1
|
Houillier P, Prot-Bertoye C. Autoimmune Tubulopathies. J Am Soc Nephrol 2025; 36:706-712. [PMID: 39786900 PMCID: PMC11975238 DOI: 10.1681/asn.0000000628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025] Open
Abstract
The renal tubule and collecting duct express a large number of proteins, all having putative immunoreactive motives. Therefore, all can be the target of pathogenic autoantibodies. However, autoimmune tubulopathies seem to be rare, and we hypothesize that they are underdiagnosed. This review summarizes the current knowledge on autoimmune tubulopathies. We elected to classify tubulopathies according to the segment that is targeted because this determines, at least in part, the phenotypic presentation. In the proximal tubule, autoantibodies can cause anti-brush border antibody disease, renal Fanconi syndrome, renal proximal tubular acidosis, or tubulointerstitial nephritis and uveitis syndrome. Autoantibodies targeting the thick ascending limb of the loop of Henle can cause either acquired Bartter syndrome or hypomagnesemia with hypercalciuria, whereas autoantibodies targeting the distal convoluted tubule can cause acquired Gitelman syndrome. Finally, renal distal tubular acidosis or nephrogenic diabetes insipidus can be caused by autoantibodies targeting the collecting duct. In most instances, the characterization of the autoantibodies remains incomplete and the pathogenesis of the disease obscure. We believe it is important to increase the awareness of physicians regarding autoantibody-mediated tubular diseases to have a better estimation of the prevalence and to improve the care to patients. A research effort to increase the understanding of the pathogenesis of autoantibodies-mediated tubular diseases is also hoped for.
Collapse
Affiliation(s)
- Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France; CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France; Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France; Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France; and Faculté de Médecine, Université Paris Cité, Paris, France
| | | |
Collapse
|
2
|
Ray A, Yang C, Stelloh C, Tutaj M, Liu P, Liu Y, Qiu Q, Auer PL, Lin CW, Widlansky ME, Geurts AM, Cowley AW, Liang M, Kwitek AE, Greene AS, Rao S. Chromatin State Maps of Blood Pressure-Relevant Renal Segments Reveal Potential Regulatory Role for SNPs. Hypertension 2025; 82:476-488. [PMID: 39723540 DOI: 10.1161/hypertensionaha.124.23873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Hypertension or elevated blood pressure (BP) is a worldwide clinical challenge and the leading primary risk factor for kidney dysfunctions, heart failure, and cerebrovascular disease. The kidney is a central regulator of BP by maintaining sodium-water balance. Multiple genome-wide association studies revealed that BP is a heritable quantitative trait, modulated by several genetic, epigenetic, and environmental factors. The SNPs identified in genome-wide association studies predominantly (>95%) reside within noncoding genomic regions, making it difficult to understand how they regulate BP. Given the central role of the kidney in regulating BP, we hypothesized that chromatin-accessible regions in renal tissue would be enriched for BP-associated single nucleotide polymorphisms. METHODS We manually dissected 2 important kidney segments that maintain the sodium-water balance: proximal tubules and medullary thick ascending limbs from the human and rat kidneys. To delineate their chromatin and transcriptomic profiles, we performed the assay for transposase-accessible chromatin and RNA sequencing, respectively. RESULTS The chromatin accessibility maps revealed the shared and unique cis-regulatory elements that modulate the chromatin accessibility in proximal tubule and medullary thick ascending limbs of humans and rats. We developed a visualization tool to compare the cross-species epigenomic maps to identify potential regulatory targets for hypertension pathogenesis. We also identified a significant enrichment of BP-associated single nucleotide polymorphisms (1064 for human proximal tubule and 1172 for human medullary thick ascending limbs) within accessible chromatin regions of both segments, including rs1173771 and rs1421811 at the NPR3 locus and rs1800470 at the TGFb1 locus. CONCLUSIONS Collectively, this study lays a foundation for interrogating how intergenic single nucleotide polymorphisms may regulate polygenic traits such as BP.
Collapse
Affiliation(s)
- Atrayee Ray
- Versiti Blood Research Institute, Milwaukee, WI (A.R., C.S., S.R.)
| | - Chun Yang
- Department of Physiology (C.Y., M.T., A.M.G., A.W.C., A.E.K.), Medical College of Wisconsin, Milwaukee
| | - Cary Stelloh
- Versiti Blood Research Institute, Milwaukee, WI (A.R., C.S., S.R.)
| | - Monika Tutaj
- Department of Physiology (C.Y., M.T., A.M.G., A.W.C., A.E.K.), Medical College of Wisconsin, Milwaukee
| | - Pengyuan Liu
- Department of Physiology, University of Arizona, Tucson (P.L., Y.L., Q.Q., M.L.)
| | - Yong Liu
- Department of Physiology, University of Arizona, Tucson (P.L., Y.L., Q.Q., M.L.)
| | - Qiongzi Qiu
- Department of Physiology, University of Arizona, Tucson (P.L., Y.L., Q.Q., M.L.)
| | - Paul L Auer
- The Institute for Health and Equity (P.L.A.), Medical College of Wisconsin, Milwaukee
| | - Chien-Wei Lin
- Division of Biostatistics, Data Science Institute (C.-W.L.), Medical College of Wisconsin, Milwaukee
| | | | - Aron M Geurts
- Department of Physiology (C.Y., M.T., A.M.G., A.W.C., A.E.K.), Medical College of Wisconsin, Milwaukee
| | - Allen W Cowley
- Department of Physiology (C.Y., M.T., A.M.G., A.W.C., A.E.K.), Medical College of Wisconsin, Milwaukee
| | - Mingyu Liang
- Department of Physiology, University of Arizona, Tucson (P.L., Y.L., Q.Q., M.L.)
| | - Anne E Kwitek
- Department of Physiology (C.Y., M.T., A.M.G., A.W.C., A.E.K.), Medical College of Wisconsin, Milwaukee
| | | | - Sridhar Rao
- Versiti Blood Research Institute, Milwaukee, WI (A.R., C.S., S.R.)
- Department of Pediatrics, Section of Hematology/Oncology/Transplantation (S.R.), Medical College of Wisconsin, Milwaukee
- Department of Cell Biology, Neurobiology, and Anatomy (S.R.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
3
|
Sohail SK, Jayatissa NU, Mejia R, Khan S, Chou CL, Yang CR, Knepper MA. A brief history of the cortical thick ascending limb: a systems-biology perspective. Am J Physiol Renal Physiol 2025; 328:F82-F94. [PMID: 39559981 PMCID: PMC11918357 DOI: 10.1152/ajprenal.00243.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/07/2024] [Accepted: 11/08/2024] [Indexed: 12/28/2024] Open
Abstract
Here, we review key events in the accrual of knowledge about the cortical thick ascending limb (CTAL) of the kidney, starting with its initial characterization by Maurice Burg in 1973. Burg's work showed that the CTAL actively reabsorbs NaCl and that, because its water permeability is virtually zero, it can lower the luminal NaCl concentration to a "static head" level well below blood levels. This process is central to the kidney's ability to excrete dilute urine in states of high water intake. Following Burg's original observations, Greger and Schlatter, working in the 1980s, identified the membrane transport processes responsible for transepithelial NaCl transport in the CTAL. In the 1990s, several investigators identified the key transporter genes and proteins at a molecular level by cDNA cloning. The successful completion of human and mouse genome sequencing projects at the turn of the century led to the development of transcriptomic and proteomic methodologies that allowed the identification of complete transcriptomes and proteomes of CTAL cells. Knowledge accrual was enhanced by the development of differential equation-based models of transport in the CTAL in the 2010s. Here, we used a simplified mathematical model of NaCl ("salt"), urea, and water transport in the CTAL to address three key questions about CTAL function: 1) What is the mechanism of Burg's "static head" phenomenon? 2) How does the kidney compensate for the very short length of the CTALs of juxtamedullary nephrons? 3) Which of the three isoforms of the apical Na-K-2Cl cotransporter (NKCC2) dominates functionally in the CTAL?NEW & NOTEWORTHY Here, we review key events in the accrual of knowledge about the cortical thick ascending limb (CTAL) of the kidney, starting with its initial characterization by Maurice Burg in 1973, and culminating with the application of systems biology techniques including mathematical modeling.
