1
|
Yu AS, Curry JN. Paracellular Transport and Renal Tubule Calcium Handling: Emerging Roles in Kidney Stone Disease. J Am Soc Nephrol 2024; 35:1758-1767. [PMID: 39207856 PMCID: PMC11617488 DOI: 10.1681/asn.0000000506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
The kidney plays a major role in maintenance of serum calcium concentration, which must be kept within a narrow range to avoid disruption of numerous physiologic processes that depend critically on the level of extracellular calcium, including cell signaling, bone structure, and muscle and nerve function. This defense of systemic calcium homeostasis comes, however, at the expense of the dumping of calcium into the kidney tissue and urine. Because of the large size and multivalency of the calcium ion, its salts are the least soluble among all the major cations in the body. The potential pathologic consequences of this are nephrocalcinosis and kidney stone disease. In this review, we discuss recent advances that have highlighted critical roles for the proximal tubule and thick ascending limb in renal calcium reabsorption, elucidated the molecular mechanisms for paracellular transport in these segments, and implicated disturbances in these processes in human disease.
Collapse
Affiliation(s)
- Alan S.L. Yu
- Division of Nephrology and Hypertension, Department of Internal Medicine, Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
| | - Joshua N. Curry
- Division of Nephrology, Oregon Health Sciences University, Portland, Oregon
| |
Collapse
|
2
|
Abstract
Sequential expression of claudins, a family of tight junction proteins, along the nephron mirrors the sequential expression of ion channels and transporters. Only by the interplay of transcellular and paracellular transport can the kidney efficiently maintain electrolyte and water homeostasis in an organism. Although channel and transporter defects have long been known to perturb homeostasis, the contribution of individual tight junction proteins has been less clear. Over the past two decades, the regulation and dysregulation of claudins have been intensively studied in the gastrointestinal tract. Claudin expression patterns have, for instance, been found to be affected in infection and inflammation, or in cancer. In the kidney, a deeper understanding of the causes as well as the effects of claudin expression alterations is only just emerging. Little is known about hormonal control of the paracellular pathway along the nephron, effects of cytokines on renal claudin expression or relevance of changes in paracellular permeability to the outcome in any of the major kidney diseases. By summarizing current findings on the role of specific claudins in maintaining electrolyte and water homeostasis, this Review aims to stimulate investigations on claudins as prognostic markers or as druggable targets in kidney disease.
Collapse
Affiliation(s)
- Luca Meoli
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dorothee Günzel
- Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Alexander RT, Dimke H. Molecular mechanisms underlying paracellular calcium and magnesium reabsorption in the proximal tubule and thick ascending limb. Ann N Y Acad Sci 2022; 1518:69-83. [PMID: 36200584 DOI: 10.1111/nyas.14909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Calcium and magnesium are the most abundant divalent cations in the body. The plasma level is controlled by coordinated interaction between intestinal absorption, reabsorption in the kidney, and, for calcium at least, bone storage and exchange. The kidney adjusts urinary excretion of these ions in response to alterations in their systemic concentration. Free ionized and anion-complexed calcium and magnesium are filtered at the glomerulus. The majority (i.e., >85%) of filtered divalent cations are reabsorbed via paracellular pathways from the proximal tubule and thick ascending limb (TAL) of the loop of Henle. Interestingly, the largest fraction of filtered calcium is reabsorbed from the proximal tubule (65%), while the largest fraction of filtered magnesium is reclaimed from the TAL (60%). The paracellular pathways mediating these fluxes are composed of tight junctional pores formed by claudins. In the proximal tubule, claudin-2 and claudin-12 confer calcium permeability, while the exact identity of the magnesium pore remains to be determined. Claudin-16 and claudin-19 contribute to the calcium and magnesium permeable pathway in the TAL. In this review, we discuss the data supporting these conclusions and speculate as to why there is greater fractional calcium reabsorption from the proximal tubule and greater fractional magnesium reabsorption from the TAL.
Collapse
Affiliation(s)
- R Todd Alexander
- Departments of Physiology & Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Women's and Children's Health Institute, Edmonton, Alberta, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Demark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
4
|
The importance of kidney calcium handling in the homeostasis of extracellular fluid calcium. Pflugers Arch 2022; 474:885-900. [PMID: 35842482 DOI: 10.1007/s00424-022-02725-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/09/2022] [Accepted: 06/30/2022] [Indexed: 12/13/2022]
Abstract
Extracellular fluid calcium concentration must be maintained within a narrow range in order to sustain many biological functions, encompassing muscle contraction, blood coagulation, and bone and tooth mineralization. Blood calcium value is critically dependent on the ability of the renal tubule to reabsorb the adequate amount of filtered calcium. Tubular calcium reabsorption is carried out by various and complex mechanisms in 3 distinct segments: the proximal tubule, the cortical thick ascending limb of the loop of Henle, and the late distal convoluted/connecting tubule. In addition, calcium reabsorption is tightly controlled by many endocrine, paracrine, and autocrine factors, as well as by non-hormonal factors, in order to adapt the tubular handling of calcium to the metabolic requirements. The present review summarizes the current knowledge of the mechanisms and factors involved in calcium handling by the kidney and, ultimately, in extracellular calcium homeostasis. The review also highlights some of our gaps in understanding that need to be addressed in the future.
Collapse
|
5
|
Tang PK, Geddes RF, Jepson RE, Elliott J. A feline-focused review of chronic kidney disease-mineral and bone disorders - Part 1: Physiology of calcium handling. Vet J 2021; 275:105719. [PMID: 34311095 DOI: 10.1016/j.tvjl.2021.105719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 06/03/2021] [Accepted: 07/21/2021] [Indexed: 01/01/2023]
Abstract
Mineral derangements are a common consequence of chronic kidney disease (CKD). Despite the well-established role of phosphorus in the pathophysiology of CKD, the implications of calcium disturbances associated with CKD remain equivocal. Calcium plays an essential role in numerous physiological functions in the body and is a fundamental structural component of bone. An understanding of calcium metabolism is required to understand the potential adverse clinical implications and outcomes secondary to the (mal)adaptation of calcium-regulating hormones in CKD. The first part of this two-part review covers the physiology of calcium homeostasis (kidneys, intestines and bones) and details the intimate relationships between calcium-regulating hormones (parathyroid hormone, calcitriol, fibroblast growth factor 23, α-Klotho and calcitonin) and the role of the calcium-sensing receptor.
Collapse
Affiliation(s)
- Pak-Kan Tang
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK.
| | - Rebecca F Geddes
- Department of Clinical Science and Services, Royal Veterinary College, University of London, London, UK
| | - Rosanne E Jepson
- Department of Clinical Science and Services, Royal Veterinary College, University of London, London, UK
| | - Jonathan Elliott
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| |
Collapse
|
6
|
Poll BG, Chen L, Chou CL, Raghuram V, Knepper MA. Landscape of GPCR expression along the mouse nephron. Am J Physiol Renal Physiol 2021; 321:F50-F68. [PMID: 34029142 PMCID: PMC8321805 DOI: 10.1152/ajprenal.00077.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Kidney transport and other renal functions are regulated by multiple G protein-coupled receptors (GPCRs) expressed along the renal tubule. The rapid, recent appearance of comprehensive unbiased gene expression data in the various renal tubule segments, chiefly RNA sequencing and protein mass spectrometry data, has provided a means of identifying patterns of GPCR expression along the renal tubule. To allow for comprehensive mapping, we first curated a comprehensive list of GPCRs in the genomes of mice, rats, and humans (https://hpcwebapps.cit.nih.gov/ESBL/Database/GPCRs/) using multiple online data sources. We used this list to mine segment-specific and cell type-specific expression data from RNA-sequencing studies in microdissected mouse tubule segments to identify GPCRs that are selectively expressed in discrete tubule segments. Comparisons of these mapped mouse GPCRs with other omics datasets as well as functional data from isolated perfused tubule and micropuncture studies confirmed patterns of expression for well-known receptors and identified poorly studied GPCRs that are likely to play roles in the regulation of renal tubule function. Thus, we provide data resources for GPCR expression across the renal tubule, highlighting both well-known GPCRs and understudied receptors to provide guidance for future studies.
