1
|
Ceccotti E, Semnani A, Bussolati B, Bruno S. Human kidney organoids for modeling the development of different diseases. Curr Top Dev Biol 2025; 163:364-393. [PMID: 40254349 DOI: 10.1016/bs.ctdb.2024.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
The increasing incidence of kidney diseases has highlighted the need for in vitro experimental models to mimic disease development and to test new therapeutic approaches. Traditional two-dimensional in vitro experimental models are not fully able to recapitulate renal diseases. Instead, kidney organoids represent three-dimensional models that better mimic the human organ from both structural and functional points of view. Human pluripotent stem cells (PSCs), both embryonic and induced, are ideal sources for generating renal organoids. These organoids contain all renal cell types and the protocols to differentiate PSCs into renal organoids consist of three different stages that recapitulate embryonic development: mesodermal induction, nephron progenitor formation, and nephron differentiation. Recently it has been establish a renal organoid model where collecting ducts are also present. In this case, the presence of ureteric bud progenitor cells is essential. Renal organoids are particularly useful for studying genetic diseases, by introducing the specific mutations in PSCs by genome editing or generating organoids from patient-derived PSCs. Moreover, renal organoids represent promising models in toxicology studies and testing new therapeutic approaches. Renal organoids can be established also from adult stem cells. This type of organoid, named tubuloid, is composed only of epithelial cells and recapitulates the tissue repair process. The tubuloids can be generated from adult stem or progenitor cells, obtained from renal biopsies or urine, and are promising in vitro models for studying tubular functions, diseases, and regeneration. Tubuloids can be derived from patients and permit the study of genetic diseases, performing personalized drug screening and modeling renal pathologies.
Collapse
Affiliation(s)
- Elena Ceccotti
- Department of Medical Sciences, University of Torino, Corso Dogliotti, Torino, Italy
| | - Armina Semnani
- Department of Medical Sciences, University of Torino, Corso Dogliotti, Torino, Italy
| | - Benedetta Bussolati
- Department of Medical Sciences, University of Torino, Corso Dogliotti, Torino, Italy; Molecular Biotechnology Center "Guido Tarone", Via Nizza, Torino, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Torino, Corso Dogliotti, Torino, Italy.
| |
Collapse
|
2
|
Maggiore JC, LeGraw R, Przepiorski A, Velazquez J, Chaney C, Vanichapol T, Streeter E, Almuallim Z, Oda A, Chiba T, Silva-Barbosa A, Franks J, Hislop J, Hill A, Wu H, Pfister K, Howden SE, Watkins SC, Little MH, Humphreys BD, Kiani S, Watson A, Stolz DB, Davidson AJ, Carroll T, Cleaver O, Sims-Lucas S, Ebrahimkhani MR, Hukriede NA. A genetically inducible endothelial niche enables vascularization of human kidney organoids with multilineage maturation and emergence of renin expressing cells. Kidney Int 2024; 106:1086-1100. [PMID: 38901605 PMCID: PMC11912416 DOI: 10.1016/j.kint.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024]
Abstract
Vascularization plays a critical role in organ maturation and cell-type development. Drug discovery, organ mimicry, and ultimately transplantation hinge on achieving robust vascularization of in vitro engineered organs. Here, focusing on human kidney organoids, we overcame this hurdle by combining a human induced pluripotent stem cell (iPSC) line containing an inducible ETS translocation variant 2 (ETV2) (a transcription factor playing a role in endothelial cell development) that directs endothelial differentiation in vitro, with a non-transgenic iPSC line in suspension organoid culture. The resulting human kidney organoids show extensive endothelialization with a cellular identity most closely related to human kidney endothelia. Endothelialized kidney organoids also show increased maturation of nephron structures, an associated fenestrated endothelium with de novo formation of glomerular and venous subtypes, and the emergence of drug-responsive renin expressing cells. The creation of an engineered vascular niche capable of improving kidney organoid maturation and cell type complexity is a significant step forward in the path to clinical translation. Thus, incorporation of an engineered endothelial niche into a previously published kidney organoid protocol allowed the orthogonal differentiation of endothelial and parenchymal cell types, demonstrating the potential for applicability to other basic and translational organoid studies.
