1
|
Venneri M, Vezzi V, Di Mise A, Ranieri M, Centrone M, Tamma G, Nejsum LN, Valenti G. Novel signalling pathways in nephrogenic syndrome of inappropriate antidiuresis: functional implication of site-specific AQP2 phosphorylation. J Physiol 2024; 602:3169-3189. [PMID: 36823952 DOI: 10.1113/jp284039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is a rare X-linked disease caused by gain-of-function mutations of arginine vasopressin receptor 2 (V2R). Patients with NSIAD are characterized by the inability to excrete a free water load and by inappropriately increased urinary osmolality despite very low levels of plasma vasopressin, resulting in euvolaemic hyponatraemia. To dissect the signalling downstream V2R constitutively active variants, Flp-In T-REx Madin-Darby canine kidney (FTM) cells, stably transfected with V2R mutants (R137L, R137C and F229V) and AQP2-wt or non-phosphorylatable AQP2-S269A/AQP2-S256A, were used as cellular models. All three activating V2R mutations presented constitutive plasma membrane expression of AQP2-wt and significantly higher basal water permeability. In addition, V2R-R137L/C showed significantly higher activity of Rho-associated kinase (ROCK), a serine/threonine kinase previously suggested to be involved in S269-AQP2 phosphorylation downstream of these V2R mutants. Interestingly, FTM cells expressing V2R-R137L/C mutants and AQP2-S269A showed a significant reduction in AQP2 membrane abundance and a significant reduction in ROCK activity, indicating the crucial importance of S269-AQP2 phosphorylation in the gain-of-function phenotype. Conversely, V2R-R137L/C mutants retained the gain-of-function phenotype when AQP2-S256A was co-expressed. In contrast, cells expressing the F229V mutant and the non-phosphorylatable AQP2-S256A had a significant reduction in AQP2 membrane abundance along with a significant reduction in basal osmotic water permeability, indicating a crucial role of Ser256 for this mutant. These data indicate that the constitutive AQP2 trafficking associated with the gain-of-function V2R-R137L/C mutants causing NSIAD is protein kinase A independent and requires an intact Ser269 in AQP2 under the control of ROCK phosphorylation. KEY POINTS: Nephrogenic syndrome of inappropriate antidiuresis is caused by two constitutively active variant phenotypes of AVPR2, one sensitive to vaptans (V2R-F229V) and the other vaptan resistant (V2R-R137C/L). In renal cells, all three activating arginine vasopressin receptor 2 (V2R) variants display constitutive AQP2 plasma membrane expression and high basal water permeability. In cells expressing V2R-R137L/C mutants, disruption of the AQP2-S269 phosphorylation site caused the loss of the gain-of-function phenotype, which, in contrast, was retained in V2R-F229V-expressing cells. Cells expressing the V2R-F229V mutant were instead sensitive to disruption of the AQP2-S256 phosphorylation site. The serine/threonine kinase Rho-associated kinase (ROCK) was found to be involved in AQP2-S269 phosphorylation downstream of the V2R-R137L/C mutants. These findings might have clinical relevance for patients with nephrogenic syndrome of inappropriate antidiuresis.