Collapse
Affiliation(s)
- Shahzad K Sohail
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Nipun U Jayatissa
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Raymond Mejia
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Shaza Khan
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Chin-Rang Yang
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
4
|
Shima H, Doi T, Yoshikawa Y, Okamoto T, Tashiro M, Inoue T, Okada K, Minakuchi J. The association between renal medullary and cortical fibrosis, stiffness, and concentrating capacity: an observational, single-center cross-sectional study. Clin Exp Nephrol 2024; 28:1290-1299. [PMID: 39098924 DOI: 10.1007/s10157-024-02538-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/05/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Fibrosis is a common final pathway leading to end-stage renal failure. As the renal medulla and cortex contain different nephron segments, we analyzed the factors associated with the progression of renal medullary and cortical fibrosis. METHODS A total of 120 patients who underwent renal biopsy at Kawashima Hospital between May 2019 and October 2022 were enrolled in this retrospective study. Renal medullary and cortical fibrosis and stiffness were evaluated using Masson's trichrome staining and shear wave elastography, respectively. Maximum urine osmolality in the Fishberg concentration test was also examined. RESULTS Medullary fibrosis was positively correlated with cortical fibrosis (p < 0.0001) and log-converted urinary β2-microglobulin (MG) (log urinary β2-MG) (p = 0.022) and negatively correlated with estimated glomerular filtration rate (eGFR) (p = 0.0002). Cortical fibrosis also correlated with log urinary β2-MG, eGFR, and maximum urine osmolality. Multivariate analysis revealed that cortical fibrosis levels (odds ratio [OR]: 1.063) and medullary stiffness (OR: 1.089) were significantly associated with medullar fibrosis (≧45%). The severe fibrosis group with both medullary fibrosis (≧45%) and cortical fibrosis (≧25%) had lower eGFR and maximum urine osmolality values and higher urinary β2-MG levels than the other groups. CONCLUSIONS Patients with disorders involving both renal medullary and cortical fibrosis had decreased maximum urine osmolality but had no abnormalities in the urinary concentrating capacities with either condition. Renal medullary and cortical fibrosis were positively correlated with urinary β2-MG, but not with urinary N-acetyl-beta-D-glucosaminidase.
Collapse
Affiliation(s)
- Hisato Shima
- Department of Kidney Disease, Kawashima Hospital, 6-1 Kitasakoichiban-Cho, Tokushima, Tokushima, 770-0011, Japan.
- Department of Nephrology and Hypertension, Kamei Hospital, 231 Terayama, Hachiman-Cho, Tokushima, 770-8070, Japan.
| | - Toshio Doi
- Department of Kidney Disease, Kawashima Hospital, 6-1 Kitasakoichiban-Cho, Tokushima, Tokushima, 770-0011, Japan
| | - Yukari Yoshikawa
- Department of Laboratory, Kawashima Hospital, 6-1 Kitasakoichiban-Cho, Tokushima, Tokushima, 770-0011, Japan
| | - Takuya Okamoto
- Department of Laboratory, Kawashima Hospital, 6-1 Kitasakoichiban-Cho, Tokushima, Tokushima, 770-0011, Japan
| | - Manabu Tashiro
- Department of Kidney Disease, Kawashima Hospital, 6-1 Kitasakoichiban-Cho, Tokushima, Tokushima, 770-0011, Japan
| | - Tomoko Inoue
- Department of Kidney Disease, Kawashima Hospital, 6-1 Kitasakoichiban-Cho, Tokushima, Tokushima, 770-0011, Japan
| | - Kazuyoshi Okada
- Department of Kidney Disease, Kawashima Hospital, 6-1 Kitasakoichiban-Cho, Tokushima, Tokushima, 770-0011, Japan
| | - Jun Minakuchi
- Department of Kidney Disease, Kawashima Hospital, 6-1 Kitasakoichiban-Cho, Tokushima, Tokushima, 770-0011, Japan
| |
Collapse
|
5
|
Bankir L, Crambert G, Vargas-Poussou R. The SLC6A18 Transporter Is Most Likely a Na-Dependent Glycine/Urea Antiporter Responsible for Urea Secretion in the Proximal Straight Tubule: Influence of This Urea Secretion on Glomerular Filtration Rate. Nephron Clin Pract 2024; 148:796-822. [PMID: 38824912 PMCID: PMC11651341 DOI: 10.1159/000539602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024] Open
Abstract
BACKGROUND Urea is the major end-product of protein metabolism in mammals. In carnivores and omnivores, a large load of urea is excreted daily in urine, with a concentration that is 30-100 times above that in plasma. This is important for the sake of water economy. Too little attention has been given to the existence of energy-dependent urea transport that plays an important role in this concentrating activity. SUMMARY This review first presents functional evidence for an energy-dependent urea secretion that occurs exclusively in the straight part of the proximal tubule (PST). Second, it proposes a candidate transmembrane transporter responsible for this urea secretion in the PST. SLC6A18 is expressed exclusively in the PST and has been identified as a glycine transporter, based on findings in SLC6A18 knockout mice. We propose that it is actually a glycine/urea antiport, secreting urea into the lumen in exchange for glycine and Na. Glycine is most likely recycled back into the cell via a transporter located in the brush border. Urea secretion in the PST modifies the composition of the tubular fluid in the thick ascending limb and, thus, contributes, indirectly, to influence the "signal" at the macula densa that plays a crucial role in the regulation of the glomerular filtration rate (GFR) by the tubulo-glomerular feedback. KEY MESSAGES Taking into account this secondary active secretion of urea in the mammalian kidney provides a new understanding of the influence of protein intake on GFR, of the regulation of urea excretion, and of the urine-concentrating mechanism.
Collapse
Affiliation(s)
- Lise Bankir
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228, Unité Métabolisme et Physiologie Rénale, Centre de Recherche des Cordeliers, Paris, France
| | - Gilles Crambert
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS EMR 8228, Unité Métabolisme et Physiologie Rénale, Centre de Recherche des Cordeliers, Paris, France
| | - Rosa Vargas-Poussou
- CNRS EMR 8228, Unité Métabolisme et Physiologie Rénale, Centre de Recherche des Cordeliers, Paris, France
- Service de Médecine Génomique des Maladies Rares, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte, MARHEA, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
6
|
Li H, Li D, Ledru N, Xuanyuan Q, Wu H, Asthana A, Byers LN, Tullius SG, Orlando G, Waikar SS, Humphreys BD. Transcriptomic, epigenomic, and spatial metabolomic cell profiling redefines regional human kidney anatomy. Cell Metab 2024; 36:1105-1125.e10. [PMID: 38513647 PMCID: PMC11081846 DOI: 10.1016/j.cmet.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 03/23/2024]
Abstract
A large-scale multimodal atlas that includes major kidney regions is lacking. Here, we employed simultaneous high-throughput single-cell ATAC/RNA sequencing (SHARE-seq) and spatially resolved metabolomics to profile 54 human samples from distinct kidney anatomical regions. We generated transcriptomes of 446,267 cells and chromatin accessibility profiles of 401,875 cells and developed a package to analyze 408,218 spatially resolved metabolomes. We find that the same cell type, including thin limb, thick ascending limb loop of Henle and principal cells, display distinct transcriptomic, chromatin accessibility, and metabolomic signatures, depending on anatomic location. Surveying metabolism-associated gene profiles revealed non-overlapping metabolic signatures between nephron segments and dysregulated lipid metabolism in diseased proximal tubule (PT) cells. Integrating multimodal omics with clinical data identified PLEKHA1 as a disease marker, and its in vitro knockdown increased gene expression in PT differentiation, suggesting possible pathogenic roles. This study highlights previously underrepresented cellular heterogeneity underlying the human kidney anatomy.