Collapse
Affiliation(s)
- Brian G Poll
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Lihe Chen
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Chung-Lin Chou
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Viswanathan Raghuram
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark A Knepper
- Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
7
|
Lin LY, Yeh YH, Hung GY, Lin CH, Hwang PP, Horng JL. Role of Calcium-Sensing Receptor in Mechanotransducer-Channel-Mediated Ca 2+ Influx in Hair Cells of Zebrafish Larvae. Front Physiol 2018; 9:649. [PMID: 29899708 PMCID: PMC5988855 DOI: 10.3389/fphys.2018.00649] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/14/2018] [Indexed: 01/16/2023] Open
Abstract
The calcium-sensing receptor (CaSR) is an extracellular Ca2+ sensor that plays a critical role in maintaining Ca2+ homeostasis in several organs, including the parathyroid gland and kidneys. In this study, through in situ hybridization, the expression of CaSR mRNA was found in the neuromasts of zebrafish larvae. Immunohistochemistry further demonstrated that the CaSR protein was present in neuromast hair cell stereocilia and basolateral membranes. Based on the expression and subcellular localization of the CaSR in hair cells, we hypothesized that the CaSR is expressed in zebrafish lateral-line hair cells to regulate mechanotransducer (MET)-channel-mediated Ca2+ entry. Using the scanning ion-selective electrode technique, MET-channel-mediated Ca2+ influx at the stereocilia of hair cells was measured in intact larvae. Ca2+ influx was suppressed after larvae were pretreated with a CaSR activator (R-568) or high-Ca2+ (HCa) medium. Gene knockdown by using morpholino oligonucleotides decreased CaSR expression in hair cells and eliminated the effects of R-568 and HCa on Ca2+ influx. In addition, we found that treatment with R-568 attenuated neomycin-induced hair cell death. This study is the first to demonstrate that the CaSR is involved in mechanotransduction in zebrafish hair cells.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ya-Hsin Yeh
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Giun-Yi Hung
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.,Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Pediatrics, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Hao Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
8
|
Geddes RF, Jepson RE, Forcada Y, Elliott J, Syme HM. Associations between single nucleotide polymorphisms in the calcium sensing receptor and chronic kidney disease-mineral and bone disorder in cats. Vet J 2018; 235:34-41. [PMID: 29704936 DOI: 10.1016/j.tvjl.2018.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 11/26/2022]
Abstract
Feline chronic kidney disease (CKD) is associated with high variability in severity of CKD-mineral and bone disorder (CKD-MBD). The calcium sensing receptor (CaSR) regulates circulating parathyroid hormone (PTH) and calcium concentrations. Single nucleotide polymorphisms (SNPs) in the CaSR are associated with severity of secondary renal hyperparathyroidism and total calcium concentrations in human patients receiving haemodialysis. The objective of this study was to explore associations between polymorphisms in the feline CaSR (fCaSR) and biochemical changes observed in CKD-MBD. Client owned cats (≥9years) were retrospectively included. SNP discovery was performed in 20 cats with azotaemic CKD and normal or dysregulated calcium concentrations. Non-pedigree cats (n=192) (125 with azotaemic CKD and 66 healthy), Persians (n=40) and Burmese (n=25) were genotyped for all identified SNPs using KASP. Biochemical parameters from the date of CKD diagnosis or from first visit to the clinic (healthy cats) were used. Associations between genotype and ionized calcium, total calcium, phosphate, PTH and FGF-23 were performed for non-pedigree cats using logistic regression. Sequence alignment against the fCaSR sequence revealed eight novel exonic SNPs. KASP genotyping had high accuracy (99.6%) and a low failure rate (<6%) for all SNPs. Allele frequencies varied between breeds. In non-pedigree cats, one synonymous SNP CaSR:c.1269G>A was associated with logPTH concentration (adjusted for plasma creatinine concentration), with a recessive model having the best fit (G/G vs A/A-G/A, P=0.031). Genetic variation in the fCaSR is unlikely to explain the majority of the variability in presence and severity of CKD-MBD in cats.
Collapse
Affiliation(s)
- R F Geddes
- Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, AL9 7TA, UK.
| | - R E Jepson
- Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, AL9 7TA, UK
| | - Y Forcada
- Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, AL9 7TA, UK
| | - J Elliott
- Department of Comparative Biomedical Sciences, Royal Veterinary College, 4 Royal College Street, London, NW1 0TU, UK
| | - H M Syme
- Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hertfordshire, AL9 7TA, UK
| |
Collapse
|
9
|
Lim JH, Kim HW, Kim MY, Kim TW, Kim EN, Kim Y, Chung S, Kim YS, Choi BS, Kim YS, Chang YS, Kim HW, Park CW. Cinacalcet-mediated activation of the CaMKKβ-LKB1-AMPK pathway attenuates diabetic nephropathy in db/db mice by modulation of apoptosis and autophagy. Cell Death Dis 2018; 9:270. [PMID: 29449563 PMCID: PMC5833853 DOI: 10.1038/s41419-018-0324-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/05/2018] [Accepted: 01/15/2018] [Indexed: 02/06/2023]
Abstract
Apoptosis and autophagy are harmoniously regulated biological processes for maintaining tissue homeostasis. AMP-activated protein kinase (AMPK) functions as a metabolic sensor to coordinate cellular survival and function in various organs, including the kidney. We investigated the renoprotective effects of cinacalcet in high-glucose treated human glomerular endothelial cells (HGECs), murine podocytes and C57BLKS/J-db/db mice. In cultured HGECs and podocytes, cinacalcet decreased oxidative stress and apoptosis and increased autophagy that were attributed to the increment of intracellular Ca2+ concentration and the phosphorylation of Ca2+/calmodulin-dependent protein kinase kinaseβ (CaMKKβ)-Liver kinase B1 (LKB1)-AMPK and their downstream signals including the phosphorylation of endothelial nitric oxide synthase (eNOS) and increases in superoxide dismutases and B cell leukemia/lymphoma 2/BCL-2-associated X protein expression. Interestingly, intracellular chelator BAPTA-AM reversed cinacalcet-induced CaMKKβ elevation and LKB1 phosphorylation. Cinacalcet reduced albuminuria without influencing either blood glucose or Ca2+ concentration and ameliorated diabetes-induced renal damage, which were related to the increased expression of calcium-sensing receptor and the phosphorylation of CaMKKβ-LKB1. Subsequent activation of AMPK was followed by the activation of peroxisome proliferator-activated receptor γ coactivator-1α and phospho-Ser1177eNOS-nitric oxide, resulting in a decrease in apoptosis and oxidative stress as well as an increase in autophagy. Our results suggest that cinacalcet increases intracellular Ca2+ followed by an activation of CaMKKβ-LKB1-AMPK signaling in GECs and podocytes in the kidney, which provides a novel therapeutic means for type 2 diabetic nephropathy by modulation of apoptosis and autophagy.
