1
|
Blanco G, Xue J, Thomas L, Dominguez Rieg JA, Sun D, Assmus A, Fenton RA, Rieg T. Lack of renal NHE1 exacerbates lithium-induced nephrogenic diabetes insipidus. Acta Physiol (Oxf) 2025; 241:e70029. [PMID: 40123120 DOI: 10.1111/apha.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025]
Abstract
AIMS The sodium-hydrogen exchanger isoform 1 (NHE1) is important for transepithelial Na+/H+ transport, intracellular pH, and cell volume regulation. NHE1 also transports Li+, preferably compared to NHE3, and the lack of NHE3 does not affect renal Li+ clearance. Therefore, we hypothesized that NHE1 plays a critical role in mediating renal Li+ effects. METHODS We generated mice lacking NHE1 in epithelial cells throughout the kidney tubule/collecting duct (NHE1KS-KO). Physiological phenotyping of NHE1loxlox and NHE1KS-KO mice was performed under a control diet and after mice received a LiCl-containing diet for 4 weeks. Tissue was harvested at baseline and at the end of the experimental period for quantification of NHE1 and aquaporin-2 abundances. RESULTS In NHE1loxlox mice, NHE1 localized to the basolateral membrane of the distal parts of the nephron and collecting duct (principal and intercalated cells). No NHE1 was observed in tubules or collecting ducts of NHE1KS-KO mice, and no physiological differences were observed between genotypes under baseline conditions. While both genotypes developed a urinary concentrating defect in response to Li+, NHE1KS-KO mice drank twice as much, and their urine osmolality was twice as dilute compared with NHE1loxlox mice. This was associated with greater hypernatremia in NHE1KS-KO mice. Reduced AQP2 and phosphorylation at serine 256 were observed in NHE1KS-KO mice. In association with this, AQP2 was more broadly distributed throughout the cytoplasm of NHE1KS-KO mice, relative to the defined apical membrane AQP2 distribution seen in NHE1loxlox animals. CONCLUSION Lack of NHE1 interferes with the Li+ handling in principal cells, resulting in exacerbated Li+-induced NDI.
Collapse
Affiliation(s)
- Gabriella Blanco
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jianxiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Linto Thomas
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- James A. Haley Veterans' Hospital, Tampa, Florida, USA
| | - Jessica A Dominguez Rieg
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- James A. Haley Veterans' Hospital, Tampa, Florida, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Adrienne Assmus
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- James A. Haley Veterans' Hospital, Tampa, Florida, USA
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
2
|
Wagner CA. Beyond SGLT2: proximal tubule transporters as potential drug targets for chronic kidney disease. Nephrol Dial Transplant 2025; 40:i18-i28. [PMID: 39907544 DOI: 10.1093/ndt/gfae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Indexed: 02/06/2025] Open
Abstract
The kidneys produce daily about 180 liters of urine but only about 2 liters are excreted. The proximal tubule plays an important role in reabsorbing the majority of filtered urine and many metabolites such as sugars, amino acids, salts or phosphate that are contained in this large volume. Reabsorption of these important metabolites is mediated by a diverse group of highly specialized transport proteins. Another group of transport proteins in the proximal tubule is responsible for the active secretion of metabolic waste products or toxins and drugs into urine. All these transporters have in common that they are directly linked to kidney metabolism and indirectly to whole-body metabolism and functions. In recent years, it has become evident that modulation of these transporters may influence the onset, progression and consequences of kidney disease. This review summarizes recent developments in this field and discusses some examples of drugs already in clinical use or in development. The examples include inhibitors of sugar transporters (SGLT2 inhibitors) that are successfully used in patients with kidney disease, diabetes or heart failure. Likewise, indirect inhibitors (acetazolamide) of an transporter absorbing sodium in exchange for protons (NHE3) are used mostly in patients with heart failure or for prevention of high altitude disease, while direct inhibitors show promise in preclinical studies to reduce damage in episodes of acute kidney disease or high blood pressure. Modulators of transporters mediating the excretion