beneficial to the aggregation of CuO NPs on its surface. As a result, the strengthened fluorescence at 425 nm with the excitation of 300 nm was found due to the highly fluorescent species of TAOH. This is produced by the oxidation of TA by ·OH that came from the catalysis of H2O2 via the peroxidase mimic of CuO/UiO-66. Hence the modification of CuO NPs on porous UiO-66 can provide a friendly and sensitive physiological condition for H2O2 detection. However, upon addition of ATP, the fluorescence intensity of TAOH at 425 nm effectively declined owing to the formation of complexation of Zr4+-ATP and the interaction of CuO to ATP which hampers the catalytic reaction of CuO/UiO-66 to H2O2. The specific interaction induced "inhibition of the peroxide-like activity" endows the sensitive and selective recognition of ATP. The detection limits were 16.87 ± 0.2 nM and 0.82 ± 0.1 nM, and linear analytical ranges were 0.02-100 μM and 0.002-30 μM for H2O2 and ATP, respectively. The novel strategy was successfully applied to H2O2 and ATP determination in serum samples with recoveries of 97.2-103.8% for H2O2 and 97.6-101.7% for ATP, enriching the avenue to design functional MOFs and providing new avenue of multicomponent bioanalysis.
Collapse
Affiliation(s)
- Yaxin Xu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Peipei Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Yu Zhu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Ying Tang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Haoyu Chen
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Cuiyan Wu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Meiling Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China.
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, People's Republic of China
| |
Collapse
|
5
|
Szrejder M, Rogacka D, Piwkowska A. Purinergic P2 receptors: Involvement and therapeutic implications in diabetes-related glomerular injury. Arch Biochem Biophys 2021; 714:109078. [PMID: 34742673 DOI: 10.1016/j.abb.2021.109078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/15/2021] [Accepted: 10/30/2021] [Indexed: 02/08/2023]
Abstract
The purinergic activation of P2 receptors initiates a powerful and rapid signaling cascade that contributes to the regulation of an array of physiological and pathophysiological processes in many organs, including the kidney. P2 receptors are broadly distributed in both epithelial and vascular renal cells. Disturbances of purinergic signaling can lead to impairments in renal function. A growing body of evidence indicates changes in P2 receptor expression and nucleotide metabolism in chronic renal injury and inflammatory diseases. Increasing attention has focused on purinergic P2X7 receptors, which are not normally expressed in healthy kidney tissue but are highly expressed at sites of tissue damage and inflammation. Under hyperglycemic conditions, several mechanisms that are linked to purinergic signaling and involve nucleotide release and degradation are disrupted, resulting in the accumulation of adenosine 5'-triphosphate in the bloodstream in diabetes. Dysfunction of the purinergic system might be associated with serious vascular complications in diabetes, including diabetic nephropathy. This review summarizes our current knowledge of the role of P2 receptors in diabetes-related glomerular injury and its implications for new therapeutics for diabetic nephropathy.
Collapse
Affiliation(s)
- Maria Szrejder
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland.
| | - Dorota Rogacka
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; Department of Molecular Biotechnology, University of Gdańsk, Faculty of Chemistry, Gdańsk, Poland
| | - Agnieszka Piwkowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; Department of Molecular Biotechnology, University of Gdańsk, Faculty of Chemistry, Gdańsk, Poland
| |
Collapse
|
6
|
Abdalla A, Jones W, Flint MS, Patel BA. Bicomponent composite electrochemical sensors for sustained monitoring of hydrogen peroxide in breast cancer cells. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Sudarikova A, Vasileva V, Sultanova R, Ilatovskaya D. Recent advances in understanding ion transport mechanisms in polycystic kidney disease. Clin Sci (Lond) 2021; 135:2521-2540. [PMID: 34751394 PMCID: PMC8589009 DOI: 10.1042/cs20210370] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022]
Abstract
This review focuses on the most recent advances in the understanding of the electrolyte transport-related mechanisms important for the development of severe inherited renal disorders, autosomal dominant (AD) and recessive (AR) forms of polycystic kidney disease (PKD). We provide here a basic overview of the origins and clinical aspects of ARPKD and ADPKD and discuss the implications of electrolyte transport in cystogenesis. Special attention is devoted to intracellular calcium handling by the cystic cells, with a focus on polycystins and fibrocystin, as well as other calcium level regulators, such as transient receptor potential vanilloid type 4 (TRPV4) channels, ciliary machinery, and purinergic receptor remodeling. Sodium transport is reviewed with a focus on the epithelial sodium channel (ENaC), and the role of chloride-dependent fluid secretion in cystic fluid accumulation is discussed. In addition, we highlight the emerging promising concepts in the field, such as potassium transport, and suggest some new avenues for research related to electrolyte handling.