Collapse
Affiliation(s)
- Ji Hee Lim
- Division of Nephrology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyung Wook Kim
- Division of Nephrology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Korea
| | - Min Young Kim
- Division of Nephrology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea.,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Tae Woo Kim
- Department of Hematology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun Nim Kim
- Division of Nephrology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yaeni Kim
- Division of Nephrology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sungjin Chung
- Division of Nephrology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Soo Kim
- Division of Nephrology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
| | - Bum Soon Choi
- Division of Nephrology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yong-Soo Kim
- Division of Nephrology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yoon Sik Chang
- Division of Nephrology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Won Kim
- Department of Rehabilitation Medicine, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Korea. .,Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The tight junction conductance made of the claudin-based paracellular channel is important in the regulation of calcium and magnesium reabsorption in the kidney. This review describes recent findings of the structure, the function, and the physiologic regulation of claudin-14, claudin-16, and claudin-19 channels that through protein interactions confer calcium and magnesium permeability to the tight junction. RECENT FINDINGS Mutations in two tight junction genes - claudin-16 and claudin-19 - cause the inherited renal disorder familial hypomagnesemia with hypercalciuria and nephrocalcinosis. A recent genome-wide association study has identified claudin-14 as a major risk gene of hypercalciuric nephrolithiasis. The crystal structure of claudin-19 has recently been resolved allowing the reconstruction of a claudin assembly model from cis-dimers made of claudin-16 and claudin-19 interaction. MicroRNAs have been identified as novel regulators of the claudin-14 gene. The microRNA-claudin-14 operon is directly regulated by the Ca sensing receptor gene in response to hypercalcemia. SUMMARY The paracellular pathway in the kidney is particularly important for mineral metabolism. Three claudin proteins - claudin-14, claudin-16, and claudin-19 - contribute to the structure and function of this paracellular pathway. Genetic mutations and gene expression changes in these claudins may lead to alteration of the paracellular permeability to calcium and magnesium, ultimately affecting renal mineral metabolism.
Collapse
|
11
|
Lee JJ, Plain A, Beggs MR, Dimke H, Alexander RT. Effects of phospho- and calciotropic hormones on electrolyte transport in the proximal tubule. F1000Res 2017; 6:1797. [PMID: 29043081 PMCID: PMC5627579 DOI: 10.12688/f1000research.12097.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 12/17/2022] Open
Abstract
Calcium and phosphate are critical for a myriad of physiological and cellular processes within the organism. Consequently, plasma levels of calcium and phosphate are tightly regulated. This occurs through the combined effects of the phospho- and calciotropic hormones, parathyroid hormone (PTH), active vitamin D
3, and fibroblast growth factor 23 (FGF23). The organs central to this are the kidneys, intestine, and bone. In the kidney, the proximal tubule reabsorbs the majority of filtered calcium and phosphate, which amounts to more than 60% and 90%, respectively. The basic molecular mechanisms responsible for phosphate reclamation are well described, and emerging work is delineating the molecular identity of the paracellular shunt wherein calcium permeates the proximal tubular epithelium. Significant experimental work has delineated the molecular effects of PTH and FGF23 on these processes as well as their regulation of active vitamin D
3 synthesis in this nephron segment. The integrative effects of both phospho- and calciotropic hormones on proximal tubular solute transport and subsequently whole body calcium-phosphate balance thus have been further complicated. Here, we first review the molecular mechanisms of calcium and phosphate reabsorption from the proximal tubule and how they are influenced by the phospho- and calciotropic hormones acting on this segment and then consider the implications on both renal calcium and phosphate handling as well as whole body mineral balance.
Collapse
Affiliation(s)
- Justin J Lee
- Department of Physiology, University of Alberta, Edmonton, Canada.,The Women and Children's Health Research Institute, Edmonton, Canada
| | - Allein Plain
- Department of Physiology, University of Alberta, Edmonton, Canada.,The Women and Children's Health Research Institute, Edmonton, Canada
| | - Megan R Beggs
- Department of Physiology, University of Alberta, Edmonton, Canada.,The Women and Children's Health Research Institute, Edmonton, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, Canada.,The Women and Children's Health Research Institute, Edmonton, Canada.,Department of Pediatrics, Edmonton Clinic Health Academy, University of Alberta, Edmonton, Canada
| |
Collapse
|
12
|
Parathyroid hormone and the regulation of renal tubular calcium transport. Curr Opin Nephrol Hypertens 2017; 26:405-410. [DOI: 10.1097/mnh.0000000000000347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Mayr B, Glaudo M, Schöfl C. Activating Calcium-Sensing Receptor Mutations: Prospects for Future Treatment with Calcilytics. Trends Endocrinol Metab 2016; 27:643-652. [PMID: 27339034 DOI: 10.1016/j.tem.2016.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/17/2016] [Accepted: 05/20/2016] [Indexed: 12/20/2022]
Abstract
Activating mutations of the G protein-coupled receptor, calcium-sensing receptor (CaSR), cause autosomal dominant hypocalcemia and Bartter syndrome type 5. These mutations lower the set-point for extracellular calcium sensing, thereby causing decreased parathyroid hormone secretion and disturbed renal calcium handling with hypercalciuria. Available therapies increase serum calcium levels but raise the risk of complications in affected patients. Symptom relief and the prevention of adverse outcome is currently very difficult to achieve. Calcilytics act as CaSR antagonists that attenuate its activity, thereby correcting the molecular defect of activating CaSR proteins in vitro and elevating serum calcium in mice and humans in vivo, and have emerged as the most promising therapeutics for the treatment of these rare and difficult to treat diseases.
Collapse
Affiliation(s)
- Bernhard Mayr
- Division of Endocrinology and Diabetes, Department of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Germany.
| | - Markus Glaudo
- Division of Endocrinology and Diabetes, Department of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Germany
| | - Christof Schöfl
- Division of Endocrinology and Diabetes, Department of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Germany
| |
Collapse
|
14
|
Herm G, Muscher-Banse AS, Breves G, Schröder B, Wilkens MR. Renal mechanisms of calcium homeostasis in sheep and goats. J Anim Sci 2016; 93:1608-21. [PMID: 26020183 DOI: 10.2527/jas.2014-8450] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In small ruminants, the renal excretion of calcium (Ca) and phosphate (Pi) is not modulated in response to dietary Ca restriction. Although this lack of adaptation was observed in both sheep and goats, differences in renal function between these species cannot be excluded. Recent studies demonstrated that compared with sheep, goats have a greater ability to compensate for challenges to Ca homeostasis, probably due to a more pronounced increase in calcitriol production. Therefore, the aim of the present study was to examine the effect of 1) dietary Ca restriction, 2) administration of calcitriol, and 3) lactation on Ca and Pi transport mechanisms and receptors as well as enzymes involved in vitamin D metabolism in renal tissues of sheep and goats. Whereas RNA expression of renal transient receptor potential vanilloid channel type 5 was unaffected by changes in dietary Ca content, a significant stimulation was observed with administration of calcitriol in both sheep (P < 0.001) and goats (P < 0.01). Calbindin-D28K was downregulated during dietary Ca restriction in goats (P < 0.05). Expression of the sodium/Ca exchanger type 1 was decreased by low Ca intake in sheep (P < 0.05) and upregulated by calcitriol treatment in goats (P < 0.05). A significant reduction in RNA expression of the cytosolic and the basolateral Ca transporting proteins was also demonstrated for lactating goats in comparison to dried-off animals. Species differences were found for vitamin D receptor expression, which was stimulated by calcitriol treatment in sheep (P < 0.01) but not in goats. As expected, expression of 1α-hydroxylase was upregulated by dietary Ca restriction (P < 0.001; P < 0.05) and inhibited by exogenous calcitriol (P < 001; P < 0.05) in both sheep and goats. However, whereas 24-hydroxylase expression was stimulated to the same extent by calcitriol treatment in sheep, irrespective of the diet (P < 0.001), a modulatory effect of dietary Ca supply on 24-hydroxylase induction was observed in goats (P < 0.05). Taken together, our results confirm observations that modulation of renal Ca excretion does not contribute to maintenance of Ca homeostasis in these ruminants during restricted dietary supply, unlike responses in monogastric animals. The interesting species differences related to vitamin D metabolism might explain the greater capacity of goats to compensate for challenges of Ca homeostasis and should be further investigated.
