1
|
Peng HY, Lin TB. Spinal pelvic-urethra reflex potentiation. Biomedicine (Taipei) 2012. [DOI: 10.1016/j.biomed.2012.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
2
|
De Wachter S, Smith P, Tannenbaum C, Van Koeveringe G, Drake M, Wyndaele J, Chapple C. How should bladder sensation be measured?: ICI-RS 2011. Neurourol Urodyn 2012; 31:370-4. [DOI: 10.1002/nau.22214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 01/12/2012] [Indexed: 01/25/2023]
|
3
|
Thor KB, de Groat WC. Neural control of the female urethral and anal rhabdosphincters and pelvic floor muscles. Am J Physiol Regul Integr Comp Physiol 2010; 299:R416-38. [PMID: 20484700 PMCID: PMC2928615 DOI: 10.1152/ajpregu.00111.2010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 05/11/2010] [Indexed: 01/20/2023]
Abstract
The urethral rhabdosphincter and pelvic floor muscles are important in maintenance of urinary continence and in preventing descent of pelvic organs [i.e., pelvic organ prolapse (POP)]. Despite its clinical importance and complexity, a comprehensive review of neural control of the rhabdosphincter and pelvic floor muscles is lacking. The present review places historical and recent basic science findings on neural control into the context of functional anatomy of the pelvic muscles and their coordination with visceral function and correlates basic science findings with clinical findings when possible. This review briefly describes the striated muscles of the pelvis and then provides details on the peripheral innervation and, in particular, the contributions of the pudendal and levator ani nerves to the function of the various pelvic muscles. The locations and unique phenotypic characteristics of rhabdosphincter motor neurons located in Onuf's nucleus, and levator ani motor neurons located diffusely in the sacral ventral horn, are provided along with the locations and phenotypes of primary afferent neurons that convey sensory information from these muscles. Spinal and supraspinal pathways mediating excitatory and inhibitory inputs to the motor neurons are described; the relative contributions of the nerves to urethral function and their involvement in POP and incontinence are discussed. Finally, a detailed summary of the neurochemical anatomy of Onuf's nucleus and the pharmacological control of the rhabdosphincter are provided.
Collapse
Affiliation(s)
- Karl B Thor
- Urogenix, Inc., Durham, North Carolina, USA.
| | | |
Collapse
|
4
|
Chang JL, Peng HY, Wu HC, Lu HT, Pan SF, Chen MJ, Lin TB. Acute neurosteroids inhibit the spinal reflex potentiation via GABAergic neurotransmission. Am J Physiol Renal Physiol 2010; 299:F43-8. [PMID: 20357028 DOI: 10.1152/ajprenal.00632.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently, we demonstrated a chronic neurosteroid-dependent inhibition of activity-dependent spinal reflex potentiation (SRP), but it remains unclear whether neurosteroids acutely modulate SRP induction. This study shows progesterone as well as two of its 3alpha,5alpha-derivatives, allopregnalonone and 3alpha,5alpha-tetrahydrodeoxycorticosterone (THDOC), to be capable of producing acute GABA(A) receptor (GABA(A)R)-dependent inhibition of SRP. When compared with test simulation (1 stimulation/30 s) of pelvic afferent nerves that evoked a baseline reflex activity in an external urethra sphincter electromyogram, repetitive stimulation (RS; 1 stimulation/1 s) induced SRP characterized by an increase in the evoked activity. Intrathecal progesterone (3-30 muM, 10 microl) at 10 min before stimulation onset dose dependently prevented RS induction. Intrathecal allopregnalonone (10 muM, 10 microl it) and THDOC (10 microM, 10 microl it) also prevented the SRP caused by RS. Pretreatment with the GABA(A)R antagonist bicuculline (10 microM, 10 microl it) at 1 min before progesterone/neurosteroid injection attenuated the inhibition of SRP caused by progesterone, allopregnanolone, and THDOC. Results suggest that progesterone and its neurosteroid metabolites may be crucial to the development of pelvic visceral neuropathic/postinflammatory pain and imply clinical use of neurosteroids, such as allopregnanolone and THDOC, for visceral pain treatment.
