1
|
You C, Guo J, Xun Y. Renal organic anion transporter 1: clinical relevance and the underlying mechanisms in chronic kidney disease. BMC Nephrol 2025; 26:93. [PMID: 39994543 PMCID: PMC11849263 DOI: 10.1186/s12882-025-03974-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Organic anion transporter 1 (OAT1), primarily found in the renal proximal tubule, is essential for the excretion of various uremic toxins that contribute to the onset and progression of chronic kidney disease (CKD). OAT1 also plays a vital role in the remote sensing and signaling network, facilitating the removal of metabolites through the kidneys. The function of OAT1 is impaired under conditions such as renal ischemia/reperfusion injury, oxidative stress, and fibrosis. Several transcription factors, post-translational modifications, and endocrine hormones control the activity and expression of OAT1. This review explores the unique contribution of OAT1 to the excretion of CKD-related UTs and the mechanisms involved.
Collapse
Affiliation(s)
- Changfang You
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jianchun Guo
- Department of Integrated Chinese and Western Medicine, Hangzhou Sixth People's Hospital, Xixi Hospital of Hangzhou, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yunhao Xun
- Department of Integrated Chinese and Western Medicine, Hangzhou Sixth People's Hospital, Xixi Hospital of Hangzhou, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Yu Z, You G. Recent Advances on the Regulations of Organic Anion Transporters. Pharmaceutics 2024; 16:1355. [PMID: 39598479 PMCID: PMC11597148 DOI: 10.3390/pharmaceutics16111355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
The organic anion transporter (OAT) family of over 10 members within the solute carrier (SLC) superfamily of membrane proteins plays critical roles in facilitating the flux of negatively charged molecules in and out of cell membranes. These anionic molecules include various endogenous and exogenous compounds such as signaling molecules, nutrients, metabolites, toxins, and drugs. Therefore, OATs actively contribute to the systemic homeostasis and efficacy of therapeutics. This article provides a brief overview on recent advances in the understanding of the regulatory mechanisms that control the expression and activity of OATs in both health and diseases.
Collapse
Affiliation(s)
| | - Guofeng You
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA;
| |
Collapse
|
3
|
Ni C, Hong M. Oligomerization of drug transporters: Forms, functions, and mechanisms. Acta Pharm Sin B 2024; 14:1924-1938. [PMID: 38799641 PMCID: PMC11119549 DOI: 10.1016/j.apsb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 05/29/2024] Open
Abstract
Drug transporters are essential players in the transmembrane transport of a wide variety of clinical drugs. The broad substrate spectra and versatile distribution pattern of these membrane proteins infer their pharmacological and clinical significance. With our accumulating knowledge on the three-dimensional structure of drug transporters, their oligomerization status has become a topic of intense study due to the possible functional roles carried out by such kind of post-translational modification (PTM). In-depth studies of oligomeric complexes formed among drug transporters as well as their interactions with other regulatory proteins can help us better understand the regulatory mechanisms of these membrane proteins, provide clues for the development of novel drugs, and improve the therapeutic efficacy. In this review, we describe different oligomerization forms as well as their structural basis of major drug transporters in the ATP-binding cassette and solute carrier superfamilies, summarize our current knowledge on the influence of oligomerization for protein expression level and transport function of these membrane proteins, and discuss the regulatory mechanisms of oligomerization. Finally, we highlight the challenges associated with the current oligomerization studies and propose some thoughts on the pharmaceutical application of this important drug transporter PTM.