Collapse
|
15
|
Graca JAZ, Schepelmann M, Brennan SC, Reens J, Chang W, Yan P, Toka H, Riccardi D, Price SA. Comparative expression of the extracellular calcium-sensing receptor in the mouse, rat, and human kidney. Am J Physiol Renal Physiol 2015; 310:F518-33. [PMID: 26661650 DOI: 10.1152/ajprenal.00208.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/30/2015] [Indexed: 11/22/2022] Open
Abstract
The calcium-sensing receptor (CaSR) was cloned over 20 years ago and functionally demonstrated to regulate circulating levels of parathyroid hormone by maintaining physiological serum ionized calcium concentration ([Ca(2+)]). The receptor is highly expressed in the kidney; however, intrarenal and intraspecies distribution remains controversial. Recently, additional functions of the CaSR receptor in the kidney have emerged, including parathyroid hormone-independent effects. It is therefore critical to establish unequivocally the localization of the CaSR in the kidney to relate this to its proposed physiological roles. In this study, we determined CaSR expression in mouse, rat, and human kidneys using in situ hybridization, immunohistochemistry (using 8 different commercially available and custom-made antibodies), and proximity ligation assays. Negative results in mice with kidney-specific CaSR ablation confirmed the specificity of the immunohistochemistry signal. Both in situ hybridization and immunohistochemistry showed CaSR expression in the thick ascending limb, distal tubule, and collecting duct of all species, with the thick ascending limb showing the highest levels. Within the collecting ducts, there was significant heterogeneity of expression between cell types. In the proximal tubule, lower levels of immunoreactivity were detected by immunohistochemistry and proximity ligation assays. Proximity ligation assays were the only technique to demonstrate expression within glomeruli. This study demonstrated CaSR expression throughout the kidney with minimal discrepancy between species but with significant variation in the levels of expression between cell and tubule types. These findings clarify the intrarenal distribution of the CaSR and enable elucidation of the full physiological roles of the receptor within this organ.
Collapse
Affiliation(s)
- J A Z Graca
- Pathology Sciences, AstraZeneca R&D, Macclesfield, United Kingdom; School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - M Schepelmann
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - S C Brennan
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - J Reens
- Pathology Sciences, AstraZeneca R&D, Macclesfield, United Kingdom
| | - W Chang
- Department of Medicine, UCSF School of Medicine, San Francisco, California
| | - P Yan
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; and
| | - H Toka
- Division of Nephrology and Hyperension, Eastern Virginia Medical School, Norfolk, Virginia
| | - D Riccardi
- School of Biosciences, Cardiff University, Cardiff, United Kingdom;
| | - S A Price
- Pathology Sciences, AstraZeneca R&D, Macclesfield, United Kingdom
| |
Collapse
|
16
|
Abstract
In addition to its prominent role in the parathyroid gland, the calcium-sensing receptor (CaSR) is expressed in various tissues, including the kidney. This article reviews current data on the calcium-sensing properties of the kidney, the localization of the CaSR protein along the nephron, and its function in calcium homeostasis and in hypercalciuria.
Collapse
Affiliation(s)
- Hakan R. Toka
- Division of Nephrology and Hypertension, Eastern Virginia Medical School, Norfolk, Virginia
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, Massachussetts; and
| | - Martin R. Pollak
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, Massachussetts; and
| | - Pascal Houillier
- Université Paris-Descartes, Sorbonne Paris-Cité, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Service de Physiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
| |
Collapse
|
17
|
Carmosino M, Gerbino A, Hendy GN, Torretta S, Rizzo F, Debellis L, Procino G, Svelto M. NKCC2 activity is inhibited by the Bartter's syndrome type 5 gain-of-function CaR-A843E mutant in renal cells. Biol Cell 2015; 107:98-110. [PMID: 25631355 DOI: 10.1111/boc.201400069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/23/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND INFORMATION The gain-of-function A843E mutation of the calcium sensing receptor (CaR) causes Bartter syndrome type 5. Patients carrying this CaR variant show a remarkably reduced renal NaCl reabsorption in the thick ascending limb (TAL) of Henle's loop resulting in renal loss of NaCl in the absence of mutations in renal Na(+) and Cl(-) ion transporters. The molecular mechanisms underlying this clinical phenotype are incompletely understood. We investigated, in human embryonic kidney 293 (HEK 293) cells and porcine kidney epithelial (LLC-PK1) cells, the functional cross-talk of CaR-A843E with the Na(+):K(+):2Cl(-) co-transporter, NKCC2, which provides NaCl reabsorption in the TAL. RESULTS The expression of the CaR mutant did not alter the apical localisation of NKCC2 in LLC-PK1 cells. However, the steady-state NKCC2 phosphorylation and activity were decreased in cells transfected with CaR-A843E compared with the control wild-type CaR (CaR WT)-transfected cells. Of note, low-Cl(-)-dependent NKCC2 activation was also strongly inhibited upon the expression of CaR-A843E mutant. The use of either P450 ω-hydroxylase (CYP4)- or phospholipase A2 (PLA2)-blockers suggests that this effect is likely mediated by arachidonic acid (AA) metabolites. CONCLUSIONS The data suggested that the activated CaR affects intracellular pathways modulating NKCC2 activity rather than NKCC2 intracellular trafficking in renal cells, and throw further light on the pathological role played by active CaR mutants in Bartter syndrome type 5.
Collapse
Affiliation(s)
- Monica Carmosino
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, 70125 Bari, Italy; Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Alexander RT, Rievaj J, Dimke H. Paracellular calcium transport across renal and intestinal epithelia. Biochem Cell Biol 2014; 92:467-80. [PMID: 25386841 DOI: 10.1139/bcb-2014-0061] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium (Ca(2+)) is a key constituent in a myriad of physiological processes from intracellular signalling to the mineralization of bone. As a consequence, Ca(2+) is maintained within narrow limits when circulating in plasma. This is accomplished via regulated interplay between intestinal absorption, renal tubular reabsorption, and exchange with bone. Many studies have focused on the highly regulated active transcellular transport pathways for Ca(2+) from the duodenum of the intestine and the distal nephron of the kidney. However, comparatively little work has examined the molecular constituents creating the paracellular shunt across intestinal and renal epithelium, the transport pathway responsible for the majority of transepithelial Ca(2+) flux. More specifically, passive paracellular Ca(2+) absorption occurs across the majority of the intestine in addition to the renal proximal tubule and thick ascending limb of Henle's loop. Importantly, recent studies demonstrated that Ca(2+) transport through the paracellular shunt is significantly regulated. Therefore, we have summarized the evidence for different modes of paracellular Ca(2+) flux across renal and intestinal epithelia and highlighted recent molecular insights into both the mechanism of secondarily active paracellular Ca(2+) movement and the identity of claudins that permit the passage of Ca(2+) through the tight junction of these epithelia.