Collapse
Affiliation(s)
- Junn-Liang Chang
- Department of Pathology and Laboratory Medicine, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
5
|
Peng HY, Chen GD, Tung KC, Chien YW, Lai CY, Hsieh MC, Chiu CH, Lai CH, Lee SD, Lin TB. Estrogen-dependent facilitation on spinal reflex potentiation involves the Cdk5/ERK1/2/NR2B cascade in anesthetized rats. Am J Physiol Endocrinol Metab 2009; 297:E416-26. [PMID: 19531642 DOI: 10.1152/ajpendo.00129.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Cyclin-dependent kinase-5 (Cdk5), a proline-directed serine/threonine kinase, may alter pain-related neuronal plasticity by regulating extracellular signal-related kinase-1/2 (ERK1/2) activation. This study investigated whether Cdk5-dependent ERK activation underlies the estrogen-elicited facilitation on the repetitive stimulation-induced spinal reflex potentiaton (SRP) that is presumed to be involved in postinflammatory/neuropathic hyperalgesia and allodynia. Reflex activity of the external urethra sphincter electromyogram evoked by pelvic afferent nerve test stimulation (TS; 1 stimulation/30 s for 10 min) and repetitive stimulation (RS; 1 stimulation/1 s for 10 min) was recorded in anesthetized rats. TS evoked a baseline reflex activity, whereas RS produced SRP. Intrathecal (it) beta-estradiol facilitated the repetitive stimulation-induced SRP that was reversed by pretreatment with the estrogen receptor anatogonist ICI 182,780 (10 nM, 10 microl it), Cdk5 inhibitor roscovitine (100 nM, 10 microl it), ERK inhibitor (U-0126; 100 microM, 10 microl it) and N-methyl-D-aspartate (NMDA) NR2B subunit antagonist (Co-101244; 100 nM, 10 microl it). Moreover, ERalpha (propylpyrazoletriol; 100 nM, 10 microl it) and ERbeta (diarylpropionitrile; 100 microM, 10 microl it) agonists both facilitated the SRP, similar to results with a beta-estradiol injection. In association with the facilitated RS-induced SRP, an intrathecal beta-estradiol injection elicited ERK1/2 and NR2B subunit phosphorylation that were both reversed by intrathecal roscovitine and U-0126. These results indicated that the Cdk/ERK cascade, which is activated by ERalpha and ERbeta, may subsequently phosphorylate the NR2B subunit to develop NMDA-dependent postinflammatory hyperalgesia and allodynia to maintain the protective mechanisms of the body.
Collapse
Affiliation(s)
- Hsien-Yu Peng
- Department of Physiology, Chung-Shan Medical University Hospital, Chung-Shan Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Peng HY, Chen GD, Lee SD, Lai CY, Chiu CH, Cheng CL, Chang YS, Hsieh MC, Tung KC, Lin TB. Neuroactive steroids inhibit spinal reflex potentiation by selectively enhancing specific spinal GABA(A) receptor subtypes. Pain 2009; 143:12-20. [PMID: 19250751 DOI: 10.1016/j.pain.2008.12.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 12/15/2008] [Accepted: 12/16/2008] [Indexed: 10/21/2022]
Abstract
Recently, we demonstrated a spinal GABA(A) receptor (GABA(A)R)-dependent inhibition on the induction of repetitive stimulation-induced spinal reflex potentiation. However, it remains unclear whether steroid hormones modulate such an inhibition. Here, we show that progesterone is capable of producing GABA(A)Rs-dependent inhibition of the induction of spinal reflex potentiation by actions through neurosteroid metabolites. Progesterone (5mg/kg, twice daily for 4 days) up-regulates the expression of GABA(A)R alpha2, alpha3, alpha4 and delta subunits, and is associated with attenuated repetitive stimulation-induced spinal reflex activity in ovariectomized rats. These changes were blocked by finasteride (50mg/kg, twice daily), an antagonist of neurosteroid synthesis from progesterone, but not by the progesterone receptor antagonist, RU486 (100mg/kg, twice daily). The induction of spinal reflex potentiation was attenuated after a short (30 min) intrathecal treatment with the neurosteroids, allopregnanolone (ALLOP, 10 microM, 10 microL) and 3 alpha,5 alpha-tetrahydrodeoxycorticosterone (THDOC, 10 microM, 10 microL). Acute intrathecal administration of the GABA(A)R antagonist, bicuculline (10 microM, 10 microL) reversed the inhibition produced by progesterone, THDOC and allopregnanolone. These results imply that progesterone-mediated effects on GABA(A)R expression and neural inhibition are regulated by neurosteroids synthesis rather than progesterone receptor activation.