Collapse
Affiliation(s)
| | | | - Regina F. Sultanova
- Saint-Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| | | |
Collapse
|
8
|
Palygin O, Klemens CA, Isaeva E, Levchenko V, Spires DR, Dissanayake LV, Nikolaienko O, Ilatovskaya DV, Staruschenko A. Characterization of purinergic receptor 2 signaling in podocytes from diabetic kidneys. iScience 2021; 24:102528. [PMID: 34142040 PMCID: PMC8188476 DOI: 10.1016/j.isci.2021.102528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/12/2021] [Accepted: 05/08/2021] [Indexed: 02/08/2023] Open
Abstract
Growing evidence suggests that renal purinergic signaling undergoes significant remodeling during pathophysiological conditions such as diabetes. This study examined the renal P2 receptor profile and ATP-mediated calcium response from podocytes in glomeruli from kidneys with type 1 or type 2 diabetic kidney disease (DKD), using type 2 diabetic nephropathy (T2DN) rats and streptozotocin-injected Dahl salt-sensitive (type 1 diabetes) rats. A dramatic increase in the ATP-mediated intracellular calcium flux in podocytes was observed in both models. Pharmacological inhibition established that P2X4 and P2X7 are the major receptors contributing to the augmented ATP-mediated intracellular calcium signaling in diabetic podocytes. The transition in purinergic receptor composition from metabotropic to ionotropic may disrupt intracellular calcium homeostasis in podocytes resulting in their dysfunction and potentially further aggravating DKD progression. Diabetic podocytes have sustained intracellular Ca2+ signaling in response to ATP Podocyte purinergic receptor signaling is predominantly ionotropic in diabetes Both type 1 and 2 diabetic podocytes have similar purinergic receptor remodeling
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christine A Klemens
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Elena Isaeva
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Denisha R Spires
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Lashodya V Dissanayake
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Oksana Nikolaienko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.,Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| |
Collapse
|
9
|
Peteu SF, Russell SA, Galligan JJ, Swain GM. An Electrochemical ATP Biosensor with Enzymes Entrapped within a PEDOT Film. ELECTROANAL 2020. [DOI: 10.1002/elan.202060397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Serban F. Peteu
- Department of Chemistry Michigan State University Department of Chemistry 578 S. Shaw Lane East Lansing MI 48824-1322 USA
| | - Skye A. Russell
- Department of Chemistry Michigan State University Department of Chemistry 578 S. Shaw Lane East Lansing MI 48824-1322 USA
| | - James J. Galligan
- Department of Pharmacology and Toxicology Michigan State University B440 Life Sciences Building East Lansing MI 48824-1317 USA
- Neuroscience Program, Giltner Hall 293 Farm Lane, Room 108 East Lansing MI 48824-1101 USA
| | - Greg M. Swain
- Department of Chemistry Michigan State University Department of Chemistry 578 S. Shaw Lane East Lansing MI 48824-1322 USA
- Neuroscience Program, Giltner Hall 293 Farm Lane, Room 108 East Lansing MI 48824-1101 USA
| |
Collapse
|
10
|
Pavlov TS, Palygin O, Isaeva E, Levchenko V, Khedr S, Blass G, Ilatovskaya DV, Cowley AW, Staruschenko A. NOX4-dependent regulation of ENaC in hypertension and diabetic kidney disease. FASEB J 2020; 34:13396-13408. [PMID: 32799394 DOI: 10.1096/fj.202000966rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
NADPH oxidase 4 (NOX4) is the most abundant NOX isoform in the kidney; however, its importance for renal function has only recently emerged. The NOX4-dependent pathway regulates many factors essential for proper sodium handling in the distal nephron. However, the functional significance of this pathway in the control of sodium reabsorption during the initiation of chronic kidney disease is not established. The goal of this study was to test Nox4-dependent ENaC regulation in two models: SS hypertension and STZ-induced type 1 diabetes. First, we showed that genetic ablation of Nox4 in Dahl salt-sensitive (SS) rat attenuated a high-salt (HS)-induced increase in epithelial Na+ channel (ENaC) activity in the cortical collecting duct. We also found that H2 O2 upregulated ENaC activity, and H2 O2 production was reduced in both the renal cortex and medulla in SSNox4-/- rats fed an HS diet. Second, in the streptozotocin model of hyperglycemia-induced renal injury ENaC activity in hyperglycemic animals was elevated in SS but not SSNox4-/- rats. NaCl cotransporter (NCC) expression was increased compared to healthy controls, while expression values between SS and SSNox4-/- groups were similar. These data emphasize a critical contribution of the NOX4-mediated pathway in maladaptive upregulation of ENaC-mediated sodium reabsorption in the distal nephron in the conditions of HS- and hyperglycemia-induced kidney injury.
Collapse
Affiliation(s)
- Tengis S Pavlov
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Division of Hypertension and Vascular Research, Henry Ford Health System, Detroit, MI, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Elena Isaeva
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Sherif Khedr
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Gregory Blass
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki VA Medical Center, Milwaukee, WI, USA
| |
Collapse
|
11
|
Mariager CØ, Hansen ESS, Bech SK, Munk A, Kjaergaard U, Lyhne MD, Søberg K, Nielsen PF, Ringgaard S, Laustsen C. Graft assessment of the ex vivo perfused porcine kidney using hyperpolarized [1- 13 C]pyruvate. Magn Reson Med 2020; 84:2645-2655. [PMID: 32557782 DOI: 10.1002/mrm.28363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/07/2020] [Accepted: 05/21/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE Normothermic perfusion is an emerging strategy for donor organ preservation and therapy, incited by the high worldwide demand for organs for transplantation. Hyperpolarized MRI and MRS using [1-13 C]pyruvate and other 13 C-labeled molecules pose a novel way to acquire highly detailed information about metabolism and function in a noninvasive manner. This study investigates the use of this methodology as a means to study and monitor the state of ex vivo perfused porcine kidneys, in the context of kidney graft preservation research. METHODS Kidneys from four 40-kg Danish domestic pigs were perfused ex vivo with whole blood under normothermic conditions, using an MR-compatible perfusion system. Kidneys were investigated using 1 H MRI as well as hyperpolarized [1-13 C]pyruvate MRI and MRS. Using the acquired anatomical, functional and metabolic data, the state of the ex vivo perfused porcine kidney could be quantified. RESULTS Four kidneys were successfully perfused for 120 minutes and verified using a DCE perfusion experiment. Renal metabolism was examined using hyperpolarized [1-13 C]pyruvate MRI and MRS, and displayed an apparent reduction in pyruvate turnover compared with the usual case in vivo. Perfusion and blood gas parameters were in the normal ex vivo range. CONCLUSION This study demonstrates the ability to monitor ex vivo graft metabolism and function in a large animal model, resembling human renal physiology. The ability of hyperpolarized MRI and MRS to directly compare the metabolic state of an organ in vivo and ex vivo, in combination with the simple MR implementation of normothermic perfusion, renders this methodology a powerful future tool for graft preservation research.
