1
|
Nanamatsu A, LaFavers KA. Uromodulin: Is There a Causal Relationship With Urinary Tract Infection Risk? Am J Kidney Dis 2025; 85:540-542. [PMID: 40100188 DOI: 10.1053/j.ajkd.2025.02.601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/20/2025]
Affiliation(s)
- Azuma Nanamatsu
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kaice A LaFavers
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, Indiana; Department of Anatomy, Cell Biology and Cellular Physiology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
2
|
Karagiannidis AG, Theodorakopoulou MP, Iatridi F, Ortiz A, Sarafidis P. A salty symphony: unraveling the tale of uromodulin and sodium sensitivity. J Hum Hypertens 2025:10.1038/s41371-025-01013-9. [PMID: 40164702 DOI: 10.1038/s41371-025-01013-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/27/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Uromodulin is a kidney-specific glycoprotein which is uniquely synthesized by the epithelial cells lining the thick ascending limb and early distal convoluted tubule. Among multiple roles in complex physiological and pathological processes, uromodulin mediates renal sodium handling through modulating tubular sodium transporters that reabsorb sodium and therefore is putatively linked to hypertension through generating sodium sensitivity of blood pressure. This review aims to present an updated overview of the role of uromodulin in sodium renal handling and summarize the existing evidence originating from preclinical, genetic, and clinical studies that support a relationship between uromodulin and sodium-sensitive hypertension.
Collapse
Affiliation(s)
- Artemios G Karagiannidis
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marieta P Theodorakopoulou
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fotini Iatridi
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| | - Pantelis Sarafidis
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
3
|
Vonbrunn E, Ebert N, Cordasic N, Amann K, Büttner A, Büttner-Herold M, Scherberich JE, Daniel C. Serum Uromodulin as early marker for ischemic acute kidney injury and nephron loss: association with kidney tissue distribution pattern. J Transl Med 2025; 23:323. [PMID: 40087735 PMCID: PMC11907908 DOI: 10.1186/s12967-025-06125-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/09/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND Uromodulin (UMOD) is expressed in kidneys and is mainly excreted in the urine, although a smaller amount is also released into the serum. Here, we investigated UMOD in acute kidney injury (AKI), with particular focus on the utility of serum UMOD as marker for nephron loss. METHODS Blood and kidney samples were collected 6 h, 24 h, 3 days and 8 weeks after ischemia/reperfusion (I/R) in a rat model. To investigate the impact of nephron number on UMOD levels, sera and tissue from healthy, uninephrectomized (Unx) and 5/6-nephrectomized (Snx) rats were analyzed. Histological changes, kidney function and cell damage were evaluated and serum UMOD, Umod mRNA expression and distribution of UMOD protein in the kidney were examined. RESULTS In AKI, kidney function was markedly impaired 24 h after I/R, while kidney injury and serum UMOD was increased transiently. Simultaneously, the amount of UMOD-positive kidney cells rapidly decreased 24 h after I/R compared to healthy kidneys, and mRNA expression of Umod was lowest on days 1-3 after I/R. Serum UMOD correlated with nephron number showing the highest levels in healthy rats, which were reduced after Unx and further reduced after Snx. CONCLUSION In an AKI model with severe tubular damage, a transient increase in UMOD serum levels in parallel with loss of UMOD-positive cells suggests temporary release of UMOD from destroyed tubular cells into the blood. Serum UMOD appears to be not only a marker of chronic renal failure but also of acute loss of functional and cellular integrity of kidney epithelia in AKI.
Collapse
Affiliation(s)
- Eva Vonbrunn
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | - Nadja Ebert
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | - Nada Cordasic
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | - Anke Büttner
- School of Psychology, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Krankenhausstr. 8-10, 91054, Erlangen, Germany
| | | | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsklinikum Erlangen, Krankenhausstr. 8-10, 91054, Erlangen, Germany.