of urate have been used in patients with gout and are also discussed to prevent kidney disease. Novel drugs in development target transporters for phosphate, amino acids, or toxin and drug excretion and may be helpful for specific conditions associated with kidney disease. The advantages and challenges associated with these (novel) drugs targeting proximal tubule transport are discussed. ABSTRACT The proximal tubule is responsible for reabsorbing about 60% of filtered solutes and water and is critical for the secretion of metabolic waste products, drugs and toxins. A large number of highly specialized ion channels and transport proteins belonging to the SLC and ABC transporter families are involved. Their activity is directly or indirectly linked to ATP consumption and requires large quantities of energy and oxygen supply. Moreover, the activity of these transporters is often coupled to the movement of Na+ ions thus influencing also salt and water balance, as well as transport and regulatory processes in downstream segments. Because of their relevance for systemic ion balance, for renal metabolism or for affecting regulatory processes, proximal tubule transporters are attractive targets for existing drug and for novel strategies to reduce kidney disease progression or to alleviate the consequences of decreased kidney function. In this review, the relevance of some major proximal tubule transport systems as drug targets in individuals with chronic kidney disease (CKD) is discussed. Inhibitors of the sodium-glucose cotransporter 2, SGLT2, are now part of standard therapy in patients with CKD and/or heart failure. Also, indirect inhibition of Na+/H+-exchangers by carbonic anhydrase inhibitors and uricosuric drugs have been used for decades. Inhibition of phosphate and amino acid transporters have recently been proposed as novel principles to remove excess phosphate or to protect the proximal tubule metabolically, respectively. In addition, organic cation and anion transporters involved in drug and toxin excretion may serve as targets of new drugs. The advantages and challenges associated with (novel) drugs targeting proximal tubule transport are discussed.
Collapse
Affiliation(s)
- Carsten A Wagner
- University of Zurich - Institute of Physiology, Zurich, Switzerland
| |
Collapse
|
3
|
Poulsen SB, Murali SK, Thomas L, Assmus A, Rosenbæk LL, Nielsen R, Dimke H, Rieg T, Fenton RA. Genetic deletion of the kidney sodium/proton exchanger-3 (NHE3) does not alter calcium and phosphate balance due to compensatory responses. Kidney Int 2025; 107:280-295. [PMID: 39089578 DOI: 10.1016/j.kint.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
The sodium/proton exchanger-3 (NHE3) plays a major role in acid-base and extracellular volume regulation and is also implicated in calcium homeostasis. As calcium and phosphate balances are closely linked, we hypothesized that there was a functional link between kidney NHE3 activity, calcium, and phosphate balance. Therefore, we examined calcium and phosphate homeostasis in kidney tubule-specific NHE3 knockout mice (NHE3loxloxPax8 mice). Compared to controls, these knockout mice were normocalcemic with no significant difference in urinary calcium excretion or parathyroid hormone levels. Thiazide-induced hypocalciuria was less pronounced in the knockout mice, in line with impaired proximal tubule calcium transport. Knockout mice had greater furosemide-induced calciuresis and distal tubule calcium transport pathways were enhanced. Despite lower levels of the sodium/phosphate cotransporters (NaPi)-2a and -2c, knockout mice had normal plasma phosphate, sodium-dependent 32Phosphate uptake in proximal tubule membrane vesicles and urinary phosphate excretion. Intestinal phosphate uptake was unchanged. Low dietary phosphate reduced parathyroid hormone levels and increased NaPi-2a and -2c abundances in both genotypes, but NaPi-2c levels remained lower in the knockout mice. Gene expression profiling suggested proximal tubule remodeling in the knockout mice. Acutely, indirect NHE3 inhibition using the SGLT2 inhibitor empagliflozin did not affect urinary calcium and phosphate excretion. No differences in femoral bone density or architecture were detectable in the knockout mice. Thus, a role for kidney NHE3 in calcium homeostasis can be unraveled by diuretics, but NHE3 deletion in the kidneys has no major effects on overall calcium and phosphate homeostasis due, at least in part, to compensating mechanisms.