Collapse
Affiliation(s)
- Hsien-Yu Peng
- Department of Physiology, College of Medicine, Chung-Shan Medical University, No. 110, Chang-Kuo North Rd, Section 1, Taichung 40201, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Peng HY, Chen GD, Tung KC, Lai CY, Hsien MC, Chiu CH, Lu HT, Liao JM, Lee SD, Lin TB. Colon mustard oil instillation induced cross-organ reflex sensitization on the pelvic-urethra reflex activity in rats. Pain 2009; 142:75-88. [PMID: 19167822 DOI: 10.1016/j.pain.2008.11.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/10/2008] [Accepted: 11/26/2008] [Indexed: 12/30/2022]
Abstract
We investigated the participation of cyclin-dependent kinase-5 (Cdk5)-mediated N-methyl-D-aspartate receptor (NMDAR) NR2B subunit phosphorylation in cross-organ reflex sensitization caused by colon irritation. The external urethral sphincter electromyogram (EUSE) reflex activity evoked by the pelvic afferent nerve test stimulation (TS, 1 stimulation/30s) and protein expression in the spinal cord and dorsal root ganglion tissue (T13-L2 and L6-S2 ipsilateral to the stimulation) in response to colon mustard oil (MO) instillation were tested in anesthetized rats. When compared with a baseline reflex activity with a single action potential evoked by the TS before the administration of test agents, MO instillation into the descending colon sensitized the evoked activity characterized by elongated firing in the reflex activity in association with increased protein levels of Cdk5, PSD95, and phosphorylated NR2B (pNR2B) but not of total NR2B (tNR2B) in the spinal cord tissue. Both cross-organ reflex sensitization and increments in protein expression were reversed by intra-colonic pretreatments with ruthenium red (a non-selective transient receptor potential vanilloid, TRPV, antagonist), capsaizepine (a TRPV1-selective antagonist), lidocaine (a nerve conduction blocker) as well as by the intra-thecal pretreatment with APV (a NRMDR antagonist) Co-101244 (a NR2B-selective antagonist) and roscovitine (a Cdk5 antagonist). Moreover, compared with the control group, both the increase in pNR2B and the cross-organ reflex sensitization were attenuated in the si-RNA of NR2B rats. All these results suggested that Cdk-dependent NMDAR NR2B subunit phosphorylation mediates the development of cross-organ pelvic-urethra reflex sensitization caused by acute colon irritation which could possibly underlie the high concurrence of pelvic pain syndrome with irritable bowel syndrome.