| |
Collapse
|
4
|
Nanamatsu A, de Araújo L, LaFavers KA, El-Achkar TM. Advances in uromodulin biology and potential clinical applications. Nat Rev Nephrol 2024; 20:806-821. [PMID: 39160319 PMCID: PMC11568936 DOI: 10.1038/s41581-024-00881-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Uromodulin (also known as Tamm-Horsfall protein) is a kidney-specific glycoprotein secreted bidirectionally into urine and into the circulation, and it is the most abundant protein in normal urine. Although the discovery of uromodulin predates modern medicine, its significance in health and disease has been rather enigmatic. Research studies have gradually revealed that uromodulin exists in multiple forms and has important roles in urinary and systemic homeostasis. Most uromodulin in urine is polymerized into highly organized filaments, whereas non-polymeric uromodulin is detected both in urine and in the circulation, and can have distinct roles. The interactions of uromodulin with the immune system, which were initially reported to be a key role of this protein, are now better understood. Moreover, the discovery that uromodulin is associated with a spectrum of kidney diseases, including acute kidney injury, chronic kidney disease and autosomal-dominant tubulointerstitial kidney disease, has further accelerated investigations into the role of this protein. These discoveries have prompted new questions and ushered in a new era in uromodulin research. Here, we delineate the latest discoveries in uromodulin biology and its emerging roles in modulating kidney and systemic diseases, and consider future directions, including its potential clinical applications.
Collapse
Affiliation(s)
- Azuma Nanamatsu
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Larissa de Araújo
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kaice A LaFavers
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tarek M El-Achkar
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Roudebush VA Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
5
|
Zhou M, Mary S, Delles C, Padmanabhan S, Graham D, McBride MW, Dominiczak AF. Insights into Uromodulin and Blood Pressure. Curr Hypertens Rep 2024; 26:497-504. [PMID: 39259220 PMCID: PMC11455674 DOI: 10.1007/s11906-024-01317-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
PURPOSE OF REVIEW We review the role of uromodulin, a protein exclusively expressed in the kidney, in blood pressure regulation and hypertension. RECENT FINDINGS The last few years have seen a shift of focus from genetic association to mendelian randomisation and uromodulin-salt interaction studies, thus confirming the causal role of uromodulin in blood pressure regulation and hypertension. This work has been complemented by phenome-wide association studies in a wider range of ethnicities. Important recent molecular work elucidated uromodulin trafficking and secretion and provided more insights into the pathophysiological roles of circulating and urinary uromodulin. Uromodulin has a causal role in blood pressure regulation and hypertensin. Recent studies show utility of the uromodulin as a biomarker and a possible precision medicine application based on genetically determined differential responses to loop diuretics.
Collapse
Affiliation(s)
- Manshi Zhou
- School of Cardiovascular and Metabolic Health, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow, G12 8TA, UK
| | - Sheon Mary
- School of Cardiovascular and Metabolic Health, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow, G12 8TA, UK
| | - Christian Delles
- School of Cardiovascular and Metabolic Health, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow, G12 8TA, UK
| | - Sandosh Padmanabhan
- School of Cardiovascular and Metabolic Health, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow, G12 8TA, UK
| | - Delyth Graham
- School of Cardiovascular and Metabolic Health, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow, G12 8TA, UK
| | - Martin W McBride
- School of Cardiovascular and Metabolic Health, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow, G12 8TA, UK
| | - Anna F Dominiczak
- School of Cardiovascular and Metabolic Health, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
6
|
Harding MA, Yavuz H, Gathmann A, Upson S, Swiatecka‐Urban A, Erdbrügger U. Uromodulin and the study of urinary extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70022. [PMID: 39582686 PMCID: PMC11583080 DOI: 10.1002/jex2.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/05/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
Urinary extracellular vesicles (uEVs) are a promising substrate for discovering new biomarkers. In order to investigate the origin of uEVs and the cargo they carry, some types of downstream analysis of uEVs may require concentration and enrichment as well as removal of contaminating substances. Co-isolation of the abundant urinary protein uromodulin with uEVs can be a problem, and may interfere with some techniques, in particular with proteomic analysis tools. Methods of separating out uromodulin and its removal have also not been standardized. This review highlights aspects of uromodulin structure that makes it recalcitrant to separation from uEVs, summarizes frequently used techniques for uEV enrichment and how they affect uromodulin separation, and specific methods for uromodulin removal during preparation of uEVs. The necessity of uromodulin removal for various study endpoints is also examined.