Collapse
Affiliation(s)
- R Todd Alexander
- a Department of Pediatrics, The University of Alberta, 4-585 Edmonton Clinic Health Academy, 11405 - 87 Ave, Edmonton, AB T6G 2R7, Canada
| | | | | |
Collapse
|
19
|
Alfadda TI, Saleh AMA, Houillier P, Geibel JP. Calcium-sensing receptor 20 years later. Am J Physiol Cell Physiol 2014; 307:C221-31. [PMID: 24871857 PMCID: PMC4121584 DOI: 10.1152/ajpcell.00139.2014] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/23/2014] [Indexed: 12/19/2022]
Abstract
The calcium-sensing receptor (CaSR) has played an important role as a target in the treatment of a variety of disease states over the past 20 plus years. In this review, we give an overview of the receptor at the cellular level and then provide details as to how this receptor has been targeted to modulate cellular ion transport mechanisms. As a member of the G protein-coupled receptor (GPCR) family, it has a high degree of homology with a variety of other members in this class, which could explain why this receptor has been identified in so many different tissues throughout the body. This diversity of locations sets it apart from other members of the family and may explain how the receptor interacts with so many different organ systems in the body to modulate the physiology and pathophysiology. The receptor is unique in that it has two large exofacial lobes that sit in the extracellular environment and sense changes in a wide variety of environmental cues including salinity, pH, amino acid concentration, and polyamines to name just a few. It is for this reason that there has been a great deal of research associated with normal receptor physiology over the past 20 years. With the ongoing research, in more recent years a focus on the pathophysiology has emerged and the effects of receptor mutations on cellular and organ physiology have been identified. We hope that this review will enhance and update the knowledge about the importance of this receptor and stimulate future potential investigations focused around this receptor in cellular, organ, and systemic physiology and pathophysiology.
Collapse
Affiliation(s)
- Tariq I Alfadda
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Ahmad M A Saleh
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Pascal Houillier
- INSERM UMR_S1138, Paris, France; Paris Descartes University, Paris, France; Assistance Publique-Hopitaux de Paris, Hopital Europeen Georges Pompidou, Paris, France
| | - John P Geibel
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
20
|
Besiroglu H, Sahin S, Otunctemur A, Ozbek E. Calcium-sensing receptor gene polymorphisms in patients with calcium urolithiasis: a systematic review. Ren Fail 2014; 36:1187-92. [PMID: 25019182 DOI: 10.3109/0886022x.2014.937673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Calcium-sensing receptor gene (CaSR) might be a strong component of the complex genetic background regulating calcium excretion and stone formation in kidney. The polymorphisms in different parts of the gene could be associated with calcium stone formation. OBJECTIVE The individual studies indicate a correlation between CaSR gene polymorphisms and urolithiasis but not sufficient to draw a precise result. We aimed to search literature to come to a reliable conclusion through a systematic review. MATERIALS AND METHODS We have serached individiual studies regarding the issue and high quality reviews. We assessed all the studies to draw a conclusion. CONCLUSION The genetic background of the neprolithiasis is an interesting issue deserving to be disscussed on. Regading genes of which, CaSR gene polymorphisms is the leading one, are studied in many individual studies but they are not sufficient to have a precise conclusion. Well-oriented and documented, phenotypically homogenous large cohort studies are needed for further evaluation.
Collapse
Affiliation(s)
- Huseyin Besiroglu
- Department of Urology, Okmeydani Training and Research Hospital , Istanbul , Turkey
| | | | | | | |
Collapse
|
21
|
van der Hagen EAE, Tudpor K, Verkaart S, Lavrijsen M, van der Kemp A, van Zeeland F, Bindels RJM, Hoenderop JGJ. β1-Adrenergic receptor signaling activates the epithelial calcium channel, transient receptor potential vanilloid type 5 (TRPV5), via the protein kinase A pathway. J Biol Chem 2014; 289:18489-96. [PMID: 24828496 DOI: 10.1074/jbc.m113.491274] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Epinephrine and norepinephrine are present in the pro-urine. β-Adrenergic receptor (β-AR) blockers administered to counteract sympathetic overstimulation in patients with congestive heart failure have a negative inotropic effect, resulting in reduced cardiac contractility. Positive inotropes, β1-AR agonists, are used to improve cardiac functions. Active Ca(2+) reabsorption in the late distal convoluted and connecting tubules (DCT2/CNT) is initiated by Ca(2+) influx through the transient receptor potential vanilloid type 5 (TRPV5) Ca(2+) channel. Although it was reported that β-ARs are present in the DCT2/CNT region, their role in active Ca(2+) reabsorption remains elusive. Here we revealed that β1-AR, but not β2-AR, is localized with TRPV5 in DCT2/CNT. Subsequently, treatment of TRPV5-expressing mouse DCT2/CNT primary cell cultures with the β1-AR agonist dobutamine showed enhanced apical-to-basolateral transepithelial Ca(2+) transport. In human embryonic kidney (HEK293) cells, dobutamine was shown to stimulate cAMP production, signifying functional β1-AR expression. Fura-2 experiments demonstrated increased activity of TRPV5 in response to dobutamine, which could be prevented by the PKA inhibitor H89. Moreover, nonphosphorylable T709A-TRPV5 and phosphorylation-mimicking T709D-TRPV5 mutants were unresponsive to dobutamine. Surface biotinylation showed that dobutamine did not affect plasma membrane abundance of TRPV5. In conclusion, activation of β1-AR stimulates active Ca(2+) reabsorption in DCT2/CNT; an increase in TRPV5 activity via PKA phosphorylation of residue Thr-709 possibly plays an important role. These data explicate a calciotropic role in addition to the inotropic property of β1-AR.
Collapse
Affiliation(s)
- Eline A E van der Hagen
- From the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Kukiat Tudpor
- From the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Sjoerd Verkaart
- From the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Marla Lavrijsen
- From the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Annemiete van der Kemp
- From the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Femke van Zeeland
- From the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - René J M Bindels
- From the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- From the Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
22
|
Tsai WC, Chuang TY, Chen MC, Chen JC, Tsao YT. Ogilvie syndrome: a potentially life-threatening phenotype of immobilization hypercalcemia. Am J Emerg Med 2014; 32:816.e1-3. [PMID: 24589023 DOI: 10.1016/j.ajem.2013.12.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/28/2013] [Indexed: 01/18/2023] Open
Abstract
Ogilvie syndrome, also known as acute colonic pseudo-obstruction, is characterized by the clinical presentation and imaging evidence of acute colonic obstruction in the absence of a mechanical cause. Several comorbidities and serious associated medical or surgical conditions have been described to be relevant to this syndrome. In general, a preferred initial management with favorable treatment outcomes is virtually to correct underlying disorders. Although disrupted electrolyte homeostasis may induce impaired colonic motility, hypercalcemia secondary to immobilization as a major culprit in this syndrome has rarely been studied. In this report, we profiled radiographic features, therapeutic strategies, and pathogenetic hypothesis of this clinical entity and highlighted the need for clinicians to maintain awareness of this distinct manifestation.