Collapse
Affiliation(s)
- Joseph C Maggiore
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Center for Integrative Organ Systems, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ryan LeGraw
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aneta Przepiorski
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jeremy Velazquez
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christopher Chaney
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thitinee Vanichapol
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Evan Streeter
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Center for Integrative Organ Systems, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zainab Almuallim
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Center for Integrative Organ Systems, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Akira Oda
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh Pennsylvania, USA
| | - Takuto Chiba
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh Pennsylvania, USA
| | - Anne Silva-Barbosa
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh Pennsylvania, USA
| | - Jonathan Franks
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joshua Hislop
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alex Hill
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Katherine Pfister
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh Pennsylvania, USA
| | - Sara E Howden
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Melissa H Little
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Developmental Biology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Samira Kiani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan Watson
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Tom Carroll
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sunder Sims-Lucas
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh Pennsylvania, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, Division of Experimental Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Neil A Hukriede
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Center for Integrative Organ Systems, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
3
|
Szymczak M, Heidecke H, Żabińska M, Rukasz D, Wiśnicki K, Kujawa K, Kościelska-Kasprzak K, Krajewska M, Banasik M. Angiotensin II Type 2 Receptor Antibodies in Glomerular Diseases. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0017. [PMID: 39166802 DOI: 10.2478/aite-2024-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/24/2024] [Indexed: 08/23/2024]
Abstract
We evaluated the concentration of AT2R antibodies in 136 patients with primary and secondary glomerular diseases: membranous nephropathy (n = 18), focal and segmental glomerulosclerosis (n = 25), systemic lupus erythematosus (n = 17), immunoglobulin A (IgA) nephropathy (n = 14), mesangial (non-IgA) proliferative nephropathy (n = 6), c-ANCA vasculitis (n = 40), perinuclear anti-neutrophil cytoplasmic antibodies (p-ANCA) vasculitis (n = 16), and compared it with a healthy control group (22 patients). Serum creatinine levels, proteinuria, serum albumin, and total protein concentrations were prospectively recorded for 2 years. The mean levels of AT2R antibodies in the lupus nephropathy group were significantly higher compared to the control group, 64.12 ± 26.95 units/mL and 9.72 ± 11.88 units/mL, respectively. There was no association between this level and the clinical course of the disease. The AT2R levels in other kinds of glomerular disease were no different from the control group. We found significant correlations between AT1R and AT2R in patients with membranous nephropathy (r = 0.66), IgA nephropathy (r = 0.61), and c-ANCA vasculitis (r = 0.63). Levels of AT2R antibodies in systemic lupus erythematosus are higher compared to other types of glomerulonephritis, vasculitis, and a healthy control group. Levels of AT2R antibodies correlate with AT1R antibodies in the groups of patients with membranous nephropathy, IgA nephropathy, and c-ANCA vasculitis. These kinds of AT2R antibodies have a stimulative effect on AT2R, but we have not found the influence of these antibodies on the clinical course of glomerular diseases.