Collapse
Affiliation(s)
- Maria Venneri
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Vanessa Vezzi
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Annarita Di Mise
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Marianna Ranieri
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Mariangela Centrone
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Grazia Tamma
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Giovanna Valenti
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
2
|
Ernstsen CV, Ranieri M, Login FH, Mahmoud IK, Therkildsen JR, Valenti G, Praetorius H, Nørregaard R, Nejsum LN. Regulation of renal aquaporin water channels in acute pyelonephritis. Am J Physiol Cell Physiol 2024; 326:C1451-C1461. [PMID: 38525539 DOI: 10.1152/ajpcell.00308.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/28/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Acute pyelonephritis (APN) is most frequently caused by uropathogenic Escherichia coli (UPEC), which ascends from the bladder to the kidneys during a urinary tract infection. Patients with APN have been reported to have reduced renal concentration capacity under challenged conditions, polyuria, and increased aquaporin-2 (AQP2) excretion in the urine. We have recently shown increased AQP2 accumulation in the plasma membrane in cell cultures exposed to E. coli lysates and in the apical plasma membrane of inner medullary collecting ducts in a 5-day APN mouse model. This study aimed to investigate if AQP2 expression in host cells increases UPEC infection efficiency and to identify specific bacterial components that mediate AQP2 plasma membrane insertion. As the transepithelial water permeability in the collecting duct is codetermined by AQP3 and AQP4, we also investigated whether AQP3 and AQP4 localization is altered in the APN mouse model. We show that AQP2 expression does not increase UPEC infection efficiency and that AQP2 was targeted to the plasma membrane in AQP2-expressing cells in response to the two pathogen-associated molecular patterns (PAMPs), lipopolysaccharide and peptidoglycan. In contrast to AQP2, the subcellular localizations of AQP1, AQP3, and AQP4 were unaffected both in lysate-incubated cell cultures and in the APN mouse model. Our finding demonstrated that cellular exposure to lipopolysaccharide and peptidoglycan can trigger the insertion of AQP2 in the plasma membrane revealing a new regulatory pathway for AQP2 plasma membrane translocation, which may potentially be exploited in intervention strategies.NEW & NOTEWORTHY Acute pyelonephritis (APN) is associated with reduced renal concentration capacity and increased aquaporin-2 (AQP2) excretion. Uropathogenic Escherichia coli (UPEC) mediates changes in the subcellular localization of AQP2 and we show that in vitro, these changes could be elicited by two pathogen-associated molecular patterns (PAMPs), namely, lipopolysaccharide and peptidoglycan. UPEC infection was unaltered by AQP2 expression and the other renal AQPs (AQP1, AQP3, and AQP4) were unaltered in APN.
Collapse
Affiliation(s)
| | - Marianna Ranieri
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Isra K Mahmoud
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Giovanna Valenti
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
| | | | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Login FH, Dam VS, Nejsum LN. Following the cellular itinerary of renal aquaporin-2 shuttling with 4.5x expansion microscopy. Am J Physiol Cell Physiol 2024; 326:C194-C205. [PMID: 38047301 DOI: 10.1152/ajpcell.00397.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
The shuttling of renal collecting duct aquaporin-2 (AQP2) between intracellular vesicles and the apical plasma membrane is paramount for regulation of renal water reabsorption. The binding of the circulating antidiuretic hormone arginine vasopressin (AVP) to the basolateral AVP receptor increases intracellular cAMP, which ultimately leads to AQP2 plasma membrane accumulation via a dual effect on AQP2 vesicle fusion with the apical plasma membrane and reduced AQP2 endocytosis. This AQP2 plasma membrane accumulation increases water reabsorption and consequently urine concentration. Conventional fluorescent microscopy provides a lateral resolution of ∼250 nm, which is insufficient to resolve the AQP2-containing endosomes/vesicles. Therefore, detailed information regarding the AQP2 vesicular population is still lacking. Newly established 4.5x Expansion Microscopy (ExM) can increase resolution to 60-70 nm. Using 4.5x ExM, we detected AQP2 vesicles/endosomes as small as 79 nm considering an average expansion factor of 4.3 for endosomes. Using different markers of the endosomal system provided detailed information of the cellular AQP2 itinerary upon changes in endogenous cAMP levels. Before cAMP elevation, AQP2 colocalized with early and recycling, but not late endosomes. Forskolin-induced cAMP increase was characterized by AQP2 insertion into the plasma membrane and AQP2 withdrawal from large perinuclear endosomes as well as some localization to lysosomal compartments. Forskolin washout promoted AQP2 endocytosis where AQP2 localized to not only early and recycling endosomes but also late endosomes and lysosomes indicating increased AQP2 degradation. Thus, our results show that 4.5 ExM is an attractive approach to obtain detailed information regarding AQP2 shuttling.NEW & NOTEWORTHY Renal aquaporin-2 (AQP2) imaged by expansion microscopy provides unprecedented 3-D information regarding the AQP2 itinerary in response to changes in cellular cAMP.