Collapse
Affiliation(s)
- Søren B Poulsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sathish K Murali
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Linto Thomas
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Adrienne Assmus
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lena L Rosenbæk
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA; James A. Haley Veterans' Hospital, Tampa, Florida, USA.
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
4
|
Thomas L, Dissanayake LV, Tahmasbi M, Staruschenko A, Al-Masri S, Dominguez Rieg JA, Rieg T. Vitamin D 3 suppresses Npt2c abundance and differentially modulates phosphate and calcium homeostasis in Npt2a knockout mice. Sci Rep 2024; 14:16997. [PMID: 39043847 PMCID: PMC11266651 DOI: 10.1038/s41598-024-67839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Vitamin D3 is clinically used for the treatment of vitamin D3 deficiency or osteoporosis, partially because of its role in regulating phosphate (Pi) and calcium (Ca2+) homeostasis. The renal sodium-phosphate cotransporter 2a (Npt2a) plays an important role in Pi homeostasis; however, the role of vitamin D3 in hypophosphatemia has never been investigated. We administered vehicle or vitamin D3 to wild-type (WT) mice or hypophosphatemic Npt2a-/- mice. In contrast to WT mice, vitamin D3 treatment increased plasma Pi levels in Npt2a-/- mice, despite similar levels of reduced parathyroid hormone and increased fibroblast growth factor 23. Plasma Ca2+ was increased ~ twofold in both genotypes. Whereas WT mice were able to increase urinary Pi and Ca2+/creatinine ratios, in Npt2a-/- mice, Pi/creatinine was unchanged and Ca2+/creatinine drastically decreased, coinciding with the highest kidney Ca2+ content, highest plasma creatinine, and greatest amount of nephrocalcinosis. In Npt2a-/- mice, vitamin D3 treatment completely diminished Npt2c abundance, so that mice resembled Npt2a/c double knockout mice. Abundance of intestinal Npt2b and claudin-3 (tight junctions protein) were reduced in Npt2a-/- only, the latter might facilitate the increase in plasma Pi in Npt2a-/- mice. Npt2a might function as regulator between renal Ca2+ excretion and reabsorption in response to vitamin D3.
Collapse
Affiliation(s)
- Linto Thomas
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- James A. Haley Veterans' Hospital, Tampa, FL, USA
| | - Lashodya V Dissanayake
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Maryam Tahmasbi
- Department of Pathology and Cell Biology, University of South Florida, Tampa, FL, USA
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- James A. Haley Veterans' Hospital, Tampa, FL, USA
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, USA
| | - Sima Al-Masri
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jessica A Dominguez Rieg
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- James A. Haley Veterans' Hospital, Tampa, FL, USA
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, USA
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
- James A. Haley Veterans' Hospital, Tampa, FL, USA.
- Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
5
|
Abstract
Inorganic phosphate (Pi) is an essential component of many biologically important molecules such as DNA, RNA, ATP, phospholipids, or apatite. It is required for intracellular phosphorylation signaling events and acts as pH buffer in intra- and extracellular compartments. Intestinal absorption, uptake into cells, and renal reabsorption depend on a set of different phosphate transporters from the SLC20 (PiT transporters) and SLC34 (NaPi transporters) gene families. The physiological relevance of these transporters is evident from rare monogenic disorders in humans affecting SLC20A2 (Fahr's disease, basal ganglia calcification), SLC34A1 (idiopathic infantile hypercalcemia), SLC34A2 (pulmonary alveolar microlithiasis), and SLC34A3 (hereditary hypophosphatemic rickets with hypercalciuria). SLC34 transporters are inhibited by millimolar concentrations of phosphonoformic acid or arsenate while SLC20 are relatively resistant to these compounds. More recently, a series of more specific and potent drugs have been developed to target SLC34A2 to reduce intestinal Pi absorption and to inhibit SLC34A1 and/or SLC34A3 to increase renal Pi excretion in patients with renal disease and incipient hyperphosphatemia. Also, SLC20 inhibitors have been developed with the same intention. Some of these substances are currently undergoing preclinical and clinical testing. Tenapanor, a non-absorbable Na+/H+-exchanger isoform 3 inhibitor, reduces intestinal Pi absorption likely by indirectly acting on the paracellular pathway for Pi and has been tested in several phase III trials for reducing Pi overload in patients with renal insufficiency and dialysis.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to highlight the publications from the prior 12-18 months that have contributed significant advances in the field of renal phosphate handling. RECENT FINDINGS The discoveries include new mechanisms for the trafficking and expression of the sodium phosphate cotransporters; direct link between phosphate uptake and intracellular metabolic pathways; interdependence between proximal tubule transporters; and the persistent renal expression of phosphate transporters in chronic kidney disease. SUMMARY Discovery of new mechanisms for trafficking and regulation of expression of phosphate transporters suggest new targets for the therapy of disorders of phosphate homeostasis. Demonstration of stimulation of glycolysis by phosphate transported into a proximal tubule cell expands the scope of function for the type IIa sodium phosphate transporter from merely a mechanism to reclaim filtered phosphate to a regulator of cell metabolism. This observation opens the door to new therapies for preserving kidney function through alteration in transport. The evidence for persistence of active renal phosphate transport even with chronic kidney disease upends our assumptions of how expression of these transporters is regulated, suggests the possibility of alternative functions for the transporters, and raises the possibility of new therapies for phosphate retention.
Collapse
Affiliation(s)
- Eleanor Lederer
- Assistant Chief Medical Services, Co-Director NODES Program, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Division of Nephrology, University of Texas Southwestern Medical Center, Medical Services for Research, NODES Program, VA North Texas Healthcare Services, Dallas, Texas, USA
| |
Collapse
|
7
|
Regulation of FGF23 production and phosphate metabolism by bone-kidney interactions. Nat Rev Nephrol 2023; 19:185-193. [PMID: 36624273 DOI: 10.1038/s41581-022-00665-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2022] [Indexed: 01/11/2023]
Abstract
The bone-derived hormone fibroblast growth factor 23 (FGF23) functions in concert with parathyroid hormone (PTH) and the active vitamin D metabolite, 1,25(OH)2 vitamin D (1,25D), to control phosphate and calcium homeostasis. A rise in circulating levels of phosphate and 1,25D leads to FGF23 production in bone. Circulating FGF23 acts on the kidney by binding to FGF receptors and the co-receptor α-Klotho to promote phosphaturia and reduce circulating 1,25D levels. Various other biomolecules that are produced by the kidney, including lipocalin-2, glycerol 3-phosphate, 1-acyl lysophosphatidic acid and erythropoietin, are involved in the regulation of mineral metabolism via effects on FGF23 synthesis in bone. Understanding of the molecular mechanisms that control FGF23 synthesis in the bone and its bioactivity in the kidney has led to the identification of potential targets for novel interventions. Emerging approaches to target aberrant phosphate metabolism include small molecule inhibitors that directly bind FGF23 and prevent its interactions with FGF receptors and α-Klotho, FGF23 peptide fragments that act as competitive inhibitors of intact FGF23 and small molecule inhibitors of kidney sodium-phosphate cotransporters.