Collapse
MESH Headings
- Humans
- Female
- Male
- Middle Aged
- Adult
- Receptor, Angiotensin, Type 2/immunology
- Receptor, Angiotensin, Type 2/metabolism
- Autoantibodies/blood
- Autoantibodies/immunology
- Aged
- Kidney Glomerulus/immunology
- Kidney Glomerulus/pathology
- Glomerulonephritis, Membranous/immunology
- Glomerulonephritis, Membranous/blood
- Glomerulonephritis/immunology
- Glomerulonephritis/blood
- Antibodies, Antineutrophil Cytoplasmic/immunology
- Antibodies, Antineutrophil Cytoplasmic/blood
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/blood
- Glomerulonephritis, IGA/immunology
- Glomerulonephritis, IGA/blood
- Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/immunology
- Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis/blood
- Lupus Nephritis/immunology
- Receptor, Angiotensin, Type 1/immunology
- Young Adult
- Kidney Diseases/immunology
Collapse
Affiliation(s)
- Maciej Szymczak
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | | - Marcelina Żabińska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Dagna Rukasz
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Wiśnicki
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Kujawa
- Statistical Analysis Centre, Wroclaw Medical University, Wroclaw, Poland
| | | | - Magdalena Krajewska
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
4
|
Pode-Shakked N, Slack M, Sundaram N, Schreiber R, McCracken KW, Dekel B, Helmrath M, Kopan R. RAAS-deficient organoids indicate delayed angiogenesis as a possible cause for autosomal recessive renal tubular dysgenesis. Nat Commun 2023; 14:8159. [PMID: 38071212 PMCID: PMC10710424 DOI: 10.1038/s41467-023-43795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Autosomal Recessive Renal Tubular Dysgenesis (AR-RTD) is a fatal genetic disorder characterized by complete absence or severe depletion of proximal tubules (PT) in patients harboring pathogenic variants in genes involved in the Renin-Angiotensin-Aldosterone System. To uncover the pathomechanism of AR-RTD, differentiation of ACE-/- and AGTR1-/- induced pluripotent stem cells (iPSCs) and AR-RTD patient-derived iPSCs into kidney organoids is leveraged. Comprehensive marker analyses show that both mutant and control organoids generate indistinguishable PT in vitro under normoxic (21% O2) or hypoxic (2% O2) conditions. Fully differentiated (d24) AGTR1-/- and control organoids transplanted under the kidney capsule of immunodeficient mice engraft and mature well, as do renal vesicle stage (d14) control organoids. By contrast, d14 AGTR1-/- organoids fail to engraft due to insufficient pro-angiogenic VEGF-A expression. Notably, growth under hypoxic conditions induces VEGF-A expression and rescues engraftment of AGTR1-/- organoids at d14, as does ectopic expression of VEGF-A. We propose that PT dysgenesis in AR-RTD is primarily a non-autonomous consequence of delayed angiogenesis, starving PT at a critical time in their development.
Collapse
Affiliation(s)
- Naomi Pode-Shakked
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Megan Slack
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Nambirajan Sundaram
- Division of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ruth Schreiber
- Department of Pediatrics, Soroka University Medical Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Kyle W McCracken
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Benjamin Dekel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Stem Cell Research Institute and division of pediatric nephrology, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel
| | - Michael Helmrath
- Division of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Raphael Kopan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
5
|
Tabibzadeh N, Satlin LM, Jain S, Morizane R. Navigating the kidney organoid: insights into assessment and enhancement of nephron function. Am J Physiol Renal Physiol 2023; 325:F695-F706. [PMID: 37767571 PMCID: PMC10878724 DOI: 10.1152/ajprenal.00166.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Kidney organoids are three-dimensional structures generated from pluripotent stem cells (PSCs) that are capable of recapitulating the major structures of mammalian kidneys. As this technology is expected to be a promising tool for studying renal biology, drug discovery, and regenerative medicine, the functional capacity of kidney organoids has emerged as a critical question in the field. Kidney organoids produced using several protocols harbor key structures of native kidneys. Here, we review the current state, recent advances, and future challenges in the functional characterization of kidney organoids, strategies to accelerate and enhance kidney organoid functions, and access to PSC resources to advance organoid research. The strategies to construct physiologically relevant kidney organoids include the use of organ-on-a-chip technologies that integrate fluid circulation and improve organoid maturation. These approaches result in increased expression of the major tubular transporters and elements of mechanosensory signaling pathways suggestive of improved functionality. Nevertheless, continuous efforts remain crucial to create kidney tissue that more faithfully replicates physiological conditions for future applications in kidney regeneration medicine and their ethical use in patient care.NEW & NOTEWORTHY Kidney organoids are three-dimensional structures derived from stem cells, mimicking the major components of mammalian kidneys. Although they show great promise, their functional capacity has become a critical question. This review explores the advancements and challenges in evaluating and enhancing kidney organoid function, including the use of organ-on-chip technologies, multiomics data, and in vivo transplantation. Integrating these approaches to further enhance their physiological relevance will continue to advance disease modeling and regenerative medicine applications.