Collapse
Affiliation(s)
- Chunxu Ni
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Teafatiller T, Perez O, Kitazawa M, Agrawal A, Subramanian VS. Nedd4-1 regulates human sodium-dependent vitamin C transporter-2 functional expression in neuronal and epithelial cells. J Nutr Biochem 2023; 120:109413. [PMID: 37423323 DOI: 10.1016/j.jnutbio.2023.109413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
The ubiquitin-proteasomal pathway regulates the functional expression of many membrane transporters in a variety of cellular systems. Nothing is currently known about the role of ubiquitin E3 ligase, neural precursor cell-expressed developmentally down-regulated gene 4 (Nedd4-1) and the proteasomal degradation pathway in regulating human vitamin C transporter-2 (hSVCT2) in neuronal cells. hSVCT2 mediates the uptake of ascorbic acid (AA) and is the predominantly expressed vitamin C transporter isoform in neuronal systems. Therefore, we addressed this knowledge gap in our study. Analysis of mRNA revealed markedly higher expression of Nedd4-1 in neuronal samples than that of Nedd4-2. Interestingly, Nedd4-1 expression in the hippocampus was higher in patients with Alzheimer's disease (AD) and age-dependently increased in the J20 mouse model of AD. The interaction of Nedd4-1 and hSVCT2 was confirmed by coimmunoprecipitation and colocalization. While the coexpression of Nedd4-1 with hSVCT2 displayed a significant decrease in AA uptake, siRNA-mediated knockdown of Nedd4-1 expression up-regulated the AA uptake. Further, we mutated a classical Nedd4 protein interacting motif ("PPXY") within the hSVCT2 polypeptide and observed markedly decreased AA uptake due to the intracellular localization of the mutated hSVCT2. Also, we determined the role of the proteasomal degradation pathway in hSVCT2 functional expression in SH-SY5Y cells and the results indicated that the proteasomal inhibitor (MG132) significantly up-regulated the AA uptake and hSVCT2 protein expression level. Taken together, our findings show that the regulation of hSVCT2 functional expression is at least partly mediated by the Nedd4-1 dependent ubiquitination and proteasomal pathways.
Collapse
Affiliation(s)
- Trevor Teafatiller
- Department of Medicine, University of California, Irvine, California, USA
| | - Oasis Perez
- Department of Medicine, University of California, Irvine, California, USA
| | - Masashi Kitazawa
- Department of Environmental and Occupational Health, University of California, Irvine, California, USA
| | - Anshu Agrawal
- Department of Medicine, University of California, Irvine, California, USA
| | | |
Collapse
|
5
|
Yong D, Green SR, Ghiabi P, Santhakumar V, Vedadi M. Discovery of Nedd4 auto-ubiquitination inhibitors. Sci Rep 2023; 13:16057. [PMID: 37749144 PMCID: PMC10520017 DOI: 10.1038/s41598-023-42997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
E3 ubiquitin ligases are critical to the protein degradation pathway by catalyzing the final step in protein ubiquitination by mediating ubiquitin transfer from E2 enzymes to target proteins. Nedd4 is a HECT domain-containing E3 ubiquitin ligase with a wide range of protein targets, the dysregulation of which has been implicated in myriad pathologies, including cancer and Parkinson's disease. Towards the discovery of compounds disrupting the auto-ubiquitination activity of Nedd4, we developed and optimized a TR-FRET assay for high-throughput screening. Through selective screening of a library of potentially covalent compounds, compounds 25 and 81 demonstrated apparent IC50 values of 52 µM and 31 µM, respectively. Tandem mass spectrometry (MS/MS) analysis confirmed that 25 and 81 were covalently bound to Nedd4 cysteine residues (Cys182 and Cys867). In addition, 81 also adducted to Cys627. Auto-ubiquitination assays of Nedd4 mutants featuring alanine substitutions for each of these cysteines suggested that the mode of inhibition of these compounds occurs through blocking the catalytic Cys867. The discovery of these inhibitors could enable the development of therapeutics for various diseases caused by Nedd4 E3 ligase dysregulation.
Collapse
Affiliation(s)
- Darren Yong
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Stuart R Green
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | - Pegah Ghiabi
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada
| | | | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON, M5G 1L7, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada.
| |
Collapse
|
6
|
Liang Z, You G. Chloroquine and Hydroxychloroquine, as Proteasome Inhibitors, Upregulate the Expression and Activity of Organic Anion Transporter 3. Pharmaceutics 2023; 15:1725. [PMID: 37376173 DOI: 10.3390/pharmaceutics15061725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Organic anion transporter 3 (OAT3), at the basolateral membrane of kidney proximal tubule cells, facilitates the elimination of numerous widely used drugs. Earlier investigation from our laboratory revealed that ubiquitin conjugation to OAT3 leads to OAT3 internalization from the cell surface, followed by degradation in the proteasome. In the current study, we examined the roles of chloroquine (CQ) and hydroxychloroquine (HCQ), two well-known anti-malarial drugs, in their action as proteasome inhibitors and their effects on OAT3 ubiquitination, expression, and function. We showed that in cells treated with CQ and HCQ, the ubiquitinated OAT3 was considerably enhanced, which correlated well with a decrease in 20S proteasome activity. Furthermore, in CQ- and HCQ-treated cells, OAT3 expression and OAT3-mediated transport of estrone sulfate, a prototypical substrate, were significantly increased. Such increases in OAT3 expression and transport activity were accompanied by an increase in the maximum transport velocity and a decrease in the degradation rate of the transporter. In conclusion, this study unveiled a novel role of CQ and HCQ in enhancing OAT3 expression and transport activity by preventing the degradation of ubiquitinated OAT3 in proteasomes.