Collapse
Affiliation(s)
- Haikuo Li
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Dian Li
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicolas Ledru
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Qiao Xuanyuan
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Amish Asthana
- Department of Surgery, Atrium Health Wake Forest Baptist, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Lori N Byers
- Department of Surgery, Atrium Health Wake Forest Baptist, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Stefan G Tullius
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Giuseppe Orlando
- Department of Surgery, Atrium Health Wake Forest Baptist, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Sushrut S Waikar
- Section of Nephrology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA; Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
7
|
Brideau G, Cheval L, Griveau C, Ling WME, Lievre L, Crambert G, Müller D, Broćić J, Cherchame E, Houillier P, Prot-Bertoye C. Claudin-10 Expression and the Gene Expression Pattern of Thick Ascending Limb Cells. Int J Mol Sci 2024; 25:4008. [PMID: 38612818 PMCID: PMC11011785 DOI: 10.3390/ijms25074008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Many genomic, anatomical and functional differences exist between the medullary (MTAL) and the cortical thick ascending limb of the loop of Henle (CTAL), including a higher expression of claudin-10 (CLDN10) in the MTAL than in the CTAL. Therefore, we assessed to what extent the Cldn10 gene expression is a determinant of differential gene expression between MTAL and CTAL. RNAs extracted from CTAL and MTAL microdissected from wild type (WT) and Cldn10 knock out mice (cKO) were analyzed by RNAseq. Differential and enrichment analyses (GSEA) were performed with interactive R Shiny software. Between WT and cKO MTAL, 637 genes were differentially expressed, whereas only 76 were differentially expressed between WT and cKO CTAL. Gene expression patterns and GSEA analyses in all replicates showed that WT MTAL did not cluster with the other replicates; no hierarchical clustering could be found between WT CTAL, cKO CTAL and cKO MTAL. Compared to WT replicates, cKO replicates were enriched in Cldn16, Cldn19, Pth1r, (parathyroid hormone receptor type 1), Casr (calcium sensing receptor) and Vdr (Vitamin D Receptor) mRNA in both the cortex and medulla. Cldn10 is associated with gene expression patterns, including genes specifically involved in divalent cations reabsorption in the TAL.
Collapse
Affiliation(s)
- Gaelle Brideau
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (G.B.); (L.C.); (C.G.); (W.-M.E.L.); (L.L.); (G.C.)
- Centre National de la Recherche Scientifique, Equipe Mixte de Recherche 8228-Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
| | - Lydie Cheval
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (G.B.); (L.C.); (C.G.); (W.-M.E.L.); (L.L.); (G.C.)
- Centre National de la Recherche Scientifique, Equipe Mixte de Recherche 8228-Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
| | - Camille Griveau
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (G.B.); (L.C.); (C.G.); (W.-M.E.L.); (L.L.); (G.C.)
- Centre National de la Recherche Scientifique, Equipe Mixte de Recherche 8228-Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
| | - Wung-Man Evelyne Ling
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (G.B.); (L.C.); (C.G.); (W.-M.E.L.); (L.L.); (G.C.)
- Centre National de la Recherche Scientifique, Equipe Mixte de Recherche 8228-Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
| | - Loïc Lievre
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (G.B.); (L.C.); (C.G.); (W.-M.E.L.); (L.L.); (G.C.)
- Centre National de la Recherche Scientifique, Equipe Mixte de Recherche 8228-Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
| | - Gilles Crambert
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (G.B.); (L.C.); (C.G.); (W.-M.E.L.); (L.L.); (G.C.)
- Centre National de la Recherche Scientifique, Equipe Mixte de Recherche 8228-Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
| | - Dominik Müller
- Department of Pediatrics, Division of Gastroenterology, Nephrology and Metabolic Diseases, Charité-Universitätsmedizin Berlin, DE-13353 Berlin, Germany;
| | - Jovana Broćić
- Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Data Analysis Core Platform, F-75013 Paris, France; (J.B.); (E.C.)
| | - Emeline Cherchame
- Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Data Analysis Core Platform, F-75013 Paris, France; (J.B.); (E.C.)
| | - Pascal Houillier
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (G.B.); (L.C.); (C.G.); (W.-M.E.L.); (L.L.); (G.C.)
- Centre National de la Recherche Scientifique, Equipe Mixte de Recherche 8228-Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, F-75015 Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), The European Rare Kidney Disease Reference Network (ERKNet), F-75015 Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, The European Reference Network on Rare Endocrine Conditions (Endo-ERN), F-75015 Paris, France
- Faculté de Médecine, Université Paris Cité, F-75006 Paris, France
| | - Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (G.B.); (L.C.); (C.G.); (W.-M.E.L.); (L.L.); (G.C.)
- Centre National de la Recherche Scientifique, Equipe Mixte de Recherche 8228-Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, F-75015 Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l’Enfant et de l’Adulte (MARHEA), The European Rare Kidney Disease Reference Network (ERKNet), F-75015 Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, The European Reference Network on Rare Endocrine Conditions (Endo-ERN), F-75015 Paris, France
| |
Collapse
|
8
|
Andrini O, Eladari D, Picard N. ClC-K Kidney Chloride Channels: From Structure to Pathology. Handb Exp Pharmacol 2024; 283:35-58. [PMID: 36811727 DOI: 10.1007/164_2023_635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The molecular basis of chloride transport varies all along the nephron depending on the tubular segments especially in the apical entry of the cell. The major chloride exit pathway during reabsorption is provided by two kidney-specific ClC chloride channels ClC-Ka and ClC-Kb (encoded by CLCNKA and CLCNKB gene, respectively) corresponding to rodent ClC-K1 and ClC-K2 (encoded by Clcnk1 and Clcnk2). These channels function as dimers and their trafficking to the plasma membrane requires the ancillary protein Barttin (encoded by BSND gene). Genetic inactivating variants of the aforementioned genes lead to renal salt-losing nephropathies with or without deafness highlighting the crucial role of ClC-Ka, ClC-Kb, and Barttin in the renal and inner ear chloride handling. The purpose of this chapter is to summarize the latest knowledge on renal chloride structure peculiarity and to provide some insight on the functional expression on the segments of the nephrons and on the related pathological effects.
Collapse
Affiliation(s)
- Olga Andrini
- Univ Lyon, University Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U 1314, Melis, Lyon, France.
| | - Dominique Eladari
- CHU Amiens Picardie, Service de Médecine de Précision des maladies Métaboliques et Rénales, Université de Picardie Jules Verne, Amiens, France
| | - Nicolas Picard
- CNRS, LBTI UMR5305, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
9
|
Tabibzadeh N, Satlin LM, Jain S, Morizane R. Navigating the kidney organoid: insights into assessment and enhancement of nephron function. Am J Physiol Renal Physiol 2023; 325:F695-F706. [PMID: 37767571 PMCID: PMC10878724 DOI: 10.1152/ajprenal.00166.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Kidney organoids are three-dimensional structures generated from pluripotent stem cells (PSCs) that are capable of recapitulating the major structures of mammalian kidneys. As this technology is expected to be a promising tool for studying renal biology, drug discovery, and regenerative medicine, the functional capacity of kidney organoids has emerged as a critical question in the field. Kidney organoids produced using several protocols harbor key structures of native kidneys. Here, we review the current state, recent advances, and future challenges in the functional characterization of kidney organoids, strategies to accelerate and enhance kidney organoid functions, and access to PSC resources to advance organoid research. The strategies to construct physiologically relevant kidney organoids include the use of organ-on-a-chip technologies that integrate fluid circulation and improve organoid maturation. These approaches result in increased expression of the major tubular transporters and elements of mechanosensory signaling pathways suggestive of improved functionality. Nevertheless, continuous efforts remain crucial to create kidney tissue that more faithfully replicates physiological conditions for future applications in kidney regeneration medicine and their ethical use in patient care.NEW & NOTEWORTHY Kidney organoids are three-dimensional structures derived from stem cells, mimicking the major components of mammalian kidneys. Although they show great promise, their functional capacity has become a critical question. This review explores the advancements and challenges in evaluating and enhancing kidney organoid function, including the use of organ-on-chip technologies, multiomics data, and in vivo transplantation. Integrating these approaches to further enhance their physiological relevance will continue to advance disease modeling and regenerative medicine applications.