Collapse
Affiliation(s)
| | | | - Sabrina Kahina Bech
- Department of Clinical Medicine, The MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Anders Munk
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Uffe Kjaergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mads Dam Lyhne
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karsten Søberg
- Department of Anesthesia and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Fast Nielsen
- Department of Anesthesia and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Ringgaard
- Department of Clinical Medicine, The MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- Department of Clinical Medicine, The MR Research Centre, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Drummond GR, Vinh A, Guzik TJ, Sobey CG. Immune mechanisms of hypertension. Nat Rev Immunol 2020; 19:517-532. [PMID: 30992524 DOI: 10.1038/s41577-019-0160-5] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypertension affects 30% of adults and is the leading risk factor for heart attack and stroke. Traditionally, hypertension has been regarded as a disorder of two systems that are involved in the regulation of salt-water balance and cardiovascular function: the renin-angiotensin-aldosterone system (RAAS) and the sympathetic nervous system (SNS). However, current treatments that aim to limit the influence of the RAAS or SNS on blood pressure fail in ~40% of cases, which suggests that other mechanisms must be involved. This Review summarizes the clinical and experimental evidence supporting a contribution of immune mechanisms to the development of hypertension. In this context, we highlight the immune cell subsets that are postulated to either promote or protect against hypertension through modulation of cardiac output and/or peripheral vascular resistance. We conclude with an appraisal of knowledge gaps still to be addressed before immunomodulatory therapies might be applied to at least a subset of patients with hypertension.
Collapse
Affiliation(s)
- Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia.
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Tomasz J Guzik
- Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland.,BHF Centre of Research Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Fontes MAP, Marzano LAS, Silva CC, Silva ACSE. Renal sympathetic denervation for resistant hypertension: where do we stand after more than a decade. J Bras Nefrol 2020; 42:67-76. [PMID: 31939995 PMCID: PMC7213935 DOI: 10.1590/2175-8239-jbn-2018-0213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 08/18/2019] [Indexed: 01/11/2023] Open
Abstract
Despite the current availability of safe and efficient drugs for treating hypertension, a substantial number of patients are drug-resistant hypertensives. Aiming this condition, a relatively new approach named catheter-based renal denervation was developed. We have now a clinically relevant time window to review the efficacy of renal denervation for treating this form of hypertension. This short review addresses the physiological contribution of renal sympathetic nerves for blood pressure control and discusses the pros and cons of renal denervation procedure for the treatment of resistant hypertension.
Collapse
Affiliation(s)
| | | | - Carina Cunha Silva
- Universidade Federal de Minas Gerais, Departamento de Fisiologia e Biofísica, Belo Horizonte, MG, Brasil
| | - Ana Cristina Simões e Silva
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Departamento de Pediatria, Belo Horizonte, Brasil
| |
Collapse
|
14
|
Vallon V, Unwin R, Inscho EW, Leipziger J, Kishore BK. Extracellular Nucleotides and P2 Receptors in Renal Function. Physiol Rev 2019; 100:211-269. [PMID: 31437091 DOI: 10.1152/physrev.00038.2018] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The understanding of the nucleotide/P2 receptor system in the regulation of renal hemodynamics and transport function has grown exponentially over the last 20 yr. This review attempts to integrate the available data while also identifying areas of missing information. First, the determinants of nucleotide concentrations in the interstitial and tubular fluids of the kidney are described, including mechanisms of cellular release of nucleotides and their extracellular breakdown. Then the renal cell membrane expression of P2X and P2Y receptors is discussed in the context of their effects on renal vascular and tubular functions. Attention is paid to effects on the cortical vasculature and intraglomerular structures, autoregulation of renal blood flow, tubuloglomerular feedback, and the control of medullary blood flow. The role of the nucleotide/P2 receptor system in the autocrine/paracrine regulation of sodium and fluid transport in the tubular and collecting duct system is outlined together with its role in integrative sodium and fluid homeostasis and blood pressure control. The final section summarizes the rapidly growing evidence indicating a prominent role of the extracellular nucleotide/P2 receptor system in the pathophysiology of the kidney and aims to identify potential therapeutic opportunities, including hypertension, lithium-induced nephropathy, polycystic kidney disease, and kidney inflammation. We are only beginning to unravel the distinct physiological and pathophysiological influences of the extracellular nucleotide/P2 receptor system and the associated therapeutic perspectives.