Collapse
Affiliation(s)
- Hsien-Yu Peng
- Department of Physiology, College of Medicine, Chung-Shan Medical University, No. 110, Chang-Kuo North Rd. Section 1, Taichung 40201, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Peng HY, Chang HM, Lee SD, Huang PC, Chen GD, Lai CH, Lai CY, Chiu CH, Tung KC, Lin TB. TRPV1 mediates the uterine capsaicin-induced NMDA NR2B-dependent cross-organ reflex sensitization in anesthetized rats. Am J Physiol Renal Physiol 2008; 295:F1324-35. [DOI: 10.1152/ajprenal.00126.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Spinal cord-mediated cross-organ sensitization between the uterus and the lower urinary tract may underlie the high concurrence of obstetrical/gynecological inflammation and chronic pelvic pain syndrome characterized by urogenital pain. However, the neural pathway and the neurotransmitters involved are still unknown. We tested the hypothesis that the excitation of capsaicin-sensitive primary afferent fibers arising from the uterus through the stimulation of transient receptor potential vanilloid 1 (TRPV1) induces cross-organ sensitization on the pelvic-urethra reflex activity. Capsaicin (1–1,000 μM, 0.05 ml) was instilled into the uterus to induce cross-organ reflex sensitization. Activation of capsaicin-sensitive primary afferent fibers by capsaicin instillation into the uterine horn sensitized the pelvic-urethra reflex activity that was reversed by an intrauterine pretreatment with capsaizepine, a TRPV1-selective antagonist. Intrathecal injection of AP5, a glutamatergic N-methyl-d-aspartate (NMDA) antagonist, and Co-101244, an NMDA NR2B-selective antagonist, both abolished the cross-organ reflex sensitization caused by capsaicin instillation. These results demonstrated that TRPV1 plays a crucial role in contributing to the capsaicin-sensitive primary afferent fibers mediating the glutamatergic NMDA-dependent cross-organ sensitization between the uterus and the lower urinary tract when there is a tissue injury.
Collapse
|
9
|
Chen SL, Huang YH, Kao YL, Chen GD, Cheng CL, Peng HY, Liao JM, Huang PC, Tsai SJ, Lin TB. Acute anal stretch inhibits NMDA-dependent pelvic-urethra reflex potentiation via spinal GABAergic inhibition in anesthetized rats. Am J Physiol Renal Physiol 2008; 295:F923-31. [DOI: 10.1152/ajprenal.90254.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The impact of acute anal stretch on the pelvic-urethra reflex potentiation was examined in urethane-anesthetized rats by recording the external urethra sphincter electromyogram activity evoked by the pelvic afferent stimulation. Test stimulation (1 stimulation/30 s) evoked a baseline reflex activity with a single action potential that was abolished by gallamine (5 mg/kg iv). On the other hand, the repetitive stimulation (1 stimulation/1 s) induced spinal reflex potentiation (SRP) that was attenuated by intrathecal 6-cyano-7-nitroquinoxaline-2,4-dione (a glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionat receptor antagonist, 100 μM, 10 μl) and d-2-amino-5-phosphonovalerate [a glutamatergic N-methyl-d-aspartate (NMDA) antagonist, 100 μM, 10 μl]. Acute anal stretch using a mosquito clamp with a distance of 4 mm exhibited no effect, whereas distances of 8 mm attenuated and 12 mm abolished the repetitive stimulation-induced SRP. Intrathecal NMDA (100 μM, 10 μl) reversed the abolition on SRP caused by anal stretch. On the other hand, pretreated bicuculline [γ-aminobutyric acid (GABA) A receptor antagonist, 100 μM, 10 μl] but not hydroxysaclofen (GABAB receptor antagonist) counteracted the abolition on the repetitive stimulation-induced SRP caused by the anal stretch. All of the results suggested that anal stretch may be used as an adjunct to assist voiding dysfunction in patients with overactive urethra sphincter and that GABAergic neurotransmission is important in the neural mechanisms underlying external urethra sphincter activity inhibited by anal stretch.