Collapse
Affiliation(s)
- Wei-Chi Tsai
- Department of Physical Medicine & Rehabilitation, Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Tzu-Yi Chuang
- Department of Medicine, Taoyuan General Hospital, Taoyuan, Taiwan; Department of Critical Care Medicine, Taoyuan General Hospital, Taoyuan, Taiwan
| | - Mei-Chen Chen
- Department of Medicine, Taoyuan General Hospital, Taoyuan, Taiwan
| | - Jui-Chang Chen
- Department of Medicine, Taoyuan General Hospital, Taoyuan, Taiwan
| | - Yu-Tzu Tsao
- Department of Medicine, Taoyuan General Hospital, Taoyuan, Taiwan; Department of Critical Care Medicine, Taoyuan General Hospital, Taoyuan, Taiwan.
| |
Collapse
|
23
|
Gong Y, Hou J. Claudin-14 underlies Ca⁺⁺-sensing receptor-mediated Ca⁺⁺ metabolism via NFAT-microRNA-based mechanisms. J Am Soc Nephrol 2013; 25:745-60. [PMID: 24335970 DOI: 10.1681/asn.2013050553] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pathologic dysregulation of extracellular calcium metabolism is difficult to correct. The extracellular Ca(++)-sensing receptor (CaSR), a G protein-coupled receptor that regulates renal Ca(++) handling through changes in paracellular channel permeability in the thick ascending limb, has emerged as an effective pharmacological candidate for managing calcium metabolism. However, manipulation of CaSR at the systemic level causes promiscuous effects in the parathyroid glands, kidneys, and other tissues, and the mechanisms by which CaSR regulates paracellular transport in the kidney remain unknown. Here, we describe a CaSR-NFATc1-microRNA-claudin-14 signaling pathway in the kidney that underlies paracellular Ca(++) reabsorption through the tight junction. With CaSR-specific pharmacological reagents, we show that the in vivo gene expression of claudin-14 is regulated through a transcriptional mechanism mediated by NFATc1-microRNA and associated chromatin remodeling. Transgenic knockout and overexpression approaches showed that claudin-14 is required for CaSR-regulated renal Ca(++) metabolism. Together, our results define an important signaling cascade that, when dysregulated, may mediate Ca(++) imbalance through changes in tight junction permeability.
Collapse
|
24
|
Worcester EM, Bergsland KJ, Gillen DL, Coe FL. Evidence for increased renal tubule and parathyroid gland sensitivity to serum calcium in human idiopathic hypercalciuria. Am J Physiol Renal Physiol 2013; 305:F853-60. [PMID: 23863465 DOI: 10.1152/ajprenal.00124.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Patients with idiopathic hypercalciuria (IH) have decreased renal calcium reabsorption, most marked in the postprandial state, but the mechanisms are unknown. We compared 29 subjects with IH and 17 normal subjects (N) each fed meals providing identical amounts of calcium. Urine and blood samples were collected fasting and after meals. Levels of three candidate signalers, serum calcium (SCa), insulin (I), and plasma parathyroid hormone (PTH), did not differ between IH and N either fasting or fed, but all changed with feeding, and the change in SCa was greater in IH than in N. Regression analysis of fractional excretion of calcium (FECa) was significant for PTH and SCa in IH but not N. With the use of multivariable analysis, Sca entered the model while PTH and I did not. To avoid internal correlation we decomposed FECa into its independent terms: adjusted urine calcium (UCa) and UFCa molarity. Analyses using adjusted Uca and unadjusted Uca parallel those using FECa, showing a dominant effect of SCa with no effect of PTH or I. The effect of SCa may be mediated via vitamin D receptor-stimulated increased abundance of basolateral Ca receptor, which is supported by the fact PTH levels also seem more responsive to serum Ca in IH than in N. Although our data support an effect of SCa on FECa and UCa, which is more marked in IH than in N, it can account for only a modest fraction of the meal effect, perhaps 10-20%, suggesting additional mediators are also responsible for the exaggerated postprandial hypercalciuria seen in IH.
Collapse
Affiliation(s)
- Elaine M Worcester
- Nephrology Section MC 5100, Univ. of Chicago Medicine, 5841 South Maryland Ave., Chicago, IL 60637.
| | | | | | | |
Collapse
|
25
|
|
26
|
Kopic S, Geibel JP. Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev 2013; 93:189-268. [PMID: 23303909 DOI: 10.1152/physrev.00015.2012] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium balance is essential for a multitude of physiological processes, ranging from cell signaling to maintenance of bone health. Adequate intestinal absorption of calcium is a major factor for maintaining systemic calcium homeostasis. Recent observations indicate that a reduction of gastric acidity may impair effective calcium uptake through the intestine. This article reviews the physiology of gastric acid secretion, intestinal calcium absorption, and their respective neuroendocrine regulation and explores the physiological basis of a potential link between these individual systems.
Collapse
Affiliation(s)
- Sascha Kopic
- Department of Surgery and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
27
|
Abstract
Claudins are tight junction membrane proteins that regulate paracellular permeability of renal epithelia to small ions, solutes, and water. Claudins interact within the cell membrane and between neighboring cells to form tight junction strands and constitute both the paracellular barrier and the pore. The first extracellular domain of claudins is thought to be the pore-lining domain and contains the determinants of charge selectivity. Multiple claudins are expressed in different nephron segments; such differential expression likely determines the permeability properties of each segment. Recent evidence has identified claudin-2 as constituting the cation-reabsorptive pathway in the proximal tubule; claudin-14, -16, and -19 as forming a complex that regulates calcium transport in the thick ascending limb of the loop of Henle; and claudin-4, -7, and -8 as determinants of collecting duct chloride permeability. Mutations in claudin-16 and -19 cause familial hypercalciuric hypomagnesemia with nephrocalcinosis. The roles of other claudins in kidney diseases remain to be fully elucidated.
Collapse
Affiliation(s)
- Jianghui Hou
- Renal Division, Washington University, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
28
|
Calcium-sensing receptor gene polymorphisms in patients with calcium nephrolithiasis. Curr Opin Nephrol Hypertens 2012; 21:355-61. [PMID: 22660550 DOI: 10.1097/mnh.0b013e3283542290] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The calcium-sensing receptor gene (CaSR, chr. 3q13.3-21) is a candidate to explain nephrolithiasis. This review analyzes the potential role of CaSR in lithogenesis according to findings of functional and genetic studies. RECENT FINDINGS CaSR is a cation receptor located in the tubular cell plasma membrane. Its activation decreases calcium reabsorption in the ascending limb and distal convoluted tubule, but increases phosphate reabsorption in proximal tubules and decreases water and proton reabsorption in collecting ducts. Its effects in proximal tubules and collecting ducts can limit the calcium phosphate precipitation risk induced by the increase in calcium excretion. The nonconservative CaSR gene Arg990Gly polymorphism was associated with nephrolithiasis and hypercalciuria in different populations. Arg990Gly is located on exon 7 and produces a gain of the CaSR function. rs7652589 and rs1501899 were also associated with nephrolithiasis in patients with normal citrate excretion. These polymorphisms are located in the CaSR gene regulatory region and may modify CaSR gene promoter activity. SUMMARY The activating Arg990Gly polymorphism may predispose to nephrolithiasis by increasing calcium excretion. Polymorphisms at the regulatory region may predispose to nephrolithiasis by changing tubular expression of the CaSR. CaSR genotype may be a marker to identify patients prone to develop calcium nephrolithiasis.