Collapse
Affiliation(s)
- Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Robert Unwin
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Edward W Inscho
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Jens Leipziger
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Bellamkonda K Kishore
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| |
Collapse
|
15
|
Characterization of purinergic receptor expression in ARPKD cystic epithelia. Purinergic Signal 2018; 14:485-497. [PMID: 30417216 DOI: 10.1007/s11302-018-9632-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
Polycystic kidney diseases (PKDs) are a group of inherited nephropathies marked by formation of fluid-filled cysts along the nephron. Growing evidence suggests that in the kidney formation of cysts and alteration of cystic electrolyte transport are associated with purinergic signaling. PCK/CrljCrl-Pkhd1pck/CRL (PCK) rat, an established model of autosomal recessive polycystic kidney disease (ARPKD), was used here to test this hypothesis. Cystic fluid of PCK rats and their cortical tissues exhibited significantly higher levels of ATP compared to Sprague Dawley rat kidney cortical interstitium as assessed by highly sensitive ATP enzymatic biosensors. Confocal calcium imaging of the freshly isolated cystic monolayers revealed a stronger response to ATP in a higher range of concentrations (above 100 μM). The removal of extracellular calcium results in the profound reduction of the ATP evoked transient, which suggests calcium entry into the cyst-lining cells is occurring via the extracellular (ionotropic) P2X channels. Further use of pharmacological agents (α,β-methylene-ATP, 5-BDBD, NF449, isoPPADS, AZ10606120) and immunofluorescent labeling of isolated cystic epithelia allowed us to narrow down potential candidate receptors. In conclusion, our ex vivo study provides direct evidence that the profile of P2 receptors is shifted in ARPKD cystic epithelia in an age-related manner towards prevalence of P2X4 and/or P2X7 receptors, which opens new avenues for the treatment of this disease.
Collapse
|
16
|
Ilatovskaya DV, Blass G, Palygin O, Levchenko V, Pavlov TS, Grzybowski MN, Winsor K, Shuyskiy LS, Geurts AM, Cowley AW, Birnbaumer L, Staruschenko A. A NOX4/TRPC6 Pathway in Podocyte Calcium Regulation and Renal Damage in Diabetic Kidney Disease. J Am Soc Nephrol 2018; 29:1917-1927. [PMID: 29793963 DOI: 10.1681/asn.2018030280] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
Background Loss of glomerular podocytes is an indicator of diabetic kidney disease (DKD). The damage to these cells has been attributed in part to elevated intrarenal oxidative stress. The primary source of the renal reactive oxygen species, particularly H2O2, is NADPH oxidase 4 (NOX4). We hypothesized that NOX4-derived H2O2 contributes to podocyte damage in DKD via elevation of podocyte calcium.Methods We used Dahl salt-sensitive (SS) rats with a null mutation for the Nox4 gene (SSNox4-/-) and mice with knockout of the nonselective calcium channel TRPC6 or double knockout of TRPC5 and TRPC6. We performed whole animal studies and used biosensor measurements, electron microscopy, electrophysiology, and live calcium imaging experiments to evaluate the contribution of this pathway to the physiology of the podocytes in freshly isolated glomeruli.Results Upon induction of type 1 diabetes with streptozotocin, SSNox4-/- rats exhibited significantly lower basal intracellular Ca2+ levels in podocytes and less DKD-associated damage than SS rats did. Furthermore, the angiotensin II-elicited calcium flux was blunted in glomeruli isolated from diabetic SSNox4-/- rats compared with that in glomeruli from diabetic SS rats. H2O2 stimulated TRPC-dependent calcium influx in podocytes from wild-type mice, but this influx was blunted in podocytes from Trpc6-knockout mice and, in a similar manner, in podocytes from Trpc5/6 double-knockout mice. Finally, electron microscopy revealed that podocytes of glomeruli isolated from Trpc6-knockout or Trpc5/6 double-knockout mice were protected from damage induced by H2O2 to the same extent.Conclusions These data reveal a novel signaling mechanism involving NOX4 and TRPC6 in podocytes that could be pharmacologically targeted to abate the development of DKD.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gregory Blass
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Tengis S Pavlov
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Kristen Winsor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Leonid S Shuyskiy
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina; and.,Institute of Biomedical Research, School of Medical Sciences, Catholic University of Argentina, Buenos Aires, Argentina
| | | |
Collapse
|
17
|
Adams SD, Kouzani AZ, Tye SJ, Bennet KE, Berk M. An investigation into closed-loop treatment of neurological disorders based on sensing mitochondrial dysfunction. J Neuroeng Rehabil 2018; 15:8. [PMID: 29439744 PMCID: PMC5811973 DOI: 10.1186/s12984-018-0349-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/05/2018] [Indexed: 12/14/2022] Open
Abstract
Dynamic feedback based closed-loop medical devices offer a number of advantages for treatment of heterogeneous neurological conditions. Closed-loop devices integrate a level of neurobiological feedback, which allows for real-time adjustments to be made with the overarching aim of improving treatment efficacy and minimizing risks for adverse events. One target which has not been extensively explored as a potential feedback component in closed-loop therapies is mitochondrial function. Several neurodegenerative and psychiatric disorders including Parkinson's disease, Major Depressive disorder and Bipolar disorder have been linked to perturbations in the mitochondrial respiratory chain. This paper investigates the potential to monitor this mitochondrial function as a method of feedback for closed-loop neuromodulation treatments. A generic model of the closed-loop treatment is developed to describe the high-level functions of any system designed to control neural function based on mitochondrial response to stimulation, simplifying comparison and future meta-analysis. This model has four key functional components including: a sensor, signal manipulator, controller and effector. Each of these components are described and several potential technologies for each are investigated. While some of these candidate technologies are quite mature, there are still technological gaps remaining. The field of closed-loop medical devices is rapidly evolving, and whilst there is a lot of interest in this area, widespread adoption has not yet been achieved due to several remaining technological hurdles. However, the significant therapeutic benefits offered by this technology mean that this will be an active area for research for years to come.