Collapse
|
8
|
Portales-Castillo I, Rieg T, Khalid SB, Nigwekar SU, Neyra JA. Physiopathology of Phosphate Disorders. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:177-188. [PMID: 36868732 PMCID: PMC10565570 DOI: 10.1053/j.akdh.2022.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 03/05/2023]
Abstract
Intracellular phosphate is critical for cellular processes such as signaling, nucleic acid synthesis, and membrane function. Extracellular phosphate (Pi) is an important component of the skeleton. Normal levels of serum phosphate are maintained by the coordinated actions of 1,25-dihydroxyvitamin D3, parathyroid hormone and fibroblast growth factor-23, which intersect in the proximal tubule to control the reabsorption of phosphate via the sodium-phosphate cotransporters Npt2a and Npt2c. Furthermore, 1,25-dihydroxyvitamin D3 participates in the regulation of dietary phosphate absorption in the small intestine. Clinical manifestations associated with abnormal serum phosphate levels are common and occur as a result of genetic or acquired conditions affecting phosphate homeostasis. For example, chronic hypophosphatemia leads to osteomalacia in adults and rickets in children. Acute severe hypophosphatemia can affect multiple organs leading to rhabdomyolysis, respiratory dysfunction, and hemolysis. Patients with impaired kidney function, such as those with advanced CKD, have high prevalence of hyperphosphatemia, with approximately two-thirds of patients on chronic hemodialysis in the United States having serum phosphate levels above the recommended goal of 5.5 mg/dL, a cutoff associated with excess risk of cardiovascular complications. Furthermore, patients with advanced kidney disease and hyperphosphatemia (>6.5 mg/dL) have almost one-third excess risk of death than those with phosphate levels between 2.4 and 6.5 mg/dL. Given the complex mechanisms that regulate phosphate levels, the interventions to treat the various diseases associated with hypophosphatemia or hyperphosphatemia rely on the understanding of the underlying pathobiological mechanisms governing each patient condition.
Collapse
Affiliation(s)
- Ignacio Portales-Castillo
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA; Endocrine Unit, Massachusetts General Hospital, and Harvard Medical School, Boston, MA
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL; James A. Haley Veterans' Hospital, Tampa, FL; Center for Hypertension and Kidney Research, University of South Florida, Tampa, FL
| | - Sheikh B Khalid
- Department of Internal Medicine, The Indus Hospital, Lahore Pakistan
| | - Sagar U Nigwekar
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA
| | - Javier A Neyra
- Department of Internal Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
9
|
Sodium phosphate cotransporter 2a inhibitors: potential therapeutic uses. Curr Opin Nephrol Hypertens 2022; 31:486-492. [PMID: 35894284 PMCID: PMC9387751 DOI: 10.1097/mnh.0000000000000828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Targeting sodium phosphate cotransporter 2a (Npt2a) offers a novel strategy for treating hyperphosphatemia in chronic kidney disease (CKD). Here we review recent studies on the efficacy of Npt2a inhibition, its plasma phosphate (Pi)-lowering effects, as well as potential "off-target" beneficial effects on cardiovascular consequences. RECENT FINDINGS Two novel Npt2a-selective inhibitors (PF-06869206 and BAY-767) have been developed. Pharmacological Npt2a inhibition shows a significant phosphaturic effect and consequently lowers plasma Pi and parathyroid hormone (PTH) levels regardless of CKD. However, plasma fibroblast growth factor 23 (FGF23), a master regulator of Pi homeostasis, shows inconsistent responses between these two inhibitors (no effect by PF-06869206 vs. reduction by BAY-767). In addition to the effects on Pi homeostasis, Npt2a inhibition also enhances urinary excretions of Na+, Cl-, and Ca2+, which is recapitulated in animal models with reduced kidney function. The effect of Npt2a inhibition by BAY-767 on vascular calcification has been studied, with positive results showing that oral treatment with BAY-767 (10 mg kg-1) attenuated the increases in plasma Pi and Ca2+ content in the aorta under the setting of vascular calcification induced by a pan-FGF receptor inhibitor. Together, Npt2a inhibition offers a promising therapeutic approach for treating hyperphosphatemia and reducing cardiovascular complications in CKD. SUMMARY Npt2a inhibition significantly increases urinary Pi excretion and lowers plasma Pi and PTH levels; moreover, it exerts pleiotropic "off-target" effects, providing a novel treatment for hyperphosphatemia and exhibiting beneficial potential for cardiovascular complications in CKD.