Collapse
Affiliation(s)
- Michael A. Harding
- Division of Nephrology, Department of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Hayrettin Yavuz
- Division of Pediatric Nephrology, Department of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | | | - Samantha Upson
- Division of Nephrology, Department of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Agnieszka Swiatecka‐Urban
- Division of Pediatric Nephrology, Department of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Uta Erdbrügger
- Division of Nephrology, Department of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
7
|
Chen C, Zhong W, Zheng H, Dai G, Zhao W, Wang Y, Dong Q, Shen B. The role of uromodulin in cardiovascular disease: a review. Front Cardiovasc Med 2024; 11:1417593. [PMID: 39049957 PMCID: PMC11267628 DOI: 10.3389/fcvm.2024.1417593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Uromodulin, also referred to as Tamm Horsfall protein (THP), is a renal protein exclusively synthesized by the kidneys and represents the predominant urinary protein under normal physiological conditions. It assumes a pivotal role within the renal system, contributing not only to ion transport and immune modulation but also serving as a critical factor in the prevention of urinary tract infections and kidney stone formation. Emerging evidence indicates that uromodulin may serve as a potential biomarker extending beyond renal function. Recent clinical investigations and Mendelian randomization studies have unveiled a discernible association between urinary regulatory protein levels and cardiovascular events and mortality. This review primarily delineates the intricate relationship between uromodulin and cardiovascular disease, elucidates its predictive utility as a novel biomarker for cardiovascular events, and delves into its involvement in various physiological and pathophysiological facets of the cardiovascular system, incorporating recent advancements in corresponding genetics.
Collapse
Affiliation(s)
- Chengqian Chen
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Wentao Zhong
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Hao Zheng
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Gaoying Dai
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Zhao
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Yushi Wang
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Qi Dong
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Botao Shen
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Karagiannidis AG, Theodorakopoulou MP, Pella E, Sarafidis PA, Ortiz A. Uromodulin biology. Nephrol Dial Transplant 2024; 39:1073-1087. [PMID: 38211973 PMCID: PMC11210992 DOI: 10.1093/ndt/gfae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Indexed: 01/13/2024] Open
Abstract
Uromodulin is a kidney-specific glycoprotein which is exclusively produced by the epithelial cells lining the thick ascending limb and early distal convoluted tubule. It is currently recognized as a multifaceted player in kidney physiology and disease, with discrete roles for intracellular, urinary, interstitial and serum uromodulin. Among these, uromodulin modulates renal sodium handling through the regulation of tubular sodium transporters that reabsorb sodium and are targeted by diuretics, such as the loop diuretic-sensitive Na+-K+-2Cl- cotransporter type 2 (NKCC2) and the thiazide-sensitive Na+/Cl- cotransporter (NCC). Given these roles, the contribution of uromodulin to sodium-sensitive hypertension has been proposed. However, recent studies in humans suggest a more complex interaction between dietary sodium intake, uromodulin and blood pressure. This review presents an updated overview of the uromodulin's biology and its various roles, and focuses on the interaction between uromodulin and sodium-sensitive hypertension.
Collapse
Affiliation(s)
- Artemios G Karagiannidis
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marieta P Theodorakopoulou
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eva Pella
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis A Sarafidis
- First Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
| |
Collapse
|
9
|
D Souza S, Obeid W, Hernandez J, Hu D, Wen Y, Moledina DG, Albert A, Gregg A, Wheeler A, Philbrook HT, Parikh CR. The development of lateral flow devices for urinary biomarkers to assess kidney health. Sci Rep 2024; 14:8516. [PMID: 38609491 PMCID: PMC11014899 DOI: 10.1038/s41598-024-59104-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
Serum creatinine levels are insensitive to real-time changes in kidney function or injury. There is a growing interest in assessing kidney injury by measuring biomarkers in body fluid. From our previous studies, we identified and reported three urinary biomarkers namely Uromodulin (UMOD), Osteopontin (OPN), and Interleukin-9 (IL-9) to be associated with kidney health. The availability of a rapid point-of-care test for these urinary biomarkers will potentially accelerate its applicability and accessibility. In this study, we aimed to develop novel lateral flow device (LFD) for UMOD, OPN and IL-9. We tested paired antibodies using Enzyme Linked Immunosorbent Assay wherein we observed functionality only for UMOD and OPN and not for IL-9. A conjugation buffer pH of 7.8 and 8.5 was found suitable at a detection antibody concentration of 15 µg/mL for LFD development. The developed LFDs were found to quantitatively measure UMOD standard (LLOD of 80,000 pg/mL) and OPN standard (LLOD of 8600 pg/mL) respectively. The LFD was also able to measure human urinary UMOD and OPN with a percent CV of 12.12 and 5.23 respectively.