Collapse
Affiliation(s)
- Scott D. Adams
- School of Engineering, Deakin University, Geelong, VIC 3216 Australia
| | - Abbas Z. Kouzani
- School of Engineering, Deakin University, Geelong, VIC 3216 Australia
| | - Susannah J. Tye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905 USA
| | - Kevin E. Bennet
- Division of Engineering, Mayo Clinic, Rochester, MN 55905 USA
| | - Michael Berk
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216 Australia
| |
Collapse
|
18
|
Palygin O, Evans LC, Cowley AW, Staruschenko A. Acute In Vivo Analysis of ATP Release in Rat Kidneys in Response to Changes of Renal Perfusion Pressure. J Am Heart Assoc 2017; 6:JAHA.117.006658. [PMID: 28899893 PMCID: PMC5634305 DOI: 10.1161/jaha.117.006658] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background ATP and derivatives are recognized to be essential agents of paracrine signaling. It was reported that ATP is an important regulator of the pressure‐natriuresis mechanism. Information on the sources of ATP, the mechanisms of its release, and its relationship to blood pressure has been limited by the inability to precisely measure dynamic changes in intrarenal ATP levels in vivo. Methods and Results Newly developed amperometric biosensors were used to assess alterations in cortical ATP concentrations in response to changes in renal perfusion pressure (RPP) in anesthetized Sprague–Dawley rats. RPP was monitored via the carotid artery; ligations around the celiac/superior mesenteric arteries and the distal aorta were used for manipulation of RPP. Biosensors were acutely implanted in the renal cortex for assessment of ATP. Rise of RPP activated diuresis/natriuresis processes, which were associated with elevated ATP. The increases in cortical ATP concentrations were in the physiological range (1–3 μmol/L) and would be capable of activating most of the purinergic receptors. There was a linear correlation with every 1‐mm Hg rise in RPP resulting in a 70‐nmol/L increase in ATP. Furthermore, this elevation of RPP was accompanied by a 2.5‐fold increase in urinary H2O2. Conclusions Changes in RPP directly correlate with renal sodium excretion and the elevation of cortical ATP. Given the known effects of ATP on regulation of glomerular filtration and tubular transport, the data support a role for ATP release in the rapid natriuretic responses to acute increases in RPP.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Louise C Evans
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI
| | | |
Collapse
|
19
|
Frame AA, Wainford RD. Renal sodium handling and sodium sensitivity. Kidney Res Clin Pract 2017; 36:117-131. [PMID: 28680820 PMCID: PMC5491159 DOI: 10.23876/j.krcp.2017.36.2.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 12/27/2016] [Indexed: 01/11/2023] Open
Abstract
The pathophysiology of hypertension, which affects over 1 billion individuals worldwide, involves the integration of the actions of multiple organ systems, including the kidney. The kidney, which governs sodium excretion via several mechanisms including pressure natriuresis and the actions of renal sodium transporters, is central to long term blood pressure regulation and the salt sensitivity of blood pressure. The impact of renal sodium handling and the salt sensitivity of blood pressure in health and hypertension is a critical public health issue owing to the excess of dietary salt consumed globally and the significant percentage of the global population exhibiting salt sensitivity. This review highlights recent advances that have provided new insight into the renal handling of sodium and the salt sensitivity of blood pressure, with a focus on genetic, inflammatory, dietary, sympathetic nervous system and oxidative stress mechanisms that influence renal sodium excretion. Increased understanding of the multiple integrated mechanisms that regulate the renal handling of sodium and the salt sensitivity of blood pressure has the potential to identify novel therapeutic targets and refine dietary guidelines designed to treat and prevent hypertension.
Collapse
Affiliation(s)
- Alissa A Frame
- Department of Pharmacology & Experimental Therapeutics and The Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Richard D Wainford
- Department of Pharmacology & Experimental Therapeutics and The Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
20
|
Ilatovskaya DV, Palygin O, Staruschenko A. Functional and therapeutic importance of purinergic signaling in polycystic kidney disease. Am J Physiol Renal Physiol 2016; 311:F1135-F1139. [PMID: 27654892 DOI: 10.1152/ajprenal.00406.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/20/2016] [Indexed: 12/12/2022] Open
Abstract
Polycystic kidney diseases (PKD) are a group of inherited nephropathies marked with the formation of fluid-filled cysts along the nephron. This renal disorder affects millions of people worldwide, but current treatment strategies are unfortunately limited to supportive therapy, dietary restrictions, and, eventually, renal transplantation. Recent advances in PKD management are aimed at targeting exaggerated cell proliferation and dedifferentiation to interfere with cyst growth. However, not nearly enough is known about the ion transport properties of the cystic cells, or specific signaling pathways modulating channels and transporters in this condition. There is growing evidence that abnormally elevated concentrations of adenosine triphosphate (ATP) in PKD may contribute to cyst enlargement; change in the profile of purinergic receptors may also result in promotion of cystogenesis. The current mini-review is focused on the role of ATP and associated signaling affecting ion transport properties of the renal cystic epithelia.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
21
|
Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels. Sci Rep 2015. [DOI: 10.1038/srep17637 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
AbstractInjury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation.