Collapse
|
10
|
Abstract
Phosphate homeostasis is dependent on the interaction and coordination of four main organ systems: thyroid/parathyroids, gastrointestinal tract, bone and kidneys, and three key hormonal regulators, 1,25-hydroxyvitamin D3, parathyroid hormone and FGF23 with its co- factor klotho. Phosphorus is a critical nutritional element for normal cellular function, but in excess can be toxic to tissues, particularly the vasculature. As phosphate, it also has an important interaction and inter-dependence with calcium and calcium homeostasis sharing some of the same controlling hormones, although this is not covered in our article. We have chosen to provide a current overview of phosphate homeostasis only, focusing on the role of two major organ systems, the gastrointestinal tract and kidneys, and their contribution to the control of phosphate balance. We describe in some detail the mechanisms of intestinal and renal phosphate transport, and compare and contrast their regulation. We also consider a significant example of phosphate imbalance, with phosphate retention, which is chronic kidney disease; why consequent hyperphosphatemia is important, and some of the newer means of managing it.
Collapse
Affiliation(s)
- Joanne Marks
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
| | - Robert J Unwin
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom; Department of Renal Medicine, University College London, London, United Kingdom.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Progressive forms of chronic kidney disease (CKD) exhibit kidney inflammation and fibrosis that drive continued nephron loss; however, factors responsible for the development of these common pathologic features remain poorly defined. Recent investigations suggest pathways involved in maintaining urinary phosphate excretion in CKD may be contributing to kidney function decline. This review provides an update on recent evidence linking altered phosphate homeostasis to CKD progression. RECENT FINDINGS High dietary phosphate intake and increased serum concentrations of fibroblast growth factor 23 (FGF23) both increase urinary phosphate excretion and are associated with increased risk of kidney function decline. Recent investigations have discovered high concentrations of tubular phosphate promote phosphate-based nanocrystal formation that drives tubular injury, cyst formation, and fibrosis. SUMMARY Studies presented in this review highlight important scientific discoveries that have molded our current understanding of the contribution of altered phosphate homeostasis to CKD progression. The collective observations from these investigations implicate phosphaturia, and the resulting formation of phosphate-based crystals in tubular fluid, as unique risk factors for kidney function decline. Developing a better understanding of the relationship between tubular phosphate handling and kidney pathology could result in innovative strategies for improving kidney outcomes in patients with CKD.
Collapse
Affiliation(s)
- Kyle P Jansson
- The Jared Grantham Kidney Institute
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Alan S L Yu
- The Jared Grantham Kidney Institute
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Jason R Stubbs
- The Jared Grantham Kidney Institute
- Department of Internal Medicine, Division of Nephrology & Hypertension, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
12
|
Xue J, Thomas L, Murali SK, Levi M, Fenton RA, Dominguez Rieg JA, Rieg T. Enhanced phosphate absorption in intestinal epithelial cell-specific NHE3 knockout mice. Acta Physiol (Oxf) 2022; 234:e13756. [PMID: 34978760 PMCID: PMC9286053 DOI: 10.1111/apha.13756] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/16/2021] [Accepted: 01/01/2022] [Indexed: 12/11/2022]
Abstract