Collapse
|
10
|
Peng HY, Huang PC, Liao JM, Tung KC, Lee SD, Cheng CL, Shyu JC, Lai CY, Chen GD, Lin TB. Estrous cycle variation of TRPV1-mediated cross-organ sensitization between uterus and NMDA-dependent pelvic-urethra reflex activity. Am J Physiol Endocrinol Metab 2008; 295:E559-68. [PMID: 18577691 DOI: 10.1152/ajpendo.90289.2008] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cross-organ sensitization between the uterus and the lower urinary tract (LUT) underlies the high concurrence of pelvic pain syndrome and LUT dysfunctions, and yet the role of gonadal steroids is still unknown. We tested the hypothesis that cross-organ sensitization on pelvic-urethra reflex activity caused by uterine capsaicin instillation is estrous cycle dependent. When compared with the baseline reflex activity (1.00 +/- 0.00 spikes/stimulation), uterine capsaicin instillation significantly increased reflex activity (45.42 +/- 9.13 spikes/stimulation, P < 0.01, n = 7) that was corroborated by an increase in phosphorylated NMDA NR2B (P < 0.05, n = 4) but not NR2A subunit (P > 0.05, n = 4) expression. Both intrauterine pretreatment with capsazepine (5.02 +/- 2.11 spikes/stimulation, P < 0.01, n = 7) and an intrathecal injection of AP5 (3.21 +/- 0.83 spikes/stimulation, P < 0.01, n = 7) abolished the capsaicin-induced cross-organ sensitization and the increment in the phosphorylated NR2B level (P < 0.05, n = 4). The degrees of the cross-organ sensitization increased in a dose-dependent manner with the concentration of instilled capsaicin from 100 to 300 microM in both the proestrus and metestrus stages, whereas they weakened when the concentrations were higher than 1,000 microM. Moreover, the cross-organ sensitization caused by the uterine capsaicin instillation increased significantly in the rats during the proestrus stage when compared with the metestrus stage (P < 0.01, n = 7). These results suggest that estrogen levels might modulate the cross-organ sensitization between the uterus and the urethra and underlie the high concurrence of pelvic pain syndrome and LUT dysfunctions.
Collapse
Affiliation(s)
- Hsien-Yu Peng
- Dept. of Physiology, College of Medicine, Chung-Shan Medical University, Taichung, Taiwan 40201
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Peng HY, Chang HM, Chang SY, Tung KC, Lee SD, Chou D, Lai CY, Chiu CH, Chen GD, Lin TB. Orexin-A modulates glutamatergic NMDA-dependent spinal reflex potentiation via inhibition of NR2B subunit. Am J Physiol Endocrinol Metab 2008; 295:E117-29. [PMID: 18477704 DOI: 10.1152/ajpendo.90243.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucose-sensitive neurons in the lateral hypothalamic area produce orexin-A (OxA) as well as orexin-B (OxB) and send their axons to the spinal dorsal horn, which predominantly expresses orexin receptor-1 (OX-1), showing a higher sensitivity to OxA. The purpose of the present study was to assess the effects of OxA on the induction of a novel form of activity-dependent reflex potentiation, spinal reflex potentiation (SRP), in the pelvic-urethral reflex activity. External urethra sphincter electromyogram in response to pelvic afferent nerve test stimulation (TS; 1/30 Hz) or repetitive stimulation (RS; 1 Hz) was recorded in anesthetized rats. TS evoked a baseline reflex activity, whereas RS produced SRP, which was abolished by intrathecal OxA (30 nM, 10 mul). Intrathecal SB-408124 (10 muM, 10 mul), an OX-1 antagonist, reversed the abolition on SRP caused by OxA. Although there is, so far, no NR2A- and NR2B-specific agonist available, N-methyl-d-aspartate (NMDA) reversed the abolition on the RS-induced SRP caused by the co-administration of OxA and Co-101244 (30 nM, 10 mul; an NMDA NR2B subunit antagonist), but it did not reverse the abolition by the co-administration of OxA and PPPA (300 nM, 10 mul; an NMDA NR2A subunit antagonist). In conclusion, the activation of descending orexinergic fibers may inhibit the repetitive afferent input-induced central sensitization of pelvic-urethral reflex activity and urethra hyperactivity, indicating that spinal orexinergic neural transmission may be a novel target for the treatment of patients with neuropathetic or postinflammatory pain of pelvic origin.