Collapse
|
22
|
Ilatovskaya DV, Levchenko V, Lowing A, Shuyskiy LS, Palygin O, Staruschenko A. Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels. Sci Rep 2015. [DOI: 10.1038/srep17637 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
AbstractInjury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation.
Collapse
|
23
|
Ilatovskaya DV, Levchenko V, Lowing A, Shuyskiy LS, Palygin O, Staruschenko A. Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels. Sci Rep 2015. [DOI: 10.1038/srep17637 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
AbstractInjury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation.
Collapse
|
24
|
Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels. Sci Rep 2015. [DOI: 10.1038/srep17637 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
AbstractInjury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation.
Collapse
|
25
|
Ilatovskaya DV, Levchenko V, Lowing A, Shuyskiy LS, Palygin O, Staruschenko A. Podocyte injury in diabetic nephropathy: implications of angiotensin II-dependent activation of TRPC channels. Sci Rep 2015; 5:17637. [PMID: 26656101 PMCID: PMC4674698 DOI: 10.1038/srep17637] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/03/2015] [Indexed: 01/05/2023] Open
Abstract
Injury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats, and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Andrea Lowing
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Leonid S Shuyskiy
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.,Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| |
Collapse
|
26
|
Ilatovskaya DV, Levchenko V, Lowing A, Shuyskiy LS, Palygin O, Staruschenko A. Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels. Sci Rep 2015. [DOI: 10.1038/srep17637 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
AbstractInjury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation.
Collapse
|
27
|
Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels. Sci Rep 2015. [DOI: 10.1038/srep17637 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
AbstractInjury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation.
Collapse
|
28
|
Ilatovskaya DV, Levchenko V, Lowing A, Shuyskiy LS, Palygin O, Staruschenko A. Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels. Sci Rep 2015. [DOI: 10.1038/srep17637 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
AbstractInjury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation.
Collapse
|
29
|
Cowley AW, Yang C, Zheleznova NN, Staruschenko A, Kurth T, Rein L, Kumar V, Sadovnikov K, Dayton A, Hoffman M, Ryan RP, Skelton MM, Salehpour F, Ranji M, Geurts A. Evidence of the Importance of Nox4 in Production of Hypertension in Dahl Salt-Sensitive Rats. Hypertension 2015; 67:440-50. [PMID: 26644237 DOI: 10.1161/hypertensionaha.115.06280] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/11/2015] [Indexed: 12/24/2022]
Abstract
This study reports the consequences of knocking out NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4 (Nox4) on the development of hypertension and kidney injury in the Dahl salt-sensitive (SS) rat. Zinc finger nuclease injection of single-cell SS embryos was used to create an 8 base-pair frame-shift deletion of Nox4, resulting in a loss of the ≈68 kDa band in Western blot analysis of renal cortical tissue of the knock out of Nox4 in the SS rat (SS(Nox4-/-)) rats. SS(Nox4-/-) rats exhibited a significant reduction of salt-induced hypertension compared with SS rats after 21 days of 4.0% NaCl diet (134±5 versus 151±3 mm Hg in SS) and a significant reduction of albuminuria, tubular casts, and glomerular injury. Optical fluorescence 3-dimensional cryoimaging revealed significantly higher redox ratios (NADH/FAD [reduced nicotinamide adenine dinucleotide/flavin adenine dinucleotide]) in the kidneys of SS(Nox4-/-) rats even when fed the 0.4% NaCl diet, indicating greater levels of mitochondrial electron transport chain metabolic activity and reduced oxidative stress compared with SS rats. Before the development of hypertension, RNA expression levels of Nox subunits Nox2, p67(phox), and p22(phox) were found to be significantly lower (P<0.05) in SS(Nox4-/-) compared with SS rats in the renal cortex. Thus, the mutation of Nox4 seems to modify transcription of several genes in ways that contribute to the protective effects observed in the SS(Nox4-/-) rats. We conclude that the reduced renal injury and attenuated blood pressure response to high salt in the SS(Nox4-/-) rat could be the result of multiple pathways, including gene transcription, mitochondrial energetics, oxidative stress, and protein matrix production impacted by the knock out of Nox4.
Collapse
Affiliation(s)
- Allen W Cowley
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.).
| | - Chun Yang
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Nadezhda N Zheleznova
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Alexander Staruschenko
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Theresa Kurth
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Lisa Rein
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Vikash Kumar
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Katherine Sadovnikov
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Alex Dayton
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Matthew Hoffman
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Robert P Ryan
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Meredith M Skelton
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Fahimeh Salehpour
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Mahsa Ranji
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| | - Aron Geurts
- From the Department of Physiology (A.W.C., C.Y., N.N.Z., A.S., T.K., V.K., K.S., A.D., M.H., R.P.R., M.M.S., A.G.) and Division of Biostatistics, Institute for Health & Society (L.R.), Medical College of Wisconsin, Milwaukee; and Biophotonics Lab, University of Wisconsin, Milwaukee (F.S., M.R.)