Collapse
Affiliation(s)
- Zhengxuan Liang
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Guofeng You
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| |
Collapse
|
7
|
Xie W, Jin S, Wu Y, Xian H, Tian S, Liu DA, Guo Z, Cui J. Auto-ubiquitination of NEDD4-1 Recruits USP13 to Facilitate Autophagy through Deubiquitinating VPS34. Cell Rep 2021; 30:2807-2819.e4. [PMID: 32101753 DOI: 10.1016/j.celrep.2020.01.088] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/27/2019] [Accepted: 01/24/2020] [Indexed: 11/18/2022] Open
Abstract
The class III phosphoinositide 3-kinase vacuolar protein sorting 34 (VPS34) is a core protein of autophagy initiation, yet the regulatory mechanisms responsible for its stringent control remain poorly understood. Here, we report that the E3 ubiquitin ligase NEDD4-1 promotes the autophagy flux by targeting VPS34. NEDD4-1 undergoes lysine 29 (K29)-linked auto-ubiquitination at K1279 and serves as a scaffold for recruiting the ubiquitin-specific protease 13 (USP13) to form an NEDD4-1-USP13 deubiquitination complex, which subsequently stabilizes VPS34 to promote autophagy through removing the K48-linked poly-ubiquitin chains from VPS34 at K419. Knockout of either NEDD4-1 or USP13 increased K48-linked ubiquitination and degradation of VPS34, thus attenuating the formation of the autophagosome. Our results identify an essential role for NEDD4-1 in regulating autophagy, which provides molecular insights into the mechanisms by which ubiquitination regulates autophagy flux.
Collapse
Affiliation(s)
- Weihong Xie
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Shouheng Jin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Yaoxing Wu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Huifang Xian
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Shuo Tian
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Di-Ao Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
8
|
Ubiquitin-specific peptidase 8 regulates the trafficking and stability of the human organic anion transporter 1. Biochim Biophys Acta Gen Subj 2020; 1864:129701. [PMID: 32818533 DOI: 10.1016/j.bbagen.2020.129701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/20/2020] [Accepted: 08/05/2020] [Indexed: 11/23/2022]
Abstract
Background Organic anion transporter 1 (OAT1) plays a vital role in avoiding the potential toxicity of various anionic drugs through the involvement of kidney elimination. We previously demonstrated that ubiquitin conjugation to OAT1 led to OAT1 internalization from cell surface, followed by degradation. Ubiquitination is a dynamic process, where deubiquitination is catalyzed by a class of ubiquitin-specific peptidases. Methods The role of ubiquitin-specific peptidase 8 (USP8) in hOAT1 function, expression and ubiquitination was assessed by conducting transporter uptake assay, biotinylation assay and ubiquitination assay. Results We demonstrated that USP8 overexpression in hOAT1-expressing cells led to an increased hOAT1 transporter activity and expression, which correlated well with a reduced hOAT1 ubiquitination. Such phenomenon was not observed in inactive USP8 mutant-transfected cells. In addition, the knockdown of endogenous USP8 by USP8-specific siRNA resulted in an increased hOAT1 ubiquitination, which correlated well with a decrease in hOAT1 expression and transport activity. Biotinylation experiments demonstrated that USP8-induced increase in hOAT1 expression and transport activity occurred through a deceleration of the rates of hOAT1 internalization and degradation. Conclusions These results indicated the regulatory role of USP8 in OAT1 function, expression, trafficking, and stability. General significance USP8 could be a new target for modulating OAT1-mediated drug transport.