Collapse
Affiliation(s)
- Serena D Souza
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument St., Suite 416, Baltimore, MD, 21287, USA
| | - Wassim Obeid
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument St., Suite 416, Baltimore, MD, 21287, USA
| | - Jeanine Hernandez
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument St., Suite 416, Baltimore, MD, 21287, USA
| | - David Hu
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument St., Suite 416, Baltimore, MD, 21287, USA
| | - Yumeng Wen
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument St., Suite 416, Baltimore, MD, 21287, USA
| | - Dennis G Moledina
- Section of Nephrology and Clinical and Translational Research Accelerator, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Andre Albert
- Mologic Inc (D/B/A Global Access Diagnostics), 83 Pineland Drive, Gray Hall Suite 202, New Gloucester, ME, USA
| | - Anya Gregg
- Mologic Ltd (D/B/A Global Access Diagnostics), Bedford Technology Park, Thurleigh, UK
| | - Andrew Wheeler
- Mologic Inc (D/B/A Global Access Diagnostics), 83 Pineland Drive, Gray Hall Suite 202, New Gloucester, ME, USA
| | - Heather Thiessen Philbrook
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument St., Suite 416, Baltimore, MD, 21287, USA
| | - Chirag R Parikh
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument St., Suite 416, Baltimore, MD, 21287, USA.
| |
Collapse
|
10
|
Chen TK, Estrella MM, Appel LJ, Surapaneni AL, Köttgen A, Obeid W, Parikh CR, Grams ME. Associations of Baseline and Longitudinal Serum Uromodulin With Kidney Failure and Mortality: Results From the African American Study of Kidney Disease and Hypertension (AASK) Trial. Am J Kidney Dis 2024; 83:71-78. [PMID: 37690632 DOI: 10.1053/j.ajkd.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/07/2023] [Accepted: 05/26/2023] [Indexed: 09/12/2023]
Abstract
RATIONALE & OBJECTIVE Uromodulin (UMOD) is the most abundant protein found in urine and has emerged as a promising biomarker of tubule health. Circulating UMOD is also detectable, but at lower levels. We evaluated whether serum UMOD levels were associated with the risks of incident kidney failure with replacement therapy (KFRT) and mortality. STUDY DESIGN Prospective cohort. SETTING & PARTICIPANTS Participants in AASK (the African American Study of Kidney Disease and Hypertension) with available stored serum samples from the 0-, 12-, and 24-month visits for biomarker measurement. PREDICTORS Baseline log-transformed UMOD and change in UMOD over 2 years. OUTCOMES KFRT and mortality. ANALYTICAL APPROACH Cox proportional hazards and mixed-effects models. RESULTS Among 500 participants with baseline serum UMOD levels (mean age, 54y; 37% female), 161 KFRT events occurred during a median of 8.5 years. After adjusting for baseline demographic factors, clinical factors, glomerular filtration rate, log-transformed urine protein-creatinine ratio, and randomized treatment groups, a 50% lower baseline UMOD level was independently associated with a 35% higher risk of KFRT (adjusted HR, 1.35; 95% CI, 1.07-1.70). For annual UMOD change, each 1-standard deviation lower change was associated with a 67% higher risk of KFRT (adjusted HR, 1.67; 95% CI, 1.41-1.99). Baseline UMOD and UMOD change were not associated with mortality. UMOD levels declined more steeply for metoprolol versus ramipril (P<0.001) as well as for intensive versus standard blood pressure goals (P = 0.002). LIMITATIONS Small sample size and limited generalizability. CONCLUSIONS Lower UMOD levels at baseline and steeper declines in UMOD over time were associated with a higher risk of subsequent KFRT in a cohort of African American adults with chronic kidney disease and hypertension. PLAIN-LANGUAGE SUMMARY Prior studies of uromodulin (UMOD), the most abundant protein in urine, and kidney disease have focused primarily on urinary UMOD levels. The present study evaluated associations of serum UMOD levels with the risks of kidney failure with replacement therapy (KFRT) and mortality in a cohort of African American adults with hypertension and chronic kidney disease. It found that participants with lower levels of UMOD at baseline were more likely to experience KFRT even after accounting for baseline kidney measures. Similarly, participants who experienced steeper annual declines in UMOD also had a heightened risk of kidney failure. Neither baseline nor annual change in UMOD was associated with mortality. Serum UMOD is a promising biomarker of kidney health.