| |
Collapse
|
30
|
Palygin O, Levchenko V, Evans LC, Blass G, Cowley AW, Staruschenko A. Use of Enzymatic Biosensors to Quantify Endogenous ATP or H2O2 in the Kidney. J Vis Exp 2015. [PMID: 26485400 DOI: 10.3791/53059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Enzymatic microelectrode biosensors have been widely used to measure extracellular signaling in real-time. Most of their use has been limited to brain slices and neuronal cell cultures. Recently, this technology has been applied to the whole organs. Advances in sensor design have made possible the measuring of cell signaling in blood-perfused in vivo kidneys. The present protocols list the steps needed to measure ATP and H2O2 signaling in the rat kidney interstitium. Two separate sensor designs are used for the ex vivo and in vivo protocols. Both types of sensor are coated with a thin enzymatic biolayer on top of a permselectivity layer to give fast responding, sensitive and selective biosensors. The permselectivity layer protects the signal from the interferents in biological tissue, and the enzymatic layer utilizes the sequential catalytic reaction of glycerol kinase and glycerol-3-phosphate oxidase in the presence of ATP to produce H2O2. The set of sensors used for the ex vivo studies further detected analyte by oxidation of H2O2 on a platinum/iridium (Pt-Ir) wire electrode. The sensors for the in vivo studies are instead based on the reduction of H2O2 on a mediator coated gold electrode designed for blood-perfused tissue. Final concentration changes are detected by real-time amperometry followed by calibration to known concentrations of analyte. Additionally, the specificity of the amperometric signal can be confirmed by the addition of enzymes such as catalase and apyrase that break down H2O2 and ATP correspondingly. These sensors also rely heavily on accurate calibrations before and after each experiment. The following two protocols establish the study of real-time detection of ATP and H2O2 in kidney tissues, and can be further modified to extend the described method for use in other biological preparations or whole organs.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin
| | | | | | - Gregory Blass
- Department of Physiology, Medical College of Wisconsin
| | | | | |
Collapse
|
31
|
Ilatovskaya DV, Staruschenko A. TRPC6 channel as an emerging determinant of the podocyte injury susceptibility in kidney diseases. Am J Physiol Renal Physiol 2015; 309:F393-7. [PMID: 26084930 DOI: 10.1152/ajprenal.00186.2015] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/10/2015] [Indexed: 01/30/2023] Open
Abstract
Podocytes (terminally differentiated epithelial cells of the glomeruli) play a key role in the maintenance of glomerular structure and permeability and in the incipiency of various renal abnormalities. Injury to podocytes is considered a major contributor to the development of kidney disease as their loss causes proteinuria and progressive glomerulosclerosis. The physiological function of podocytes is critically dependent on proper intracellular calcium handling; excessive calcium influx in these cells may result in the effacement of foot processes, apoptosis, and subsequent glomeruli damage. One of the key proteins responsible for calcium flux in the podocytes is transient receptor potential cation channel, subfamily C, member 6 (TRPC6); a gain-of-function mutation in TRPC6 has been associated with the onset of the familial forms of focal segmental glomerulosclerosis (FSGS). Recent data also revealed a critical role of this channel in the onset of diabetic nephropathy. Therefore, major efforts of the research community have been recently dedicated to unraveling the TRPC6-dependent effects in the initiation of podocyte injury. This mini-review focuses on the TRPC6 channel in podocytes and colligates recent data in an attempt to shed some light on the mechanisms underlying the pathogenesis of TRPC6-mediated glomeruli damage and its potential role as a therapeutic target for the treatment of chronic kidney diseases.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin; and Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
32
|
Endres BT, Staruschenko A, Schulte M, Geurts AM, Palygin O. Two-photon Imaging of Intracellular Ca2+ Handling and Nitric Oxide Production in Endothelial and Smooth Muscle Cells of an Isolated Rat Aorta. J Vis Exp 2015:e52734. [PMID: 26132549 DOI: 10.3791/52734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Calcium is a very important regulator of many physiological processes in vascular tissues. Most endothelial and smooth muscle functions highly depend on changes in intracellular calcium ([Ca(2+)]i) and nitric oxide (NO). In order to understand how [Ca(2+)]i, NO and downstream molecules are handled by a blood vessel in response to vasoconstrictors and vasodilators, we developed a novel technique that applies calcium-labeling (or NO-labeling) dyes with two photon microscopy to measure calcium handling (or NO production) in isolated blood vessels. Described here is a detailed step-by-step procedure that demonstrates how to isolate an aorta from a rat, label calcium or NO within the endothelial or smooth muscle cells, and image calcium transients (or NO production) using a two photon microscope following physiological or pharmacological stimuli. The benefits of using the method are multi-fold: 1) it is possible to simultaneously measure calcium transients in both endothelial cells and smooth muscle cells in response to different stimuli; 2) it allows one to image endothelial cells and smooth muscle cells in their native setting; 3) this method is very sensitive to intracellular calcium or NO changes and generates high resolution images for precise measurements; and 4) described approach can be applied to the measurement of other molecules, such as reactive oxygen species. In summary, application of two photon laser emission microscopy to monitor calcium transients and NO production in the endothelial and smooth muscle cells of an isolated blood vessel has provided high quality quantitative data and promoted our understanding of the mechanisms regulating vascular function.