Collapse
Affiliation(s)
- Hsien-Yu Peng
- Department of Physiology, College of Medicine, Chung-Shan Medical University Hospital, 110, Chang-Kuo North Rd., Section 1, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pan SF, Peng HY, Chen CC, Chen MJ, Lee SD, Cheng CL, Shyu JC, Liao JM, Chen GD, Lin TB. Nicotine-activated descending facilitation on spinal NMDA-dependent reflex potentiation from pontine tegmentum in rats. Am J Physiol Renal Physiol 2008; 294:F1195-204. [DOI: 10.1152/ajprenal.00539.2007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This study was conducted to investigate the possible neurotransmitter that activates the descending pathways coming from the dorsolateral pontine tegmentum (DPT) to modulate spinal pelvic-urethra reflex potentiation. External urethra sphincter electromyogram (EUSE) activity in response to test stimulation (TS, 1/30 Hz) and repetitive stimulation (RS, 1 Hz) on the pelvic afferent nerve of 63 anesthetized rats were recorded with or without microinjection of nicotinic cholinergic receptor (nAChR) agonists, ACh and nicotine, to the DPT. TS evoked a baseline reflex activity with a single action potential (1.00 ± 0.00 spikes/stimulation, n = 40), whereas RS produced a long-lasting reflex potentiation (16.14 ± 0.96 spikes/stimulation, n = 40) that was abolished by d-2-amino-5-phosphonovaleric acid (1.60 ± 0.89 spikes/stimulation, n = 40) and was attenuated by 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo (F) quinoxaline (7.10 ± 0.84 spikes/stimulation, n = 40). ACh and nicotine microinjections to DPT both produced facilitation on the RS-induced reflex potentiation (23.57 ± 2.23 and 28.29 ± 2.36 spikes/stimulation, P < 0.01, n = 10 and 20, respectively). Pretreatment of selective nicotinic receptor antagonist, chlorisondamine, reversed the facilitation on RS-induced reflex potentiation caused by nicotine (19.41 ± 1.21 spikes/stimulation, P < 0.01, n = 10) Intrathecal WAY-100635 and spinal transection at the T1level both abolished the facilitation on reflex potentiation resulting from the DPT nicotine injection (12.86 ± 3.13 and 15.57 ± 1.72 spikes/stimulation, P < 0.01, n = 10 each). Our findings suggest that activation of nAChR at DPT may modulate N-methyl-d-aspartic acid-dependent reflex potentiation via descending serotonergic neurotransmission. This descending modulation may have physiological/pathological relevance in the neural controls of urethral closure.
Collapse
|
13
|
Peng HY, Cheng YW, Lee SD, Ho YC, Chou D, Chen GD, Cheng CL, Hsu TH, Tung KC, Lin TB. Glutamate-mediated spinal reflex potentiation involves ERK 1/2 phosphorylation in anesthetized rats. Neuropharmacology 2008; 54:686-98. [DOI: 10.1016/j.neuropharm.2007.11.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 11/20/2007] [Accepted: 11/28/2007] [Indexed: 11/24/2022]
|
14
|
Chen GD, Peng ML, Wang PY, Lee SD, Chang HM, Pan SF, Chen MJ, Tung KC, Lai CY, Lin TB. Calcium/calmodulin-dependent kinase II mediates NO-elicited PKG activation to participate in spinal reflex potentiation in anesthetized rats. Am J Physiol Regul Integr Comp Physiol 2007; 294:R487-93. [PMID: 18046020 DOI: 10.1152/ajpregu.00600.