Collapse
Affiliation(s)
- Nahid Tabibzadeh
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Sanjay Jain
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Pathology, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Ryuji Morizane
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
10
|
Zhang C, Li H, Wang S. Single-cell and transcriptome analysis reveals TAL cells in diabetic nephropathy. Funct Integr Genomics 2023; 23:292. [PMID: 37679655 DOI: 10.1007/s10142-023-01212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
Diabetic nephropathy is a global public health concern with multifaceted pathogenesis, primarily involving hypertension. Excessive activation of AT1R has been strongly associated with hypertension onset and progression in diabetic nephropathy. This study aimed to conduct thick ascending limb cell single-cell and transcriptomic analysis in diabetic nephropathy, including screening for biological markers, cellular communication, and immune infiltration, to identify potential biomarkers and effective means for prevention and treatment. By using high-dimensional weighted gene co-expression network analysis, least absolute shrinkage and selection operator, machine learning, neural deconvolution, quasi-chronological analysis, non-negative matrix factorization clustering, and monocyte chemotactic protein-induced counter, we identified 7 potential thick ascending limb cell biomarkers for diabetic nephropathy and elucidated the bone morphogenetic protein pathway's regulation of thick ascending limb cells through podocyte epithelial cells and podocyte cells. The study also highlighted the role of COBL, PPARGC1A, and THSD7A in non-negative matrix factorization clustering and their relationship with thick ascending limb cell immunity in diabetic nephropathy. Our findings provide new insights and avenues for managing diabetic nephropathy, ultimately alleviating the burden on patients and society.
Collapse
Affiliation(s)
- Chengyu Zhang
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Han Li
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Shixiang Wang
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| |
Collapse
|
11
|
Drugge ED, Farhan K, Zhao H, Abramov R, Graham LA, Stambler N, Hao S, Ferreri NR. Sex and race differences in urinary Tumor Necrosis Factor-α (TNF-α) levels: Secondary analysis of the DASH-sodium trial. J Hum Hypertens 2023; 37:701-708. [PMID: 36008598 DOI: 10.1038/s41371-022-00748-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Abstract
Previous work in mouse models shows that urinary TNF-α levels become elevated when dietary salt (NaCl) intake increases. To examine if this relationship exists in humans, we conducted a secondary analysis of the Dietary Approaches to Stop Hypertension (DASH)-Sodium trial to determine levels of urinary TNF-α in 367 subjects categorized by race, sex, and blood pressure. The DASH-Sodium trial is a multicenter feeding trial in which subjects were randomly assigned to either the DASH or control diet, and high, medium, and low sodium in random order. Multivariable linear regression was used to model baseline TNF-α and a mixed model was used to model TNF-α as a function of dietary intervention. At baseline, with all subjects on a "typical American diet", urinary TNF-α levels were lowest in Black, p = 0.002 and male subjects, p < 0.001. After randomization to either the DASH or control diet, with increasing levels of sodium, urinary TNF-α levels increased only in subjects on the control diet, p < 0.05. As in the baseline analysis, TNF-α levels were highest in White females, then White males, Black females and lowest in Black males. The results indicate that urinary TNF-α levels in DASH-Sodium subjects are regulated by NaCl intake, modulated by the DASH diet, and influenced by both race and sex. The inherent differences between subgroups support studies in mice showing that increases in renal TNF-α minimize the extent salt-dependent activation of NKCC2.
Collapse
Affiliation(s)
- Elizabeth D Drugge
- Departments of Pharmacology and Public Health, Epidemiology Division, New York Medical College, Valhalla, NY, 10595, USA
| | - Khalid Farhan
- Departments of Pharmacology and Public Health, Epidemiology Division, New York Medical College, Valhalla, NY, 10595, USA
| | - Hong Zhao
- Departments of Pharmacology and Public Health, Epidemiology Division, New York Medical College, Valhalla, NY, 10595, USA
| | - Rozalia Abramov
- Departments of Pharmacology and Public Health, Epidemiology Division, New York Medical College, Valhalla, NY, 10595, USA
| | - Lesley A Graham
- Departments of Pharmacology and Public Health, Epidemiology Division, New York Medical College, Valhalla, NY, 10595, USA
| | - Nancy Stambler
- Departments of Pharmacology and Public Health, Epidemiology Division, New York Medical College, Valhalla, NY, 10595, USA
| | - Shoujin Hao
- Departments of Pharmacology and Public Health, Epidemiology Division, New York Medical College, Valhalla, NY, 10595, USA
| | - Nicholas R Ferreri
- Departments of Pharmacology and Public Health, Epidemiology Division, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
12
|
Gonsalez SR, Gomes DS, de Souza AM, Ferrão FM, Vallotton Z, Gogulamudi VR, Lowe J, Casarini DE, Prieto MC, Lara LS. The Triad Na + Activated Na + Channel (Nax)-Salt Inducible KINASE (SIK) and (Na + + K +)-ATPase: Targeting the Villains to Treat Salt Resistant and Sensitive Hypertension. Int J Mol Sci 2023; 24:ijms24097887. [PMID: 37175599 PMCID: PMC10178781 DOI: 10.3390/ijms24097887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The Na+-activated Na+ channel (Nax) and salt-inducible kinase (SIK) are stimulated by increases in local Na+ concentration, affecting (Na+ + K+)-ATPase activity. To test the hypothesis that the triad Nax/SIK/(Na+ + K+)-ATPase contributes to kidney injury and salt-sensitive hypertension (HTN), uninephrectomized male Wistar rats (200 g; n = 20) were randomly divided into 4 groups based on a salt diet (normal salt diet; NSD-0.5% NaCl-or high-salt diet; HSD-4% NaCl) and subcutaneous administration of saline (0.9% NaCl) or deoxycorticosterone acetate (DOCA, 8 mg/kg), as follows: Control (CTRL), CTRL-Salt, DOCA, and DOCA-Salt, respectively. After 28 days, the following were measured: kidney function, blood pressure, (Na+ + K+)-ATPase and SIK1 kidney activities, and Nax and SIK1 renal expression levels. SIK isoforms in kidneys of CTRL rats were present in the glomerulus and tubular epithelia; they were not altered by HSD and/or HTN. CTRL-Salt rats remained normotensive but presented slight kidney function decay. HSD rats displayed augmentation of the Nax/SIK/(Na+ + K+)-ATPase pathway. HTN, kidney injury, and kidney function decay were present in all DOCA rats; these were aggravated by HSD. DOCA rats presented unaltered (Na+ + K+)-ATPase activity, diminished total SIK activity, and augmented SIK1 and Nax content in the kidney cortex. DOCA-Salt rats expressed SIK1 activity and downregulation in (Na+ + K+)-ATPase activity in the kidney cortex despite augmented Nax content. The data of this study indicate that the (Na+ + K+)-ATPase activity response to SIK is attenuated in rats under HSD, independent of HTN, as a mechanism contributing to kidney injury and salt-sensitive HTN.