Collapse
|
29
|
Loupy A, Ramakrishnan SK, Wootla B, Chambrey R, de la Faille R, Bourgeois S, Bruneval P, Mandet C, Christensen EI, Faure H, Cheval L, Laghmani K, Collet C, Eladari D, Dodd RH, Ruat M, Houillier P. PTH-independent regulation of blood calcium concentration by the calcium-sensing receptor. J Clin Invest 2012; 122:3355-3367. [PMID: 22886306 PMCID: PMC3428075 DOI: 10.1172/jci57407] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 06/28/2012] [Indexed: 12/27/2022] Open
Abstract
Tight regulation of calcium levels is required for many critical biological functions. The Ca2+-sensing receptor (CaSR) expressed by parathyroid cells controls blood calcium concentration by regulating parathyroid hormone (PTH) secretion. However, CaSR is also expressed in other organs, such as the kidney, but the importance of extraparathyroid CaSR in calcium metabolism remains unknown. Here, we investigated the role of extraparathyroid CaSR using thyroparathyroidectomized, PTH-supplemented rats. Chronic inhibition of CaSR selectively increased renal tubular calcium absorption and blood calcium concentration independent of PTH secretion change and without altering intestinal calcium absorption. CaSR inhibition increased blood calcium concentration in animals pretreated with a bisphosphonate, indicating that the increase did not result from release of bone calcium. Kidney CaSR was expressed primarily in the thick ascending limb of the loop of Henle (TAL). As measured by in vitro microperfusion of cortical TAL, CaSR inhibitors increased calcium reabsorption and paracellular pathway permeability but did not change NaCl reabsorption. We conclude that CaSR is a direct determinant of blood calcium concentration, independent of PTH, and modulates renal tubular calcium transport in the TAL via the permeability of the paracellular pathway. These findings suggest that CaSR inhibitors may provide a new specific treatment for disorders related to impaired PTH secretion, such as primary hypoparathyroidism.
Collapse
Affiliation(s)
- Alexandre Loupy
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Suresh Krishna Ramakrishnan
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Bharath Wootla
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Régine Chambrey
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Renaud de la Faille
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Soline Bourgeois
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Patrick Bruneval
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Chantal Mandet
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Erik Ilso Christensen
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Hélène Faure
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Lydie Cheval
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Kamel Laghmani
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Corinne Collet
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Dominique Eladari
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Robert H. Dodd
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Martial Ruat
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| | - Pascal Houillier
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France.
Université Pierre et Marie Curie, Paris, France.
CNRS ERL7226, Paris, France.
Université Paris Descartes and Necker Hospital Kidney Transplant Department, Assistance Publique–Hôpitaux de Paris, Paris, France.
Hôpital Européen Georges Pompidou, Département de Physiologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
University of Zürich, Institute of Physiology, Zurich, Switzerland.
Hôpital Européen Georges Pompidou, Département de Pathologie, Assistance Publique–Hôpitaux de Paris, Paris, France.
Department of Anatomy, University of Århus, Århus, Denmark.
Signal Transduction and Developmental Neuropharmacology group, CNRS, UPR-3294, N&D Laboratory, Institut Albert Fessard, Gif-sur-Yvette, France.
Hôpital Lariboisière, Biochimie et Biologie Moleculaire, Assistance Publique–Hôpitaux de Paris, Paris, France.
Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
| |
Collapse
|
30
|
Loupy A, Ramakrishnan SK, Wootla B, Chambrey R, de la Faille R, Bourgeois S, Bruneval P, Mandet C, Christensen EI, Faure H, Cheval L, Laghmani K, Collet C, Eladari D, Dodd RH, Ruat M, Houillier P. PTH-independent regulation of blood calcium concentration by the calcium-sensing receptor. J Clin Invest 2012. [PMID: 22886306 DOI: 10.1172/jci57407.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Tight regulation of calcium levels is required for many critical biological functions. The Ca2+-sensing receptor (CaSR) expressed by parathyroid cells controls blood calcium concentration by regulating parathyroid hormone (PTH) secretion. However, CaSR is also expressed in other organs, such as the kidney, but the importance of extraparathyroid CaSR in calcium metabolism remains unknown. Here, we investigated the role of extraparathyroid CaSR using thyroparathyroidectomized, PTH-supplemented rats. Chronic inhibition of CaSR selectively increased renal tubular calcium absorption and blood calcium concentration independent of PTH secretion change and without altering intestinal calcium absorption. CaSR inhibition increased blood calcium concentration in animals pretreated with a bisphosphonate, indicating that the increase did not result from release of bone calcium. Kidney CaSR was expressed primarily in the thick ascending limb of the loop of Henle (TAL). As measured by in vitro microperfusion of cortical TAL, CaSR inhibitors increased calcium reabsorption and paracellular pathway permeability but did not change NaCl reabsorption. We conclude that CaSR is a direct determinant of blood calcium concentration, independent of PTH, and modulates renal tubular calcium transport in the TAL via the permeability of the paracellular pathway. These findings suggest that CaSR inhibitors may provide a new specific treatment for disorders related to impaired PTH secretion, such as primary hypoparathyroidism.
Collapse
Affiliation(s)
- Alexandre Loupy
- INSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Smajilovic S, Yano S, Jabbari R, Tfelt-Hansen J. The calcium-sensing receptor and calcimimetics in blood pressure modulation. Br J Pharmacol 2012; 164:884-93. [PMID: 21410453 DOI: 10.1111/j.1476-5381.2011.01317.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Calcium is a crucial second messenger in the cardiovascular system. However, calcium may also be an extracellular first messenger through a G-protein-coupled receptor that senses extracellular concentration (Ca(2+)(o)), the calcium-sensing receptor (CaR). The most prominent physiological function of the CaR is to maintain the extracellular Ca(2+) level in a very tight range by regulating the circulating levels of parathyroid hormone (PTH). This control over PTH and Ca(2+) levels is partially lost in patients suffering from primary and secondary hyperparathyroidism. Allosteric modulators of the CaR (calcimimetics) are the first drugs in their class to become available for clinical use and have been shown to successfully treat certain forms of primary and secondary hyperparathyroidism. In addition, several studies suggest beneficial effects of calcimimetics on cardiovascular risk factors associated with hyperparathyroidism. Although a plethora of studies demonstrated the CaR in heart and blood vessels, exact roles of the receptor in the cardiovascular system still remain to be elucidated. However, several studies point toward a possibility that the CaR might be involved in the regulation of vascular tone. This review will summarize the current knowledge on the possible functions of the CaR and calcimimetics on blood pressure regulation.