Collapse
Affiliation(s)
- Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Vibeke S Dam
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Ernstsen CV, Login FH, Schelde AB, Therkildsen J, Møller‐Jensen J, Nørregaard R, Prætorius H, Nejsum LN. Acute pyelonephritis: Increased plasma membrane targeting of renal aquaporin-2. Acta Physiol (Oxf) 2022; 234:e13760. [PMID: 34978750 DOI: 10.1111/apha.13760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/22/2021] [Accepted: 01/01/2022] [Indexed: 12/16/2022]
Abstract
AIM Aquaporin-2 (AQP2) shuttling between intracellular vesicles and the apical plasma membrane is pivotal in arginine vasopressin-mediated urine concentration and is dysregulated in multiple diseases associated with water balance disorders. Children and adults with acute pyelonephritis have a urinary concentration defect and studies in children revealed increased AQP2 excretion in the urine. This study aimed to analyse AQP2 trafficking in response to acute pyelonephritis. METHODS Immunofluorescence analysis was used to evaluate subcellular localization of AQP2 and AQP2-S256A (mimicking non-phosphorylated AQP2 on serine 256) in cells stimulated with bacterial lysates and of AQP2 and pS256-AQP2 in a mouse model at day 5 of acute pyelonephritis. Western blotting was used to evaluate AQP2 levels and AQP2 phosphorylation on S256 upon incubation with bacterial lysates. Time-lapse imaging was used to measure intracellular cAMP levels in response to incubation with bacterial lysates. RESULTS In cell cultures, lysates from both uropathogenic and nonpathogenic bacteria-mediated AQP2 plasma membrane targeting and increased AQP2 phosphorylation on serine 256 (pS256) without increasing cAMP levels. Both bacterial lysates induced plasma membrane targeting of AQP2-S256A. Immunofluorescence analysis of renal sections from mice after 5 days of acute pyelonephritis revealed apical plasma membrane targeting of AQP2 and pS256-AQP2 in inner medullary collecting ducts. CONCLUSION Uropathogenic bacteria induce AQP2 plasma membrane targeting in vitro and in vivo. cAMP levels were not elevated by the bacterial lysates and AQP2 plasma membrane targeting could occur without S256 phosphorylation. This may explain increased AQP2 excretion in the urine during acute pyelonephritis.
Collapse
Affiliation(s)
- Christina V. Ernstsen
- Department of Clinical Medicine Aarhus University Aarhus Denmark
- Department of Molecular Biology and Genetics Aarhus University Aarhus Denmark
| | | | | | | | - Jakob Møller‐Jensen
- Department of Biochemistry and Molecular Biology University of Southern Denmark Odense Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine Aarhus University Aarhus Denmark
| | | | - Lene N. Nejsum
- Department of Clinical Medicine Aarhus University Aarhus Denmark
| |
Collapse
|
5
|
Holst MR, Gammelgaard L, Aaron J, Login FH, Rajkumar S, Hahn U, Nejsum LN. Regulated exocytosis: Renal Aquaporin-2 3D Vesicular Network Organization and Association with F-actin. Am J Physiol Cell Physiol 2021; 321:C1060-C1069. [PMID: 34432538 DOI: 10.1152/ajpcell.00255.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulated vesicle exocytosis is a key response to extracellular stimuli in diverse physiological processes; including hormone regulated short-term urine concentration. In the renal collecting duct, the water channel aquaporin-2 localizes to the apical plasma membrane as well as small, sub-apical vesicles. In response to stimulation with the antidiuretic hormone, arginine vasopressin, aquaporin-2 containing vesicles fuse with the plasma membrane, which increases collecting duct water reabsorption and thus, urine concentration. The nano-scale size of these vesicles has limited analysis of their 3D organization. Using a cell system combined with 3D super resolution microscopy, we provide the first direct analysis of the 3D network of aquaporin-2 containing exocytic vesicles in a cell culture system. We show that aquaporin-2 vesicles are 43 ± 3nm in diameter, a size similar to synaptic vesicles, and that one fraction of AQP2 vesicles localized with the sub-cortical F-actin layer and the other localized in between the F-actin layer and the plasma membrane. Aquaporin-2 vesicles associated with F-actin and this association was enhanced in a serine 256 phospho-mimic of aquaporin-2, whose phosphorylation is a key event in antidiuretic hormone-mediated aquaporin-2 vesicle exocytosis.