Collapse
|
9
|
Williams CR, Mistry M, Cheriyan AM, Williams JM, Naraine MK, Ellis CL, Mallick R, Mistry AC, Gooch JL, Ko B, Cai H, Hoover RS. Zinc deficiency induces hypertension by promoting renal Na + reabsorption. Am J Physiol Renal Physiol 2019; 316:F646-F653. [PMID: 30649891 DOI: 10.1152/ajprenal.00487.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Zn2+ deficiency (ZnD) is a common comorbidity of many chronic diseases. In these settings, ZnD exacerbates hypertension. Whether ZnD alone is sufficient to alter blood pressure (BP) is unknown. To explore the role of Zn2+ in BP regulation, adult mice were fed a Zn2+-adequate (ZnA) or a Zn2+-deficient (ZnD) diet. A subset of ZnD mice were either returned to the ZnA diet or treated with hydrochlorothiazide (HCTZ), a Na+-Cl- cotransporter (NCC) inhibitor. To reduce intracellular Zn2+ in vitro, mouse distal convoluted tubule cells were cultured in N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN, a Zn2+ chelator)- or vehicle (DMSO)-containing medium. To replete intracellular Zn2+, TPEN-exposed cells were then cultured in Zn2+-supplemented medium. ZnD promoted a biphasic BP response, characterized by episodes of high BP. BP increases were accompanied by reduced renal Na+ excretion and NCC upregulation. These effects were reversed in Zn2+-replete mice. Likewise, HCTZ stimulated natriuresis and reversed BP increases. In vitro, Zn2+ depletion increased NCC expression. Furthermore, TPEN promoted NCC surface localization and Na+ uptake activity. Zn2+ repletion reversed TPEN effects on NCC. These data indicate that 1) Zn2+ contributes to BP regulation via modulation of renal Na+ transport, 2) renal NCC mediates ZnD-induced hypertension, and 3) NCC is a Zn2+-regulated transporter that is upregulated with ZnD. This study links dysregulated renal Na+ handling to ZnD-induced hypertension. Furthermore, NCC is identified as a novel mechanism by which Zn2+ regulates BP. Understanding the mechanisms of ZnD-induced BP dysregulation may have an important therapeutic impact on hypertension.
Collapse
Affiliation(s)
- Clintoria R Williams
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University , Atlanta, Georgia.,Research Service, Atlanta Veterans Affairs Medical Center , Atlanta, Georgia.,Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, and College of Science and Mathematics, Wright State University , Dayton, Ohio
| | - Monisha Mistry
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University , Atlanta, Georgia
| | - Aswathy M Cheriyan
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University , Atlanta, Georgia
| | - Jasmine M Williams
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University , Atlanta, Georgia
| | - Meagan K Naraine
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University , Atlanta, Georgia
| | - Carla L Ellis
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University , Atlanta, Georgia
| | - Rickta Mallick
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University , Atlanta, Georgia.,Research Service, Atlanta Veterans Affairs Medical Center , Atlanta, Georgia
| | - Abinash C Mistry
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University , Atlanta, Georgia.,Research Service, Atlanta Veterans Affairs Medical Center , Atlanta, Georgia
| | - Jennifer L Gooch
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University , Atlanta, Georgia.,Research Service, Atlanta Veterans Affairs Medical Center , Atlanta, Georgia
| | - Benjamin Ko
- Department of Medicine, University of Chicago , Chicago, Illinois
| | - Hui Cai
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University , Atlanta, Georgia.,Research Service, Atlanta Veterans Affairs Medical Center , Atlanta, Georgia
| | - Robert S Hoover
- Division of Nephrology, Department of Medicine, and Department of Physiology, Emory University , Atlanta, Georgia.,Research Service, Atlanta Veterans Affairs Medical Center , Atlanta, Georgia
| |
Collapse
|
10
|
Luhtala S, Staff S, Kallioniemi A, Tanner M, Isola J. Clinicopathological and prognostic correlations of HER3 expression and its degradation regulators, NEDD4-1 and NRDP1, in primary breast cancer. BMC Cancer 2018; 18:1045. [PMID: 30367623 PMCID: PMC6204010 DOI: 10.1186/s12885-018-4917-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/08/2018] [Indexed: 12/17/2022] Open
Abstract
Background Human epidermal growth factor receptor HER3 (ErbB3), especially in association with its relative HER2 (ErbB2), is known as a key oncogene in breast tumour biology. Nonetheless, the prognostic relevance of HER3 remains controversial. NEDD4–1 and NRDP1 are signalling molecules closely related to the degradation of HER3 via ubiquitination. NEDD4–1 and NRDP1 have been reported to contribute to HER3-mediated signalling by regulating its localization and cell membrane retention. We studied correlations between HER3, NEDD4–1, and NRDP1 protein expression and their association with tumour histopathological characteristics and clinical outcomes. Methods The prevalence of immunohistochemically detectable expression profiles of HER3 (n = 177), NEDD4–1 (n = 145), and NRDP1 (n = 145) proteins was studied in primary breast carcinomas on archival formalin-fixed paraffin-embedded (FFPE) samples. Clinicopathological correlations were determined statistically using Pearson’s Chi-Square test. The Kaplan-Meier method, log-rank test (Mantel-Cox), and Cox regression analysis were utilized for survival analysis. Results HER3 protein was expressed in breast carcinomas without association with HER2 gene amplification status. Absence or low HER3 expression correlated with clinically aggressive features, such as triple-negative breast cancer (TNBC) phenotype, basal cell origin (cytokeratin 5/14 expression combined with ER negativity), large tumour size, and positive lymph node status. Low total HER3 expression was prognostic for shorter recurrence-free survival time in HER2-amplified breast cancer (p = 0.004, p = 0.020 in univariate and multivariate analyses, respectively). The majority (82.8%) of breast cancers demonstrated NEDD4–1 protein expression - while only a minor proportion (8.3%) of carcinomas expressed NRDP1. NEDD4–1 and NRDP1 expression were not associated with clinical outcomes in HER2-amplified breast cancer, irrespective of adjuvant trastuzumab therapy. Conclusions Low HER3 expression is suggested to be a valuable prognostic biomarker to predict recurrence in HER2-amplified breast cancer. Neither NEDD4–1 nor NRDP1 demonstrated relevance in prognostics or in the subclassification of HER2-amplified breast carcinomas. Electronic supplementary material The online version of this article (10.1186/s12885-018-4917-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Satu Luhtala
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland.