Collapse
Affiliation(s)
- Bradley T Endres
- Departments of Physiology, Medical College of Wisconsin; Human and Molecular Genetics Center, Medical College of Wisconsin
| | | | | | - Aron M Geurts
- Departments of Physiology, Medical College of Wisconsin; Human and Molecular Genetics Center, Medical College of Wisconsin; Cardiovascular Center, Medical College of Wisconsin
| | - Oleg Palygin
- Departments of Physiology, Medical College of Wisconsin
| |
Collapse
|
33
|
Impaired epithelial Na+ channel activity contributes to cystogenesis and development of autosomal recessive polycystic kidney disease in PCK rats. Pediatr Res 2015; 77:64-9. [PMID: 25279988 PMCID: PMC4268054 DOI: 10.1038/pr.2014.145] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/16/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND Autosomal recessive polycystic kidney disease is a genetic disorder characterized by the development of renal cysts of tubular epithelial cell origin. Epithelial Na(+) channel (ENaC) is responsible for sodium reabsorption in the aldosterone-sensitive distal nephron. Here, we investigated the ENaC expression and activity in cystic tissue taken from rats with autosomal recessive polycystic kidney disease. METHODS Polycystic kidney (PCK) rats were treated with the selective ENaC inhibitor benzamil given in the drinking water, and after 4 or 12 wk, the severity of morphological malformations in the kidneys was assessed. ENaC and aquaporin-2 expression and ENaC activity were tested with immunohistochemistry and patch-clamp electrophysiology, respectively. RESULTS Treatment with benzamil exacerbated development of cysts compared with the vehicle-treated animals. In contrast, the 12 wk of treatment with the loop diuretic furosemide had no effect on cystogenesis. Single-channel patch-clamp analysis revealed that ENaC activity in the freshly isolated cystic epithelium was significantly lower than that in the noncystic collecting ducts isolated from PCK or normal Sprague-Dawley rats. Immunohistochemical analysis confirmed that β-ENaC and aquaporin-2 expressions in cysts are decreased compared with nondilated tubules from PCK rat kidneys. CONCLUSION We demonstrated that cystic epithelium exhibits low ENaC activity and this phenomenon can contribute to cyst progression.
Collapse
|
34
|
Cowley AW, Abe M, Mori T, O'Connor PM, Ohsaki Y, Zheleznova NN. Reactive oxygen species as important determinants of medullary flow, sodium excretion, and hypertension. Am J Physiol Renal Physiol 2014; 308:F179-97. [PMID: 25354941 DOI: 10.1152/ajprenal.00455.2014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The physiological evidence linking the production of superoxide, hydrogen peroxide, and nitric oxide in the renal medullary thick ascending limb of Henle (mTAL) to regulation of medullary blood flow, sodium homeostasis, and long-term control of blood pressure is summarized in this review. Data obtained largely from rats indicate that experimentally induced elevations of either superoxide or hydrogen peroxide in the renal medulla result in reduction of medullary blood flow, enhanced Na(+) reabsorption, and hypertension. A shift in the redox balance between nitric oxide and reactive oxygen species (ROS) is found to occur naturally in the Dahl salt-sensitive (SS) rat model, where selective reduction of ROS production in the renal medulla reduces salt-induced hypertension. Excess medullary production of ROS in SS rats emanates from the medullary thick ascending limbs of Henle [from both the mitochondria and membrane NAD(P)H oxidases] in response to increased delivery and reabsorption of excess sodium and water. There is evidence that ROS and perhaps other mediators such as ATP diffuse from the mTAL to surrounding vasa recta capillaries, resulting in medullary ischemia, which thereby contributes to hypertension.
Collapse
Affiliation(s)
- Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michiaki Abe
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Takefumi Mori
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paul M O'Connor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yusuke Ohsaki
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | |
Collapse
|
35
|
Burnstock G, Evans LC, Bailey MA. Purinergic signalling in the kidney in health and disease. Purinergic Signal 2014; 10:71-101. [PMID: 24265071 PMCID: PMC3944043 DOI: 10.1007/s11302-013-9400-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/21/2022] Open
Abstract
The involvement of purinergic signalling in kidney physiology and pathophysiology is rapidly gaining recognition and this is a comprehensive review of early and recent publications in the field. Purinergic signalling involvement is described in several important intrarenal regulatory mechanisms, including tuboglomerular feedback, the autoregulatory response of the glomerular and extraglomerular microcirculation and the control of renin release. Furthermore, purinergic signalling influences water and electrolyte transport in all segments of the renal tubule. Reports about purine- and pyrimidine-mediated actions in diseases of the kidney, including polycystic kidney disease, nephritis, diabetes, hypertension and nephrotoxicant injury are covered and possible purinergic therapeutic strategies discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
36
|
Palygin O, Staruschenko A. Detection of endogenous substances with enzymatic microelectrode biosensors in the kidney. Am J Physiol Regul Integr Comp Physiol 2013; 305:R89-91. [PMID: 23594609 DOI: 10.1152/ajpregu.00135.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Direct real-time measurements of purinergic agents and reactive oxygen species concentrations have been of great value in understanding the functional roles of these substances in a number of diseases including chronic kidney disease and hypertension. The interstitial concentrations of these intermediate signaling molecules and dynamics of their release are important autocrine and paracrine factors in the kidney, which play a key role in the regulation of oxidative stress, inflammation, and kidney damage. Analysis of signaling mechanisms, especially in vivo and ex vivo, has been slowed by deficiencies of existing methods for direct measurements of the signaling molecules concentrations in whole organs and acute changes in response to endocrine factors. The multienzymatic microelectrode biosensors technique was originally developed and used for the detection of purines release in the brain and in present could be modified to identify the interplay between different substances that could be measured simultaneously in whole organs, such as the kidney. Adaptation of this method for renal and cardiovascular studies represents a unique powerful approach for real-time monitoring of substance level fluctuations in organs or tissues under normal or pathological conditions.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | |
Collapse
|