Collapse
Affiliation(s)
- Mikkel R Holst
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Louis Gammelgaard
- Centre for Stochastic Geometry and Advanced Bioimaging, Department of Mathematics, Aarhus University, Aarhus, Denmark
| | - Jesse Aaron
- Advanced Imaging Center, Janelia Research Campus, Ashburn, VA, United States
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sampavi Rajkumar
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Ute Hahn
- Centre for Stochastic Geometry and Advanced Bioimaging, Department of Mathematics, Aarhus University, Aarhus, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Chen Z, Zhuang J, Yang Q, Yang J, Wang D, Yu L, Chen M. Direct effect of protein kinase A on four putative phosphorylation sites of aquaporin 2 in vitro. Biochem Biophys Res Commun 2020; 525:505-511. [PMID: 32113684 DOI: 10.1016/j.bbrc.2020.02.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 10/24/2022]
Abstract
The water channel aquaporin 2 (AQP2) has four phosphorylation sites at Ser256, Ser261, Ser264, and Ser269 in the C-terminus and these sites are important for AQP2 bioactivity. However, the exact role of each phosphorylation site still remains unclear. In this study, we generated unique AQP2 mutants in which we eliminated three phosphorylation sites but maintained only one site at the C-terminal end. The AQP2 phosphorylation of each single site by protein kinase A (PKA) was examined by in vitro translation and 32P incorporation. The ability of AQP2 trafficking to the cell membrane was evaluated by cell surface biotinylation. Among the four phosphorylation sites, AQP2 mutant with only S256 preserved the most ability of AQP2 to cell membrane expression. The AQP2 water permeability was measured in oocyte. Ser256 is the most important site for AQP2 function. Interestingly, Ser261 and Ser264 significantly inhibit AQP2 activity. Ser269 slightly but not statistically reduced AQP2 activity. Our data suggest that the four phosphorylation sites execute differential roles in concert in AQP2 functional regulation. AQP2 activity regulated by phosphorylation at Ser256 can be counterbalanced by phosphorylation at Ser261 and Ser264.
Collapse
Affiliation(s)
- Zhiyi Chen
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jieqiu Zhuang
- Division of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Qing Yang
- Division of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jianhuan Yang
- Division of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Dexuan Wang
- Division of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Linfang Yu
- Division of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Minguang Chen
- Division of Nephrology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
7
|
Tingskov SJ, Choi HJ, Holst MR, Hu S, Li C, Wang W, Frøkiær J, Nejsum LN, Kwon TH, Nørregaard R. Vasopressin-Independent Regulation of Aquaporin-2 by Tamoxifen in Kidney Collecting Ducts. Front Physiol 2019; 10:948. [PMID: 31447686 PMCID: PMC6695565 DOI: 10.3389/fphys.2019.00948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022] Open
Abstract
Arginine vasopressin (AVP) mediates water reabsorption in the kidney collecting ducts through regulation of aquaporin-2 (AQP2). Also, estrogen has been known to regulate AQP2. Consistently, we previously demonstrated that tamoxifen (TAM), a selective estrogen receptor modulator, attenuates the downregulation of AQP2 in lithium-induced nephrogenic diabetes insipidus (NDI). In this study, we investigated the AVP-independent regulation of AQP2 by TAM and the therapeutic effect of TAM on the dysregulation of AQP2 and impaired urinary concentration in a unilateral ureteral obstruction (UUO) model. Primary cultured inner medullary collecting duct (IMCD) cells from kidneys of male Sprague-Dawley rats were treated with TAM. Rats subjected to 7 days of UUO were treated with TAM by oral gavage. Changes of intracellular trafficking and expression of AQP2 were evaluated by quantitative PCR, Western blotting, and immunohistochemistry. TAM induced AQP2 protein expression and intracellular trafficking in primary cultured IMCD cells, which were independent of the vasopressin V2 receptor (V2R) and cAMP activation, the critical pathways involved in AVP-stimulated regulation of AQP2. TAM attenuated the downregulation of AQP2 in TGF-β treated IMCD cells and IMCD suspensions prepared from UUO rats. TAM administration in vivo attenuated the downregulation of AQP2, associated with an improvement of urinary concentration in UUO rats. In addition, TAM increased CaMKII expression, suggesting that calmodulin signaling pathway is likely to be involved in the TAM-mediated AQP2 regulation. In conclusion, TAM is involved in AQP2 regulation in a vasopressin-independent manner and improves urinary concentration by attenuating the downregulation of AQP2 and maintaining intracellular trafficking in UUO.
Collapse
Affiliation(s)
| | - Hyo-Jung Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Mikkel R Holst
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Shan Hu
- Zhongshan School of Medicine, Institute of Hypertension, Sun Yat-sen University, Guangzhou, China
| | - Chunling Li
- Zhongshan School of Medicine, Institute of Hypertension, Sun Yat-sen University, Guangzhou, China
| | - Weidong Wang
- Zhongshan School of Medicine, Institute of Hypertension, Sun Yat-sen University, Guangzhou, China
| | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|