Collapse
Affiliation(s)
- Nahid Tabibzadeh
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Sanjay Jain
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Ryuji Morizane
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
6
|
Thimm C, Erichsen L, Wruck W, Adjaye J. Unveiling Angiotensin II and Losartan-Induced Gene Regulatory Networks Using Human Urine-Derived Podocytes. Int J Mol Sci 2023; 24:10551. [PMID: 37445727 DOI: 10.3390/ijms241310551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Podocytes are highly specialized cells that play a pivotal role in the blood filtration process in the glomeruli of the kidney, and their dysfunction leads to renal diseases. For this reason, the study and application of this cell type is of great importance in the field of regenerative medicine. Hypertension is mainly regulated by the renin-angiotensin-aldosterone system (RAAS), with its main mediator being angiotensin II (ANG II). Elevated ANG II levels lead to a pro-fibrotic, inflammatory, and hypertrophic milieu that induces apoptosis in podocytes. The activation of RAAS is critical for the pathogenesis of podocyte injury; as such, to prevent podocyte damage, patients with hypertension are administered drugs that modulate RAAS signaling. A prime example is the orally active, non-peptide, selective angiotensin-II-type I receptor (AGTR1) blocker losartan. Here, we demonstrate that SIX2-positive urine-derived renal progenitor cells (UdRPCs) and their immortalized counterpart (UM51-hTERT) can be directly differentiated into mature podocytes. These podocytes show activation of RAAS after stimulation with ANG II, resulting in ANG II-dependent upregulation of the expression of the angiotensin-II-type I receptor, AGTR1, and the downregulated expression of the angiotensin-II-type II receptor 2 (AGTR2). The stimulation of podocytes with losartan counteracts ANG II-dependent changes, resulting in a dependent favoring of the specific receptor from AGTR1 to AGTR2. Transcriptome analysis revealed 94 losartan-induced genes associated with diverse biological processes and pathways such as vascular smooth muscle contraction, the oxytocin signaling pathway, renin secretion, and ECM-receptor interaction. Co-stimulation with losartan and ANG II induced the exclusive expression of 106 genes associated with DNA methylation or demethylation, cell differentiation, the developmental process, response to muscle stretch, and calcium ion transmembrane transport. These findings highlight the usefulness of UdRPC-derived podocytes in studying the RAAS pathway and nephrotoxicity in various kidney diseases.
Collapse
Affiliation(s)
- Chantelle Thimm
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lars Erichsen
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
- EGA Institute for Women's Health, Zayed Centre for Research into Rare Diseases in Children (ZCR), University College London (UCL), 20 Guilford Street, London WC1N 1DZ, UK
| |
Collapse
|
7
|
Staruschenko A, Ma R, Palygin O, Dryer SE. Ion channels and channelopathies in glomeruli. Physiol Rev 2023; 103:787-854. [PMID: 36007181 PMCID: PMC9662803 DOI: 10.1152/physrev.00013.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/22/2022] Open
Abstract
An essential step in renal function entails the formation of an ultrafiltrate that is delivered to the renal tubules for subsequent processing. This process, known as glomerular filtration, is controlled by intrinsic regulatory systems and by paracrine, neuronal, and endocrine signals that converge onto glomerular cells. In addition, the characteristics of glomerular fluid flow, such as the glomerular filtration rate and the glomerular filtration fraction, play an important role in determining blood flow to the rest of the kidney. Consequently, disease processes that initially affect glomeruli are the most likely to lead to end-stage kidney failure. The cells that comprise the glomerular filter, especially podocytes and mesangial cells, express many different types of ion channels that regulate intrinsic aspects of cell function and cellular responses to the local environment, such as changes in glomerular capillary pressure. Dysregulation of glomerular ion channels, such as changes in TRPC6, can lead to devastating glomerular diseases, and a number of channels, including TRPC6, TRPC5, and various ionotropic receptors, are promising targets for drug development. This review discusses glomerular structure and glomerular disease processes. It also describes the types of plasma membrane ion channels that have been identified in glomerular cells, the physiological and pathophysiological contexts in which they operate, and the pathways by which they are regulated and dysregulated. The contributions of these channels to glomerular disease processes, such as focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, as well as the development of drugs that target these channels are also discussed.