Collapse
Affiliation(s)
- Teresa K Chen
- Kidney Health Research Collaborative and Division of Nephrology, Department of Medicine, University of California, San Francisco, San Francisco, California; San Francisco VA Health Care System, San Francisco, California; Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Michelle M Estrella
- Kidney Health Research Collaborative and Division of Nephrology, Department of Medicine, University of California, San Francisco, San Francisco, California; San Francisco VA Health Care System, San Francisco, California
| | - Lawrence J Appel
- General Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Aditya L Surapaneni
- Department of Medicine, New York University Langone School of Medicine, New York, New York
| | - Anna Köttgen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Wassim Obeid
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chirag R Parikh
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Morgan E Grams
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Medicine, New York University Langone School of Medicine, New York, New York
| |
Collapse
|
11
|
LaFavers KA, Gaddy AR, Micanovic R, Lingeman J, Williams JC, Coe FL, El-Achkar TM, Worcester E. Water Loading and Uromodulin Secretion in Healthy Individuals and Idiopathic Calcium Stone Formers. Clin J Am Soc Nephrol 2023; 18:1059-1067. [PMID: 37256909 PMCID: PMC10564375 DOI: 10.2215/cjn.0000000000000202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Uromodulin is a protein made only by the kidney and released in urine, circulating in polymerizing and nonpolymerizing forms. This protein's multiple functions include inhibition of stone formation in the urine. The physiological determinants of uromodulin production are incompletely understood. METHODS We investigated changes in uromodulin levels and key factors governing its production and release in urine and serum. We performed an experiment to determine whether water loading, a common intervention to prevent stone formation, will alter the rate of uromodulin production. During a 2-day period, 17 stone forming participants and 14 control participants were subjected to water loading (day 1) and normal fluid intake (day 2). Uromodulin levels were measured on timed hourly collections in urine and plasma during the period of the study. RESULTS Water loading increased urinary uromodulin secretion (33±4 versus 10±4 μ g/min at baseline, P < 0.0001) in stone formers and control participants. Despite high urine volumes, most participants maintained relatively stable urinary uromodulin concentrations. Native Western blots for polymerizing and nonpolymerizing uromodulin suggest that polymerizing uromodulin was the predominant form at higher urinary flow volumes. Urine flow rates and sodium excretion were significant correlates of urinary uromodulin production. Water loading did not affect serum uromodulin levels, which were also not associated with urinary uromodulin. CONCLUSIONS Water loading increases the secretion of polymerizing urinary uromodulin. This increased secretion reduces the variability of urinary uromodulin concentrations despite high urine volumes. Serum uromodulin levels were not affected by this treatment.
Collapse
Affiliation(s)
- Kaice A. LaFavers
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Anna R. Gaddy
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Radmila Micanovic
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - James Lingeman
- Department of Urology, Indiana University School of Medicine, Indianapolis, Indiana
| | - James C. Williams
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Fredric L. Coe
- Section of Nephrology, Department of Medicine, The University of Chicago Medicine, Chicago, Illinois
| | - Tarek M. El-Achkar
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush VA Medical Center, Indianapolis, Indiana
| | - Elaine Worcester
- Section of Nephrology, Department of Medicine, The University of Chicago Medicine, Chicago, Illinois
| |
Collapse
|
12
|
LaFavers K, Garimella PS. Uromodulin: more than a marker for chronic kidney disease progression. Curr Opin Nephrol Hypertens 2023; 32:271-277. [PMID: 36912260 DOI: 10.1097/mnh.0000000000000885] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
PURPOSE OF REVIEW Uromodulin, a protein that is highly conserved across several species through evolution, functions to maintain homeostasis and prevent disease development and progression. Historically, the role of uromodulin has been thought to be limited to the kidney and genitourinary tract. This review highlights developments indicating a broader role of uromodulin in human health. RECENT FINDINGS Although initially discovered in the urine and found to have immunomodulatory properties, recent findings indicate that serum uromodulin (sUMOD) is distinct from urine uromodulin (uUMOD) in its structure, function, and regulation. uUMOD binds pathogenic bacteria in the urine preventing infection and is also upregulated in kidneys undergoing repair after injury. Uromodulin knockout mice exhibit higher mortality in the setting of sepsis which is also associated with upregulation of sUMOD. sUMOD lowers calcification risk but this may be influenced by presence of kidney disease. SUMMARY Uromodulin is an evolutionarily conserved protein produced exclusively in the kidney tubule cells with evolving roles being reported both in the kidney and systemically. Further research should be focused at harnessing its use as a potential therapeutic.