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calcium/calmodulin protein kinase (CaMK)-dependent nitric oxide (NO) and the downstream intracellular messenger cGMP, which is activated by soluble guanylate cyclase (sGC), are believed to induce long-term changes in efficacy of synapses through the activation of protein kinase G (PKG). The aim of this study was to examine the involvement of the CaMKII-dependent NO/sGC/PKG pathway in a novel form of repetitive stimulation-induced spinal reflex potentiation (SRP). A single-pulse test stimulation (TS; 1/30 Hz) on the afferent nerve evoked a single action potential, while repetitive stimulation (RS; 1 Hz) induced a long-lasting SRP that was abolished by a selective Ca(2+)/CaMKII inhibitor, autocamtide 2-related inhibitory peptide (AIP). Such an inhibitory effect was reversed by a relative excess of nitric oxide synthase (NOS) substrate, L-arginine. In addition, the RS-induced SRP was abolished by pretreatment with the NOS inhibitor, N(G)-nitro-L-arginine-methyl ester (L-NAME). The sGC activator, protoporphyrin IX (PPIX), reversed the blocking effect caused by L-NAME. On the other hand, a sGC blocker, 1H-[1, 2, 4]oxadiazolo[4, 3-alpha]quinoxalin-1-one (ODQ), abolished the RS-induced SRP. Intrathecal applications of the membrane-permeable cGMP analog, 8-bromoguanosine 3',5'-cyclic monophosphate sodium salt monohydrate (8-Br-cGMP), reversed the blocking effect on the RS-induced SRP elicited by the ODQ. Our findings suggest that a CaMKII-dependent NO/sGC/PKG pathway is involved in the RS-induced SRP, which has pathological relevance to hyperalgesia and allodynia.
Collapse
Affiliation(s)
- Gin-Den Chen
- Department of Physiology, College of Medicine, Chung-Shan Medical University, No. 110 Chang-Kuo North Road Section 1, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen GD, Peng HY, Tung KC, Cheng CL, Chen YJ, Liao JM, Ho YC, Pan SF, Chen MJ, Lin TB. Descending facilitation of spinal NMDA-dependent reflex potentiation from pontine tegmentum in rats. Am J Physiol Renal Physiol 2007; 293:F1115-22. [PMID: 17634400 DOI: 10.1152/ajprenal.00135.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was conducted to investigate whether dorsolateral pontine tegmentum stimulation modulates spinal reflex potentiation (SRP) and whether serotonergic neurotransmission is involved in such a modulation. Reflex activities of the external urethra sphincter (EUS) electromyogram in response to a test stimulation (TS; 1/30 Hz) or repetitive stimulation (RS; 1 Hz) on the pelvic afferent nerve in 35 anesthetized rats were recorded with/without synchronized train pontine stimulation (PS; 300 Hz, 30 ms) and/or intrathecal administrations of 10 μl of 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo (F) quinoxaline (NBQX; 100 μM), d-2-amino-5-phosphonovalerate (APV; 100 μM), N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]- N-(2-pyridinyl) cyclohexanecarboxamide trihydrochloride (WAY 100635; 100 μM), and 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT; 100 μM). The TS evoked a single action potential (1.00 ± 0.00 spikes/stimulation), while the RS produced a long-lasting SRP (16.12 ± 1.59 spikes/stimulation) that was abolished by APV (1.57 ± 0.29 spikes/stimulation) and was attenuated by NBQX (7.42 ± 0.57 spikes/stimulation). Synchronized train PS with RS (PS+RS) produced facilitation in RS-induced SRP (25.17 ± 2.21 spikes/stimulation). Intrathecal WAY 100635 abolished the facilitation in SRP as a result of the synchronized PS (14.66 ± 1.58 spikes/stimulation). On the other hand, intrathecal 8-OH-DPAT elicited facilitation in the RS-induced SRP (25.16 ± 1.05 spikes/stimulation) without synchronized PS. Our findings suggest that dorsolateral pontine tegmentum may modulate N-methyl-d-aspartic acid-dependent SRP via descending serotonergic neurotransmission. This descending modulation may have physiological/pharmacological relevance in the neural controls of urethral closure.
Collapse
Affiliation(s)
- Gin-Den Chen
- Department of Obstetrics and Gynecology, Chung-Shan Medical University Hospital, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|