Collapse
Affiliation(s)
- Sabrina R Gonsalez
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Campus Macaé, Rio de Janeiro 21941-901, Brazil
| | - Dayene S Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-971, Brazil
| | - Alessandro M de Souza
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-971, Brazil
| | - Fernanda M Ferrão
- Núcleo Multidisciplinar de Pesquisa em Biologia (NUMPEX-BIO), Universidade Federal do Rio de Janeiro, Campus Caxias, Rio de Janeiro 21941-901, Brazil
| | - Zoe Vallotton
- Department of Physiology, School of Medicine and Tulane Renal and Hypertension Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Venkateswara R Gogulamudi
- Department of Physiology, School of Medicine and Tulane Renal and Hypertension Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jennifer Lowe
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Dulce E Casarini
- Departamento de Medicina, Disciplina de Nefrologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Minolfa C Prieto
- Department of Physiology, School of Medicine and Tulane Renal and Hypertension Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lucienne S Lara
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-971, Brazil
| |
Collapse
|
13
|
Cai L, Wang D, Gui T, Wang X, Zhao L, Boron WF, Chen LM, Liu Y. Dietary sodium enhances the expression of SLC4 family transporters, IRBIT, L-IRBIT, and PP1 in rat kidney: Insights into the molecular mechanism for renal sodium handling. Front Physiol 2023; 14:1154694. [PMID: 37082243 PMCID: PMC10111226 DOI: 10.3389/fphys.2023.1154694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
The kidney plays a central role in maintaining the fluid and electrolyte homeostasis in the body. Bicarbonate transporters NBCn1, NBCn2, and AE2 are expressed at the basolateral membrane of the medullary thick ascending limb (mTAL). In a previous study, NBCn1, NBCn2, and AE2 are proposed to play as a regulatory pathway to decrease NaCl reabsorption in the mTAL under high salt condition. When heterologously expressed, the activity of these transporters could be stimulated by the InsP3R binding protein released with inositol 1,4,5-trisphosphate (IRBIT), L-IRBIT (collectively the IRBITs), or protein phosphatase PP1. In the present study, we characterized by immunofluorescence the expression and localization of the IRBITs, and PP1 in rat kidney. Our data showed that the IRBITs were predominantly expressed from the mTAL through the distal renal tubules. PP1 was predominantly expressed in the TAL, but is also present in high abundance from the distal convoluted tubule through the medullary collecting duct. Western blotting analyses showed that the abundances of NBCn1, NBCn2, and AE2 as well as the IRBITs and PP1 were greatly upregulated in rat kidney by dietary sodium. Co-immunoprecipitation study provided the evidence for protein interaction between NBCn1 and L-IRBIT in rat kidney. Taken together, our data suggest that the IRBITs and PP1 play an important role in sodium handling in the kidney. We propose that the IRBITs and PP1 stimulates NBCn1, NBCn2, and AE2 in the basolateral mTAL to inhibit sodium reabsorption under high sodium condition. Our study provides important insights into understanding the molecular mechanism for the regulation of sodium homeostasis in the body.
Collapse
Affiliation(s)
- Lu Cai
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dengke Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Tianxiang Gui
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingyu Zhao
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Walter F. Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Li-Ming Chen, ; Ying Liu,
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Li-Ming Chen, ; Ying Liu,
| |
Collapse
|
14
|
Wagner CA, Unwin R, Lopez-Garcia SC, Kleta R, Bockenhauer D, Walsh S. The pathophysiology of distal renal tubular acidosis. Nat Rev Nephrol 2023; 19:384-400. [PMID: 37016093 DOI: 10.1038/s41581-023-00699-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/06/2023]
Abstract
The kidneys have a central role in the control of acid-base homeostasis owing to bicarbonate reabsorption and production of ammonia and ammonium in the proximal tubule and active acid secretion along the collecting duct. Impaired acid excretion by the collecting duct system causes distal renal tubular acidosis (dRTA), which is characterized by the failure to acidify urine below pH 5.5. This defect originates from reduced function of acid-secretory type A intercalated cells. Inherited forms of dRTA are caused by variants in SLC4A1, ATP6V1B1, ATP6V0A4, FOXI1, WDR72 and probably in other genes that are yet to be discovered. Inheritance of dRTA follows autosomal-dominant and -recessive patterns. Acquired forms of dRTA are caused by various types of autoimmune diseases or adverse effects of some drugs. Incomplete dRTA is frequently found in patients with and without kidney stone disease. These patients fail to appropriately acidify their urine when challenged, suggesting that incomplete dRTA may represent an intermediate state in the spectrum of the ability to excrete acids. Unrecognized or insufficiently treated dRTA can cause rickets and failure to thrive in children, osteomalacia in adults, nephrolithiasis and nephrocalcinosis. Electrolyte disorders are also often present and poorly controlled dRTA can increase the risk of developing chronic kidney disease.
Collapse
Affiliation(s)
- Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK.
| | - Robert Unwin
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| | - Sergio C Lopez-Garcia
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Robert Kleta
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| | - Detlef Bockenhauer
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
- Department of Paediatric Nephrology, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Stephen Walsh
- Department of Renal Medicine, Royal Free Hospital, University College London, London, UK
| |
Collapse
|
15
|
Houillier P, Lievre L, Hureaux M, Prot-Bertoye C. Mechanisms of paracellular transport of magnesium in intestinal and renal epithelia. Ann N Y Acad Sci 2023; 1521:14-31. [PMID: 36622354 DOI: 10.1111/nyas.14953] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Magnesium is the fourth most abundant cation in the body. It plays a critical role in many biological processes, including the process of energy release. Paracellular transport of magnesium is mandatory for magnesium homeostasis. In addition to intestinal absorption that occurs in part across the paracellular pathway, magnesium is reabsorbed by the kidney tubule. The bulk of magnesium is reabsorbed through the paracellular pathway in the proximal tubule and the thick ascending limb of the loop of Henle. The finding that rare genetic diseases due to pathogenic variants in genes encoding specific claudins (CLDNs), proteins located at the tight junction that determine the selectivity and the permeability of the paracellular pathway, led to an awareness of their importance in magnesium homeostasis. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is caused by a loss of function of CLDN16 or CLDN19. Pathogenic CLDN10 variants cause HELIX syndrome, which is associated with a severe renal loss of sodium chloride and hypermagnesemia. The present review summarizes the current knowledge of the mechanisms and factors involved in paracellular magnesium permeability. The review also highlights some of the unresolved questions that need to be addressed.
Collapse
Affiliation(s)
- Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Loïc Lievre
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Marguerite Hureaux
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Génétique, Paris, France
- Paris Centre de Recherche Cardio-vasculaire, INSERM, Université Paris Cité, Paris, France
| | - Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
- CNRS ERL 8228 - Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France
- Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
- Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| |
Collapse
|
16
|
Adomako EA, Maalouf NM. Type 4 renal tubular acidosis and uric acid nephrolithiasis: two faces of the same coin? Curr Opin Nephrol Hypertens 2023; 32:145-152. [PMID: 36683539 PMCID: PMC9881823 DOI: 10.1097/mnh.0000000000000859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW The present review summarizes findings of recent studies examining the epidemiology, pathophysiology, and treatment of type 4 renal tubular acidosis (RTA) and uric acid nephrolithiasis, two conditions characterized by an abnormally acidic urine. RECENT FINDINGS Both type 4 RTA and uric acid nephrolithiasis disproportionately occur in patients with type 2 diabetes and/or chronic kidney disease. Biochemically, both conditions are associated with reduced renal ammonium excretion resulting in impaired urinary buffering and low urine pH. Reduced ammoniagenesis is postulated to result from hyperkalemia in type 4 RTA and from insulin resistance and fat accumulation in the renal proximal tubule in uric acid nephrolithiasis. The typical biochemical findings of hyperkalemia and systemic acidosis of type 4 RTA are rarely reported in uric acid stone formers. Additional clinical differences between the two conditions include findings of higher urinary uric acid excretion and consequent urinary uric acid supersaturation in uric acid stone formers but not in type 4 RTA. SUMMARY Type 4 RTA and uric acid nephrolithiasis share several epidemiological, clinical, and biochemical features. Although both conditions may be manifestations of diabetes mellitus and thus have a large at-risk population, the means to the shared biochemical finding of overly acidic urine are different. This difference in pathophysiology may explain the dissimilarity in the prevalence of kidney stone formation.