Aims The kidneys play a major role in maintaining Pi homeostasis. Patients in later stages of CKD develop hyperphosphatemia. One novel treatment option is tenapanor, an intestinal‐specific NHE3 inhibitor. To gain mechanistic insight into the role of intestinal NHE3 in Pi homeostasis, we studied tamoxifen‐inducible intestinal epithelial cell‐specific NHE3 knockout (NHE3IEC‐KO) mice. Methods Mice underwent dietary Pi challenges, and hormones as well as urinary/plasma Pi were determined. Intestinal 33P uptake studies were conducted in vivo to compare the effects of tenapanor and NHE3IEC‐KO. Ex vivo Pi transport was measured in everted gut sacs and brush border membrane vesicles. Intestinal and renal protein expression of Pi transporters were determined. Results On the control diet, NHE3IEC‐KO mice had similar Pi homeostasis, but a ~25% reduction in FGF23 compared with control mice. Everted gut sacs and brush border membrane vesicles showed enhanced Pi uptake associated with increased Npt2b expression in NHE3IEC‐KO mice. Acute oral Pi loading resulted in higher plasma Pi in NHE3IEC‐KO mice. Tenapanor inhibited intestinal 33P uptake acutely but then led to hyper‐absorption at later time points compared to vehicle. In response to high dietary Pi, plasma Pi and FGF23 increased to higher levels in NHE3IEC‐KO mice which was associated with greater Npt2b expression. Reduced renal Npt2c and a trend for reduced Npt2a expression were unable to correct for higher plasma Pi. Conclusion Intestinal NHE3 has a significant contribution to Pi homeostasis. In contrast to effects described for tenapanor on Pi homeostasis, NHE3IEC‐KO mice show enhanced, rather than reduced, intestinal Pi uptake.
Collapse
Affiliation(s)
- Jianxiang Xue
- Department of Molecular Pharmacology and Physiology Morsani College of Medicine University of South Florida Tampa Florida USA
| | - Linto Thomas
- Department of Molecular Pharmacology and Physiology Morsani College of Medicine University of South Florida Tampa Florida USA
| | | | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology Georgetown University Washington District of Columbia USA
| | | | - Jessica A. Dominguez Rieg
- Department of Molecular Pharmacology and Physiology Morsani College of Medicine University of South Florida Tampa Florida USA
- James A. Haley Veterans' Hospital Tampa Florida USA
| | - Timo Rieg
- Department of Molecular Pharmacology and Physiology Morsani College of Medicine University of South Florida Tampa Florida USA
- James A. Haley Veterans' Hospital Tampa Florida USA
| |
Collapse
|
13
|
Npt2a as a target for treating hyperphosphatemia. Biochem Soc Trans 2022; 50:439-446. [PMID: 34994388 PMCID: PMC9022968 DOI: 10.1042/bst20211005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/04/2022]
Abstract
Hyperphosphatemia results from an imbalance in phosphate (Pi) homeostasis. In patients with and without reduced kidney function, hyperphosphatemia is associated with cardiovascular complications. The current mainstays in the management of hyperphosphatemia are oral Pi binder and dietary Pi restriction. Although these options are employed in patients with chronic kidney disease (CKD), they seem inadequate to correct elevated plasma Pi levels. In addition, a paradoxical increase in expression of intestinal Pi transporter and uptake may occur. Recently, studies in rodents targeting the renal Na+/Pi cotransporter 2a (Npt2a), responsible for ∼70% of Pi reabsorption, have been proposed as a potential treatment option. Two compounds (PF-06869206 and BAY-767) have been developed which are selective for Npt2a. These Npt2a inhibitors significantly increased urinary Pi excretion consequently lowering plasma Pi and PTH levels. Additionally, increases in urinary excretions of Na+, Cl− and Ca2+ have been observed. Some of these results are also seen in models of reduced kidney function. Responses of FGF23, a phosphaturic hormone that has been linked to the development of left ventricular hypertrophy in CKD, are ambiguous. In this review, we discuss the recent advances on the role of Npt2a inhibition on Pi homeostasis as well as other pleiotropic effects observed with Npt2a inhibition.
Collapse
|
14
|
Brooks HL. Kidney physiology: our future is now. Am J Physiol Renal Physiol 2021; 320:F1021-F1024. [PMID: 33870732 DOI: 10.1152/ajprenal.00098.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Heddwen L Brooks
- Department of Physiology, Sarver Heart Center, University of Arizona, Tucson, Arizona
| |
Collapse
|