Collapse
Affiliation(s)
- Kaice LaFavers
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Pranav S Garimella
- Division of Nephrology and Hypertension, University of California San Diego, San Diego, California, USA
| |
Collapse
|
13
|
LaFavers KA, Micanovic R, Sabo AR, Maghak LA, El-Achkar TM. Evolving Concepts in Uromodulin Biology, Physiology, and Its Role in Disease: a Tale of Two Forms. Hypertension 2022; 79:2409-2418. [PMID: 35959659 PMCID: PMC9669127 DOI: 10.1161/hypertensionaha.122.18567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Uromodulin (or Tamm-Horsfall protein) is a glycoprotein uniquely produced in the kidney by tubular cells of the thick ascending limb of the loop of Henle and early distal tubules. This protein exhibits bidirectional secretion in the urine and in the renal interstitium and circulation. The role of this protein in maintaining renal and systemic homeostasis is becoming increasingly appreciated. Furthermore, perturbations of its functions may play a role in various diseases affecting the kidney and distant organs. In this review, we will discuss important advances in understanding its biology, highlighting the recent discoveries of its secretion and differential precursor processing that generates 2 forms: (1) a highly polymerizing form that is apically excreted in the urine and generates filaments and (2) a nonpolymerizing form that retains a polymerization inhibitory pro-peptide and is released basolaterally in the kidney interstitium and circulation, but can also be found in the urine. We will also discuss factors regulating its production and release, taking into account its intricate physiology, and propose best practices to report its levels. We also discuss breaking advances in its role in hypertension, acute kidney injury and progression to chronic disease, immunomodulation and regulating renal and systemic oxidative stress. We anticipate that this work will be a great resource for researchers and clinicians. This review will highlight the importance of defining what regulates the 2 forms of uromodulin, so that modulation of uromodulin levels and function could become a novel tool in our therapeutic armamentarium against kidney disease.
Collapse
Affiliation(s)
- Kaice A LaFavers
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN. Roudebush VA Medical Center, Indianapolis, IN
| | - Radmila Micanovic
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN. Roudebush VA Medical Center, Indianapolis, IN
| | - Angela R Sabo
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN. Roudebush VA Medical Center, Indianapolis, IN
| | - Lauren A Maghak
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN. Roudebush VA Medical Center, Indianapolis, IN
| | - Tarek M El-Achkar
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
14
|
Mary S, Boder P, Padmanabhan S, McBride MW, Graham D, Delles C, Dominiczak AF. Role of Uromodulin in Salt-Sensitive Hypertension. Hypertension 2022; 79:2419-2429. [PMID: 36378920 PMCID: PMC9553220 DOI: 10.1161/hypertensionaha.122.19888] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The exclusive expression of uromodulin in the kidneys has made it an intriguing protein in kidney and cardiovascular research. Genome-wide association studies discovered variants of uromodulin that are associated with chronic kidney diseases and hypertension. Urinary and circulating uromodulin levels reflect kidney and cardiovascular health as well as overall mortality. More recently, Mendelian randomization studies have shown that genetically driven levels of uromodulin have a causal and adverse effect on kidney function. On a mechanistic level, salt sensitivity is an important factor in the pathophysiology of hypertension, and uromodulin is involved in salt reabsorption via the NKCC2 (Na+-K+-2Cl- cotransporter) on epithelial cells of the ascending limb of loop of Henle. In this review, we provide an overview of the multifaceted physiology and pathophysiology of uromodulin including recent advances in its genetics; cellular trafficking; and mechanistic and clinical studies undertaken to understand the complex relationship between uromodulin, blood pressure, and kidney function. We focus on tubular sodium reabsorption as one of the best understood and pathophysiologically and clinically most important roles of uromodulin, which can lead to therapeutic interventions.