Collapse
Affiliation(s)
- Emmanuel A. Adomako
- Department of Internal Medicine, Division of Nephrology and Hypertension, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Naim M. Maalouf
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
17
|
Tabibzadeh N, Crambert G. Mechanistic insights into the primary and secondary alterations of renal ion and water transport in the distal nephron. J Intern Med 2023; 293:4-22. [PMID: 35909256 PMCID: PMC10087581 DOI: 10.1111/joim.13552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The kidneys, by equilibrating the outputs to the inputs, are essential for maintaining the constant volume, pH, and electrolyte composition of the internal milieu. Inability to do so, either because of internal kidney dysfunction (primary alteration) or because of some external factors (secondary alteration), leads to pathologies of varying severity, leading to modification of these parameters and affecting the functions of other organs. Alterations of the functions of the collecting duct (CD), the most distal part of the nephron, have been extensively studied and have led to a better diagnosis, better management of the related diseases, and the development of therapeutic tools. Thus, dysfunctions of principal cell-specific transporters such as ENaC or AQP2 or its receptors (mineralocorticoid or vasopressin receptors) caused by mutations or by compounds present in the environment (lithium, antibiotics, etc.) have been demonstrated in a variety of syndromes (Liddle, pseudohypoaldosteronism type-1, diabetes insipidus, etc.) affecting salt, potassium, and water balance. In parallel, studies on specific transporters (H+ -ATPase, anion exchanger 1) in intercalated cells have revealed the mechanisms of related tubulopathies like distal renal distal tubular acidosis or Sjögren syndrome. In this review, we will recapitulate the mechanisms of most of the primary and secondary alteration of the ion transport system of the CD to provide a better understanding of these diseases and highlight how a targeted perturbation may affect many different pathways due to the strong crosstalk and entanglements between the different actors (transporters, cell types).
Collapse
Affiliation(s)
- Nahid Tabibzadeh
- Laboratoire de Physiologie Rénale et TubulopathiesCentre de Recherche des CordeliersINSERMSorbonne UniversitéUniversité Paris CitéParisFrance
- EMR 8228 Unité Métabolisme et Physiologie RénaleCNRSParisFrance
- Assistance Publique Hôpitaux de ParisHôpital BichâtParisFrance
| | - Gilles Crambert
- Laboratoire de Physiologie Rénale et TubulopathiesCentre de Recherche des CordeliersINSERMSorbonne UniversitéUniversité Paris CitéParisFrance
- EMR 8228 Unité Métabolisme et Physiologie RénaleCNRSParisFrance
| |
Collapse
|
18
|
Vargas-Poussou R. Pathophysiological aspects of the thick ascending limb and novel genetic defects: HELIX syndrome and transient antenatal Bartter syndrome. Pediatr Nephrol 2022; 37:239-252. [PMID: 33733301 DOI: 10.1007/s00467-021-05019-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/29/2021] [Accepted: 02/17/2021] [Indexed: 10/21/2022]
Abstract
The thick ascending limb plays a central role in human kidney physiology, participating in sodium reabsorption, urine concentrating mechanisms, calcium and magnesium homeostasis, bicarbonate and ammonium homeostasis, and uromodulin synthesis. This review aims to illustrate the importance of these roles from a pathophysiological point of view by describing the interactions of the key proteins of this segment and by discussing how recently identified and long-known hereditary diseases affect this segment. The descriptions of two recently described salt-losing tubulopathies, transient antenatal Bartter syndrome and HELIX syndrome, which are caused by mutations in MAGED2 and CLDN10 genes, respectively, highlight the role of new players in the modulation of sodium reabsorption the thick ascending limb.
Collapse
Affiliation(s)
- Rosa Vargas-Poussou
- Department of Molecular Genetics, Assistance Publique Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, 20-40 rue Leblanc, 75015, Paris, France. .,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France. .,Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.
| |
Collapse
|
19
|
Florea L, Caba L, Gorduza EV. Genetic Heterogeneity in Bartter Syndrome: Clinical and Practical Importance. Front Pediatr 2022; 10:908655. [PMID: 35722471 PMCID: PMC9203713 DOI: 10.3389/fped.2022.908655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Bartter syndrome (BS) is a rare tubulopathy that causes polyuria, hypokalemia, hypochloremic metabolic alkalosis, and normotensive hyperreninemic hyperaldosteronism. It is characterized by locus, clinical, and allelic heterogeneity. Types 1-4 of BS are inherited according to an autosomal recessive pattern, while type 5, which is transient, is X linked. There are specific correlations between the clinical expression and the molecular defect, but since it is a rare disease, such studies are rare. Therapeutic interventions are different, being correlated with types of BS.
Collapse
Affiliation(s)
- Laura Florea
- Department of Nephrology-Internal Medicine, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Lavinia Caba
- Department of Medical Genetics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| |
Collapse
|
20
|
Zhang X, Tomar N, Kandel SM, Audi SH, Cowley AW, Dash RK. Substrate- and Calcium-Dependent Differential Regulation of Mitochondrial Oxidative Phosphorylation and Energy Production in the Heart and Kidney. Cells 2021; 11:131. [PMID: 35011693 PMCID: PMC8750792 DOI: 10.3390/cells11010131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial dehydrogenases are differentially stimulated by Ca2+. Ca2+ has also diverse regulatory effects on mitochondrial transporters and other enzymes. However, the consequences of these regulatory effects on mitochondrial oxidative phosphorylation (OxPhos) and ATP production, and the dependencies of these consequences on respiratory substrates, have not been investigated between the kidney and heart despite the fact that kidney energy requirements are second only to those of the heart. Our objective was, therefore, to elucidate these relationships in isolated mitochondria from the kidney outer medulla (OM) and heart. ADP-induced mitochondrial respiration was measured at different CaCl2 concentrations in the presence of various respiratory substrates, including pyruvate + malate (PM), glutamate + malate (GM), alpha-ketoglutarate + malate (AM), palmitoyl-carnitine + malate (PCM), and succinate + rotenone (SUC + ROT). The results showed that, in both heart and OM mitochondria, and for most complex I substrates, Ca2+ effects are biphasic: small increases in Ca2+ concentration stimulated, while large increases inhibited mitochondrial respiration. Furthermore, significant differences in substrate- and Ca2+-dependent O2 utilization towards ATP production between heart and OM mitochondria were observed. With PM and PCM substrates, Ca2+ showed more prominent stimulatory effects in OM than in heart mitochondria, while with GM and AM substrates, Ca2+ had similar biphasic regulatory effects in both OM and heart mitochondria. In contrast, with complex II substrate SUC + ROT, only inhibitory effects on mitochondrial respiration was observed in both the heart and the OM. We conclude that the regulatory effects of Ca2+ on mitochondrial OxPhos and ATP synthesis are biphasic, substrate-dependent, and tissue-specific.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (X.Z.); (N.T.); (S.M.K.)
| | - Namrata Tomar
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (X.Z.); (N.T.); (S.M.K.)
| | - Sunil M. Kandel
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (X.Z.); (N.T.); (S.M.K.)
| | - Said H. Audi
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI 53223, USA;
| | - Allen W. Cowley
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ranjan K. Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (X.Z.); (N.T.); (S.M.K.)