Collapse
Affiliation(s)
- Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida
- James A. Haley Veterans Hospital, Tampa, Florida
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stuart E Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
- Department of Biomedical Sciences, Tilman J. Fertitta Family College of Medicine, University of Houston, Houston, Texas
| |
Collapse
|
8
|
Freedman BS. Physiology assays in human kidney organoids. Am J Physiol Renal Physiol 2022; 322:F625-F638. [PMID: 35379001 PMCID: PMC9076410 DOI: 10.1152/ajprenal.00400.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/15/2023] Open
Abstract
Kidney organoids derived from human pluripotent stem cells constitute a novel model of disease, development, and regenerative therapy. Organoids are human, experimentally accessible, high throughput, and enable reconstitution of tissue-scale biology in a petri dish. Although gene expression patterns in organoid cells have been analyzed extensively, less is known about the functionality of these structures. Here, we review assays of physiological function in human kidney organoids, including best practices for quality control, and future applications. Tubular structures in organoids accumulate specific molecules through active transport, including dextran and organic anions, and swell with fluid in response to cAMP stimulation. When engrafted into animal models in vivo, organoids form vascularized glomerulus-like structures capable of size-selective filtration. Organoids exhibit metabolic, endocrine, injury, and infection phenotypes, although their specificity is not yet fully clear. To properly interpret organoid physiology assays, it is important to incorporate appropriate negative and positive controls, statistical methods, data presentation, molecular mechanisms, and clinical data sets. Improvements in organoid perfusion, patterning, and maturation are needed to enable branching morphogenesis, urine production, and renal replacement. Reconstituting renal physiology with kidney organoids is a new field with potential to provide fresh insights into classical phenomena.
Collapse
Affiliation(s)
- Benjamin S Freedman
- Division of Nephrology, Kidney Research Institute, and Institute for Stem Cell and Regenerative Medicine, Department of Medicine, Department of Laboratory Medicine and Physiology (adjunct), and Department of Bioengineering (adjunct), University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
9
|
Castorena-Gonzalez JA. Lymphatic Valve Dysfunction in Western Diet-Fed Mice: New Insights Into Obesity-Induced Lymphedema. Front Pharmacol 2022; 13:823266. [PMID: 35308249 PMCID: PMC8931217 DOI: 10.3389/fphar.2022.823266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
A two-way connection between obesity and lymphatic dysfunction has now been established. Clinical studies have demonstrated that obesity significantly increases the risk for developing secondary lymphedema. Using animal-models, obesity and metabolic syndrome have been linked to different aspects of lymphatic structural abnormalities and lymphatic dysfunction, including impaired contractility, impaired flow-mediated responses, impaired fluid transport, as well as increased permeability, and abnormal dendritic cell migration among others. Dysfunction of lymphatic valves is a main form of lymphatic dysfunction, known to result in severe edematous phenotypes; however, the extent of lymphatic valve deficiency in secondary lymphedema, including obesity-induced lymphedema, remains unknown. Therefore, the aims of the present study were 1) to determine whether western diet-induced obesity results in lymphatic valve dysfunction, and 2) to determine whether lymphatic valve dysfunction in western diet-induced obesity results from the diet itself, or as a consequence of the metabolic alterations induced by the diet. First, we quantitatively assessed and compared valve function in isolated popliteal and mesenteric collecting lymphatic vessels from control and western diet-induced obese C57BL/6J (WT) mice. Feeding a western diet for 14 weeks induced obesity and elevated plasma glucose and cholesterol levels when compared to controls. The function of lymphatic valves in popliteal lymphatics was not affected by diet-induced obesity; however, significant back-leak of pressure was observed in mesenteric lymphatic valves. Dysfunctional, leaky valves from obese animals also required significantly higher adverse pressure to trigger valve closure. Importantly, when subjected to treatment with a western diet, globally deficient PAI-1 mice were significantly protected against metabolic dysfunction and displayed fully functional, competent mesenteric lymphatic valves. In conclusion, our findings show for the first time that, in association with the metabolic alterations induced by the western diet, lymphatic valve dysfunction can be a critical component of obesity-induced lymphedema.
Collapse
|