Collapse
Affiliation(s)
- Sheon Mary
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Philipp Boder
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Sandosh Padmanabhan
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Martin W. McBride
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Delyth Graham
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Christian Delles
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Anna F. Dominiczak
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
15
|
LaFavers KA, Hage CA, Gaur V, Micanovic R, Hato T, Khan S, Winfree S, Doshi S, Moorthi RN, Twigg H, Wu XR, Dagher PC, Srour EF, El-Achkar TM. The kidney protects against sepsis by producing systemic uromodulin. Am J Physiol Renal Physiol 2022; 323:F212-F226. [PMID: 35759740 PMCID: PMC9359648 DOI: 10.1152/ajprenal.00146.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022] Open
Abstract
Sepsis is a significant cause of mortality in hospitalized patients. Concomitant development of acute kidney injury (AKI) increases sepsis mortality through unclear mechanisms. Although electrolyte disturbances and toxic metabolite buildup during AKI could be important, it is possible that the kidney produces a protective molecule lost during sepsis with AKI. We have previously demonstrated that systemic Tamm-Horsfall protein (THP; uromodulin), a kidney-derived protein with immunomodulatory properties, falls in AKI. Using a mouse sepsis model without severe kidney injury, we showed that the kidney increases circulating THP by enhancing the basolateral release of THP from medullary thick ascending limb cells. In patients with sepsis, changes in circulating THP were positively associated with a critical illness. THP was also found de novo in injured lungs. Genetic ablation of THP in mice led to increased mortality and bacterial burden during sepsis. Consistent with the increased bacterial burden, the presence of THP in vitro and in vivo led macrophages and monocytes to upregulate a transcriptional program promoting cell migration, phagocytosis, and chemotaxis, and treatment of macrophages with purified THP increases phagocytosis. Rescue of septic THP-/- mice with exogenous systemic THP improved survival. Together, these findings suggest that through releasing THP, the kidney modulates the immune response in sepsis by enhancing mononuclear phagocyte function, and systemic THP has therapeutic potential in sepsis.NEW & NOTEWORTHY Specific therapies to improve outcomes in sepsis with kidney injury have been limited by an unclear understanding of how kidney injury increases sepsis mortality. Here, we identified Tamm-Horsfall protein, known to protect in ischemic acute kidney injury, as protective in preclinical sepsis models. Tamm-Horsfall protein also increased in clinical sepsis without severe kidney injury and concentrated in injured organs. Further study could lead to novel sepsis therapeutics.
Collapse
Affiliation(s)
- Kaice A LaFavers
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chadi A Hage
- Division of Pulmonary Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Varun Gaur
- Southern Indiana Nephrology and Hypertension, Columbus, Indiana
| | - Radmila Micanovic
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Takashi Hato
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Shehnaz Khan
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Seth Winfree
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Anatomy, Cell Biology and Cellular Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Simit Doshi
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ranjani N Moorthi
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Homer Twigg
- Division of Pulmonary Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University, and Veterans Affairs New York Harbor Healthcare System, New York, New York
| | - Pierre C Dagher
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Anatomy, Cell Biology and Cellular Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Edward F Srour
- Division of Hematology and Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tarek M El-Achkar
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Anatomy, Cell Biology and Cellular Physiology, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
16
|
Systemic Effects of Tamm-Horsfall Protein in Kidney Disease. Semin Nephrol 2022; 42:151277. [PMID: 36411194 DOI: 10.1016/j.semnephrol.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tamm-Horsfall protein (THP) is produced exclusively by the kidney, where it is released into both the urine and the circulation. Although the primary form of circulating THP is nonpolymerizing, urinary THP exists as a mix of polymerizing and nonpolymerizing forms. Urinary THP has been shown to play roles in such disparate processes as prevention of urinary tract infections and kidney stone formation, along with the regulation of multiple ion channels within the kidney. The generation of THP knockout mouse models has allowed the investigation of these phenomena and shown a prospective role for circulating THP in ischemia-reperfusion acute kidney injury as well as sepsis. Recent studies have suggested that THP is protective in ischemic injury owing to its inhibition of oxidative stress via the calcium channel transient receptor potential cation channel, subfamily M, member 2 t(TRPM2), and protection in sepsis is at least partially due to THP's promotion of macrophage function.
Collapse
|