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
21
|
Prot-Bertoye C, Griveau C, Skjødt K, Cheval L, Brideau G, Lievre L, Ferriere E, Arbaretaz F, Garbin K, Zamani R, Marcussen N, Figueres L, Breiderhoff T, Muller D, Bruneval P, Houillier P, Dimke H. Differential localization patterns of claudin 10, 16, and 19 in human, mouse, and rat renal tubular epithelia. Am J Physiol Renal Physiol 2021; 321:F207-F224. [PMID: 34151590 DOI: 10.1152/ajprenal.00579.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Functional properties of the paracellular pathway depend critically on the set of claudins (CLDN) expressed at the tight junction. Two syndromes are causally linked to loss-of-function mutations of claudins: hypohidrosis, electrolyte imbalance, lacrimal gland dysfunction, ichthyosis, and xerostomia (HELIX) syndrome caused by genetic variations in the CLDN10 gene and familial hypomagnesemia with hypercalciuria and nephrocalcinosis caused by genetic variations in the CLDN16 or CLDN19 genes. All three genes are expressed in the kidney, particularly in the thick ascending limb (TAL). However, localization of these claudins in humans and rodents remains to be delineated in detail. We studied the segmental and subcellular expression of CLDN10, CLDN16, and CLDN19 in both paraffin-embedded and frozen kidney sections from the adult human, mouse, and rat using immunohistochemistry and immunofluorescence, respectively. Here, CLDN10 was present in a subset of medullary and cortical TAL cells, localizing to basolateral domains and tight junctions in human and rodent kidneys. Weak expression was detected at the tight junction of proximal tubular cells. CLDN16 was primarily expressed in a subset of TAL cells in the cortex and outer stripe of outer medulla, restricted to basolateral domains and tight junctional structures in both human and rodent kidneys. CLDN19 predominantly colocalized with CLDN16 in tight junctions and basolateral domains of the TAL but was also found in basolateral and junctional domains in more distal sites. CLDN10 expression at tight junctions almost never overlapped with that of CLND16 and CLDN19, consistent with distinct junctional pathways with different permeation profiles in both human and rodent kidneys.NEW & NOTEWORTHY This study used immunohistochemistry and immunofluorescence to investigate the distribution of claudin 10, 16, and 19 in the human, mouse, and rat kidney. The findings showed distinct junctional pathways in both human and rodent kidneys, supporting the existence of different permeation profiles in all species investigated.
Collapse
Affiliation(s)
- Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Paris, France.,Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Camille Griveau
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Karsten Skjødt
- Department of Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lydie Cheval
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Gaëlle Brideau
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Loïc Lievre
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Elsa Ferriere
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Floriane Arbaretaz
- Centre d'Histologie, d'Imagerie et de Cytométrie, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France
| | - Kevin Garbin
- Centre d'Histologie, d'Imagerie et de Cytométrie, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France
| | - Reza Zamani
- Department of Urology, Odense University Hospital, Odense, Denmark
| | - Niels Marcussen
- Department of Clinical Pathology, Odense University Hospital, Odense, Denmark
| | - Lucile Figueres
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France
| | - Tilman Breiderhoff
- Division of Gastroenterology, Nephrology and Metabolic Diseases, Department of Pediatrics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dominik Muller
- Division of Gastroenterology, Nephrology and Metabolic Diseases, Department of Pediatrics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Patrick Bruneval
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service d'Anatomopathologie, Paris, France
| | - Pascal Houillier
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique, ERL 8228-Laboratoire de Physiologie Rénale et Tubulopathies, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte, Paris, France.,Centre de Référence des Maladies Rares du Calcium et du Phosphate, Paris, France
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
22
|
Muto Y, Wilson PC, Ledru N, Wu H, Dimke H, Waikar SS, Humphreys BD. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat Commun 2021; 12:2190. [PMID: 33850129 PMCID: PMC8044133 DOI: 10.1038/s41467-021-22368-w] [Citation(s) in RCA: 277] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
The integration of single cell transcriptome and chromatin accessibility datasets enables a deeper understanding of cell heterogeneity. We performed single nucleus ATAC (snATAC-seq) and RNA (snRNA-seq) sequencing to generate paired, cell-type-specific chromatin accessibility and transcriptional profiles of the adult human kidney. We demonstrate that snATAC-seq is comparable to snRNA-seq in the assignment of cell identity and can further refine our understanding of functional heterogeneity in the nephron. The majority of differentially accessible chromatin regions are localized to promoters and a significant proportion are closely associated with differentially expressed genes. Cell-type-specific enrichment of transcription factor binding motifs implicates the activation of NF-κB that promotes VCAM1 expression and drives transition between a subpopulation of proximal tubule epithelial cells. Our multi-omics approach improves the ability to detect unique cell states within the kidney and redefines cellular heterogeneity in the proximal tubule and thick ascending limb.
Collapse
Affiliation(s)
- Yoshiharu Muto
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Parker C Wilson
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicolas Ledru
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Sushrut S Waikar
- Section of Nephrology, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
23
|
Weinstein AM. A mathematical model of the rat kidney. III. Ammonia transport. Am J Physiol Renal Physiol 2021; 320:F1059-F1079. [PMID: 33779315 DOI: 10.1152/ajprenal.00008.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ammonia generated within the kidney is partitioned into a urinary fraction (the key buffer for net acid excretion) and an aliquot delivered to the systemic circulation. The physiology of this partitioning has yet to be examined in a kidney model, and that was undertaken in this work. This involves explicit representation of the cortical labyrinth, so that cortical interstitial solute concentrations are computed rather than assigned. A detailed representation of cortical vasculature has been avoided by making the assumption that solute concentrations within the interstitium and peritubular capillaries are likely to be identical and that there is little to no modification of venous composition as blood flows to the renal vein. The model medullary ray has also been revised to include a segment of proximal straight tubule, which supplies ammonia to this region. The principal finding of this work is that cortical labyrinth interstitial ammonia concentration is likely to be several fold higher than systemic arterial ammonia. This elevation of interstitial ammonia enhances ammonia secretion in both the proximal convoluted tubule and distal convoluted tubule, with uptake by Na+-K+-ATPases of both segments. Model prediction of urinary ammonia excretion was concordant with measured values, but at the expense of greater ammoniagenesis, with high rates of renal venous ammonia flux. This derives from a limited capability of the model medulla to replicate the high interstitial ammonia concentrations that are required to drive collecting duct ammonia secretion. Thus, renal medullary ammonia trapping appears key to diverting ammonia from the renal vein to urine, but capturing the underlying physiology remains a challenge.NEW & NOTEWORTHY This is the first mathematical model to estimate solute concentrations within the kidney cortex. The model predicts cortical ammonia to be several fold greater than in the systemic circulation. This higher concentration drives ammonia secretion in proximal and distal tubules. The model reveals a gap in our understanding of how ammonia generated within the cortex is channeled efficiently into the final urine.
Collapse
Affiliation(s)
- Alan M Weinstein
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York.,Department of Medicine, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
24
|
High blood pressure induced by vitamin D deficiency is associated with renal overexpression and hyperphosphorylation of Na+-K+-2Cl- cotransporter type 2. J Hypertens 2020; 39:880-891. [PMID: 33337598 DOI: 10.1097/hjh.0000000000002745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Clinical and epidemiological studies have suggested a correlation between vitamin D deficiency (VDD) and high blood pressure (BP). This study aimed to test the hypothesis that high BP induced by VDD is associated with altered expression and covalent modification of apical sodium transporters along the nephron. The contributions of the intrarenal renin-angiotensin system (RAS) and oxidative stress were also investigated. METHODS Male Wistar rats were fed a vitamin D-free (n = 26) or standard diet (n = 25) for 30 days. BP was recorded using noninvasive and invasive procedures. The expression levels of total and phosphorylated apical sodium transporters in rat renal cortex and medulla were evaluated by immunoblotting. Intrarenal RAS components were assessed by immunoblotting and ELISA. Renal oxidative stress was analyzed by measuring the concentrations of thiobarbituric acid reactive substances and reduced glutathione. RESULTS Higher BP levels in VDD rats than controls were accompanied by overexpression and hyperphosphorylation of renal cortical and medullary Na+-K+-2Cl- cotransporter type 2, enhanced levels of phosphorylated Na+/H+ exchanger type 3, and reduced expression levels of total and phosphorylated Na+/Cl- cotransporter. Changes in intrarenal RAS induced by VDD vs. controls included the marked elevation of medullary renin expression, higher expression of cortical angiotensinogen, higher urinary angiotensinogen excretion, and higher cortical and medullary angiotensin II content. VDD rats displayed higher thiobarbituric acid reactive substances/glutathione ratios in the renal cortex and medulla than controls. CONCLUSION These results suggest that the molecular mechanisms underlying the effects of VDD on BP may include the upregulation of Na+-K+-2Cl- cotransporter type 2 and activation of intrarenal RAS and oxidative stress.