| | - Synnöve Staff
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland.,Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland
| | - Anne Kallioniemi
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Minna Tanner
- Department of Oncology, Tampere University Hospital, Tampere, Finland
| | - Jorma Isola
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Arvo Ylpön katu 34, 33520, Tampere, Finland
| |
Collapse
|
11
|
Huo X, Liu K. Renal organic anion transporters in drug-drug interactions and diseases. Eur J Pharm Sci 2017; 112:8-19. [PMID: 29109021 DOI: 10.1016/j.ejps.2017.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/10/2017] [Accepted: 11/01/2017] [Indexed: 12/17/2022]
Abstract
The kidney plays a vital role in maintaining systemic homeostasis. Active tubular secretion and reabsorption, which are mainly mediated by transporters, is an efficient mechanism for retaining glucose, amino acids, and other nutrients and for the clearance of endogenous waste products and xenobiotics. These substances are recognized by uptake transporters located in the basolateral and apical membranes of renal proximal tubule cells and are extracted from plasma and urine. Organic anion transporters (OATs) belong to the solute carrier (SLC) 22 superfamily and facilitate organic anions across the plasma membranes of renal proximal tubule cells. OATs are responsible for the transmembrane transport of anionic and zwitterionic organic molecules, including endogenous substances and many drugs. The alteration in OAT expression and function caused by diseases, drug-drug interactions (DDIs) or other issues can thus change the renal disposition of substrates, induce the accumulation of toxic metabolites, and lead to unexpected clinically outcome. This review summarizes the recent information regarding the expression, regulation, and substrate spectrum of OATs and discusses the roles of OATs in diseases and DDIs. These findings will enables us to have a better understanding of the related disease therapy and the potential risk of DDIs mediated by OATs.
Collapse
Affiliation(s)
- Xiaokui Huo
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China; College (Institute) of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian 116044, China; Key Laboratory of Pharmacokinetics and Transport of Liaoning Province, Dalian Medical University, Dalian 116044, China; College (Institute) of Integrative Medicine, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
12
|
Li Y, Revalde J, Paxton JW. The effects of dietary and herbal phytochemicals on drug transporters. Adv Drug Deliv Rev 2017; 116:45-62. [PMID: 27637455 DOI: 10.1016/j.addr.2016.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/10/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022]
Abstract
Membrane transporter proteins (the ABC transporters and SLC transporters) play pivotal roles in drug absorption and disposition, and thus determine their efficacy and safety. Accumulating evidence suggests that the expression and activity of these transporters may be modulated by various phytochemicals (PCs) found in diets rich in plants and herbs. PC absorption and disposition are also subject to the function of membrane transporter and drug metabolizing enzymes. PC-drug interactions may involve multiple major drug transporters (and metabolizing enzymes) in the body, leading to alterations in the pharmacokinetics of substrate drugs, and thus their efficacy and toxicity. This review summarizes the reported in vitro and in vivo interactions between common dietary PCs and the major drug transporters. The oral absorption, distribution into pharmacological sanctuaries and excretion of substrate drugs and PCs are considered, along with their possible interactions with the ABC and SLC transporters which influence these processes.
Collapse
|