Collapse
|
25
|
Chambers BE, Clark EG, Gatz AE, Wingert RA. Kctd15 regulates nephron segment development by repressing Tfap2a activity. Development 2020; 147:dev.191973. [PMID: 33028614 DOI: 10.1242/dev.191973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022]
Abstract
A functional vertebrate kidney relies on structural units called nephrons, which are epithelial tubules with a sequence of segments each expressing a distinct repertoire of solute transporters. The transcriptiona`l codes driving regional specification, solute transporter program activation and terminal differentiation of segment populations remain poorly understood. Here, we demonstrate that the KCTD15 paralogs kctd15a and kctd15b function in concert to restrict distal early (DE)/thick ascending limb (TAL) segment lineage assignment in the developing zebrafish pronephros by repressing Tfap2a activity. During renal ontogeny, expression of these factors colocalized with tfap2a in distal tubule precursors. kctd15a/b loss primed nephron cells to adopt distal fates by driving slc12a1, kcnj1a.1 and stc1 expression. These phenotypes were the result of Tfap2a hyperactivity, where kctd15a/b-deficient embryos exhibited increased abundance of this transcription factor. Interestingly, tfap2a reciprocally promoted kctd15a and kctd15b transcription, unveiling a circuit of autoregulation operating in nephron progenitors. Concomitant kctd15b knockdown with tfap2a overexpression further expanded the DE population. Our study reveals that a transcription factor-repressor feedback module employs tight regulation of Tfap2a and Kctd15 kinetics to control nephron segment fate choice and differentiation during kidney development.
Collapse
Affiliation(s)
- Brooke E Chambers
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Eleanor G Clark
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Allison E Gatz
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
26
|
Figueres L, Prot-Bertoye C, Morla L, Ferriere E, Griveau C, Brideau G, Baron S, Houillier P. Performance of ion chromatography to measure picomole amounts of magnesium in nanolitre samples. J Physiol 2020; 598:5613-5625. [PMID: 32936928 DOI: 10.1113/jp280304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS An UHPLC method to measure picomole amounts of magnesium has been developed. The method is sensitive, specific, accurate and reproducible. The method is suitable for quantifying magnesium transport across intact epithelia. ABSTRACT Magnesium is involved in many biological processes. Extracellular magnesium homeostasis mainly depends on the renal handling of magnesium, the study of which requires measurement of low concentrations of magnesium in renal tubular fluid. We developed an ultra-high-performance liquid chromatography method to measure millimolar concentrations of magnesium in nanolitre samples. Within-assay and between-assay coefficients of variation were lower than 5% and 6.6%, respectively. Measurement of magnesium concentration was linear (r2 = 0.9998) over the range 0-4 mmol/l. Absolute bias ranged from -0.03 to 0.05 mmol/l. The lower limit of quantification was 0.2 mmol/l. Recovery was 97.5-100.3%. No significant interference with calcium, another divalent cation present in the same samples, was detected. The method was successfully applied to quantify transepithelial magnesium transport by medullary and cortical thick ascending limbs during ex vivo microperfusion experiments. In conclusion, ultra-high-performance liquid chromatography is suitable for measurement of picomole amounts of magnesium in renal tubular fluid. The method allows detailed studies of transepithelial magnesium transport across native epithelium.
Collapse
Affiliation(s)
- Lucile Figueres
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS ERL 8228, Paris, France
| | - Caroline Prot-Bertoye
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS ERL 8228, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France.,Centre de référence des maladies rares du calcium et du phosphate, Paris, France
| | - Luciana Morla
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS ERL 8228, Paris, France
| | - Elsa Ferriere
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS ERL 8228, Paris, France
| | - Camille Griveau
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS ERL 8228, Paris, France
| | - Gaëlle Brideau
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS ERL 8228, Paris, France
| | - Stéphanie Baron
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS ERL 8228, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France.,Centre de référence des maladies rares du calcium et du phosphate, Paris, France
| | - Pascal Houillier
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Paris, France.,CNRS ERL 8228, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Physiologie, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France.,Centre de référence des maladies rares du calcium et du phosphate, Paris, France
| |
Collapse
|
27
|
Kuo W, Le NA, Spingler B, Wenger RH, Kipar A, Hetzel U, Schulz G, Müller B, Kurtcuoglu V. Simultaneous Three-Dimensional Vascular and Tubular Imaging of Whole Mouse Kidneys With X-ray μCT. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:731-740. [PMID: 32627730 DOI: 10.1017/s1431927620001725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Concurrent three-dimensional imaging of the renal vascular and tubular systems on the whole-kidney scale with capillary level resolution is labor-intensive and technically difficult. Approaches based on vascular corrosion casting and X-ray micro computed tomography (μCT), for example, suffer from vascular filling artifacts and necessitate imaging with an additional modality to acquire tubules. In this work, we report on a new sample preparation, image acquisition, and quantification protocol for simultaneous vascular and tubular μCT imaging of whole, uncorroded mouse kidneys. The protocol consists of vascular perfusion with the water-soluble, aldehyde-fixable, polymeric X-ray contrast agent XlinCA, followed by laboratory-source μCT imaging and structural analysis using the freely available Fiji/ImageJ software. We achieved consistent filling of the entire capillary bed and staining of the tubules in the cortex and outer medulla. After imaging at isotropic voxel sizes of 3.3 and 4.4 μm, we segmented vascular and tubular systems and quantified luminal volumes, surface areas, diffusion distances, and vessel path lengths. This protocol permits the analysis of vascular and tubular parameters with higher reliability than vascular corrosion casting, less labor than serial sectioning and leaves tissue intact for subsequent histological examination with light and electron microscopy.
Collapse
Affiliation(s)
- Willy Kuo
- University of Zurich, Institute of Physiology, Winterthurerstrasse 190, 8057Zurich, Switzerland
- University of Zurich, National Centre of Competence in Research, Kidney. CH, Winterthurerstrasse 190, 8057Zurich, Switzerland
- University of Basel, Biomaterials Science Center, Department of Biomedical Engineering, Gewerbestrasse 14, 4123Allschwil, Switzerland
| | - Ngoc An Le
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057Zurich, Switzerland
| | - Bernhard Spingler
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057Zurich, Switzerland
| | - Roland H Wenger
- University of Zurich, Institute of Physiology, Winterthurerstrasse 190, 8057Zurich, Switzerland
- University of Zurich, National Centre of Competence in Research, Kidney. CH, Winterthurerstrasse 190, 8057Zurich, Switzerland
| | - Anja Kipar
- University of Zurich, Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, Winterthurerstrasse 268, 8057Zurich, Switzerland
| | - Udo Hetzel
- University of Zurich, Electron Microscopy Unit, Institute of Veterinary Pathology, Vetsuisse Faculty, Winterthurerstrasse 268, 8057Zurich, Switzerland
| | - Georg Schulz
- University of Basel, Biomaterials Science Center, Department of Biomedical Engineering, Gewerbestrasse 14, 4123Allschwil, Switzerland
| | - Bert Müller
- University of Basel, Biomaterials Science Center, Department of Biomedical Engineering, Gewerbestrasse 14, 4123Allschwil, Switzerland
| | - Vartan Kurtcuoglu
- University of Zurich, Institute of Physiology, Winterthurerstrasse 190, 8057Zurich, Switzerland
- University of Zurich, National Centre of Competence in Research, Kidney. CH, Winterthurerstrasse 190, 8057Zurich, Switzerland
- University of Zurich, Zurich Center for Integrative Human Physiology, 8057Zurich, Switzerland
| |
Collapse
|