Collapse
Affiliation(s)
- Sanela Smajilovic
- Laboratory of Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital, Denmark
| | | | | | | |
Collapse
|
32
|
Gong Y, Renigunta V, Himmerkus N, Zhang J, Renigunta A, Bleich M, Hou J. Claudin-14 regulates renal Ca⁺⁺ transport in response to CaSR signalling via a novel microRNA pathway. EMBO J 2012; 31:1999-2012. [PMID: 22373575 DOI: 10.1038/emboj.2012.49] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/30/2012] [Indexed: 01/02/2023] Open
Abstract
The paracellular claudin channel of the thick ascending limb (TAL) of Henle is critical for Ca(++) reabsorption in the kidney. Genome-wide association studies (GWASs) have identified claudin-14 associated with hypercalciuric nephrolithiasis. Here, we show that claudin-14 promoter activity and transcript are exclusively localized in the TAL. Under normal dietary condition, claudin-14 proteins are suppressed by two microRNA molecules (miR-9 and miR-374). Both microRNAs directly target the 3'-UTR of claudin-14 mRNA; induce its mRNA decay and translational repression in a synergistic manner. Through physical interaction, claudin-14 blocks the paracellular cation channel made of claudin-16 and -19, critical for Ca(++) reabsorption in the TAL. The transcript and protein levels of claudin-14 are upregulated by high Ca(++) diet, while downregulated by low Ca(++) diet. Claudin-14 knockout animals develop hypermagnesaemia, hypomagnesiuria, and hypocalciuria under high Ca(++) dietary condition. MiR-9 and miR-374 transcript levels are regulated by extracellular Ca(++) in a reciprocal manner as claudin-14. The Ca(++) sensing receptor (CaSR) acts upstream of the microRNA-claudin-14 axis. Together, these data have established a key regulatory role for claudin-14 in renal Ca(++) homeostasis.
Collapse
Affiliation(s)
- Yongfeng Gong
- Department of Internal Medicine, Washington University Renal Division, Washington University, St Louis, MO, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The physiology of paracellular permeation of ions and solutes in the kidney is pivotally important but poorly understood. Claudins are the key components of the paracellular pathway. Defects in claudin function result in a broad range of renal diseases, including hypomagnesemia, hypercalciuria and nephrolithiasis. This review describes recent findings on the physiological function of claudins underlying paracellular transport mechanisms with a focus on renal Ca(2+) handling. We have uncovered a molecular mechanism underlying paracellular Ca(2+) transport in the thick ascending limb of Henle (TAL) that involves the functional interplay of three important claudin genes: claudin-14, -16 and -19, all of which are associated with human kidney diseases with hypercalciuria, nephrolithiasis and bone mineral loss. The Ca(2+) sensing receptor (CaSR) signaling in the kidney has long been a mystery. By analyzing small non-coding RNA molecules in the kidney, we have uncovered a novel microRNA based signaling pathway downstream of CaSR that directly regulates claudin-14 gene expression and establishes the claudin-14 molecule as a key regulator for renal Ca(2+) homeostasis. The molecular cascade of CaSR-microRNAs-claudins forms a regulatory loop to maintain proper Ca(2+) homeostasis in the kidney.
Collapse
Affiliation(s)
- Jianghui Hou
- Renal Division, Washington University, St. Louis, MO, USA.
| |
Collapse
|
34
|
Vezzoli G, Terranegra A, Rainone F, Arcidiacono T, Cozzolino M, Aloia A, Dogliotti E, Cusi D, Soldati L. Calcium-sensing receptor and calcium kidney stones. J Transl Med 2011; 9:201. [PMID: 22107799 PMCID: PMC3339356 DOI: 10.1186/1479-5876-9-201] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/22/2011] [Indexed: 01/08/2023] Open
Abstract
Calcium nephrolithiasis may be considered as a complex disease having multiple pathogenetic mechanisms and characterized by various clinical manifestations. Both genetic and environmental factors may increase susceptibility to calcium stones; therefore, it is crucial to characterize the patient phenotype to distinguish homogeneous groups of stone formers. Family and twin studies have shown that the stone transmission pattern is not mendelian, but complex and polygenic. In these studies, heritability of calcium stones was calculated around 50% Calcium-sensing receptor (CaSR) is mostly expressed in the parathyroid glands and in renal tubules. It regulates the PTH secretion according to the serum calcium concentration. In the kidney, it modulates electrolyte and water excretion regulating the function of different tubular segments. In particular, CaSR reduces passive and active calcium reabsorption in distal tubules, increases phosphate reabsorption in proximal tubules and stimulates proton and water excretion in collecting ducts. Therefore, it is a candidate gene for calcium nephrolithiasis. In a case-control study we found an association between the normocitraturic stone formers and two SNPs of CaSR, located near the promoters region (rs7652589 and rs1501899). This result was replicated in patients with primary hyperparathyroidism, comparing patients with or without kidney stones. Bioinformatic analysis suggested that the minor alleles at these polymorphisms were able to modify the binding sites of specific transcription factors and, consequently, CaSR expression. Our studies suggest that CaSR is one of the candidate genes explaining individual predisposition to calcium nephrolithiasis. Stone formation may be favored by an altered CaSR expression in kidney medulla involving the normal balance among calcium, phosphate, protons and water excretion.
Collapse
Affiliation(s)
- Giuseppe Vezzoli
- Nephrology and Dialysis Unit, San Raffaele Hospital, Vita Salute University, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Compelling evidence of a cell surface receptor sensitive to extracellular calcium was observed as early as the 1980s and was finally realized in 1993 when the calcium-sensing receptor (CaR) was cloned from bovine parathyroid tissue. Initial studies relating to the CaR focused on its key role in extracellular calcium homeostasis, but as the amount of information about the receptor grew it became evident that it was involved in many biological processes unrelated to calcium homeostasis. The CaR responds to a diverse array of stimuli extending well beyond that merely of calcium, and these stimuli can lead to the initiation of a wide variety of intracellular signaling pathways that in turn are able to regulate a diverse range of biological processes. It has been through the examination of the molecular characteristics of the CaR that we now have an understanding of how this single receptor is able to convert extracellular messages into specific cellular responses. Recent CaR-related reviews have focused on specific aspects of the receptor, generally in the context of the CaR's role in physiology and pathophysiology. This review will provide a comprehensive exploration of the different aspects of the receptor, including its structure, stimuli, signalling, interacting protein partners, and tissue expression patterns, and will relate their impact on the functionality of the CaR from a molecular perspective.
Collapse
Affiliation(s)
- Aaron L Magno
- Department of Endocrinology and Diabetes, First Floor, C Block, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands 6009, Western Australia, Australia
| | | | | |
Collapse
|
36
|
Cha SK, Huang C, Ding Y, Qi X, Huang CL, Miller RT. Calcium-sensing receptor decreases cell surface expression of the inwardly rectifying K+ channel Kir4.1. J Biol Chem 2011; 286:1828-35. [PMID: 21084311 PMCID: PMC3023478 DOI: 10.1074/jbc.m110.160390] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 11/07/2010] [Indexed: 11/06/2022] Open
Abstract
The Ca(2+)-sensing receptor (CaR) regulates salt and water transport in the kidney as demonstrated by the association of gain of function CaR mutations with a Bartter syndrome-like, salt-wasting phenotype, but the precise mechanism for this effect is not fully established. We found previously that the CaR interacts with and inactivates an inwardly rectifying K(+) channel, Kir4.1, which is expressed in the distal nephron that contributes to the basolateral K(+) conductance, and in which loss of function mutations are associated with a complex phenotype that includes renal salt wasting. We now find that CaR inactivates Kir4.1 by reducing its cell surface expression. Mutant CaRs reduced Kir4.1 cell surface expression and current density in HEK-293 cells in proportion to their signaling activity. Mutant, activated Gα(q) reduced cell surface expression and current density of Kir4.1, and these effects were blocked by RGS4, a protein that blocks signaling via Gα(i) and Gα(q). Other α subunits had insignificant effects. Knockdown of caveolin-1 blocked the effect of Gα(q) on Kir4.1, whereas knockdown of the clathrin heavy chain had no effect. CaR had no comparable effect on the renal outer medullary K(+) channel, an apical membrane distal nephron K(+) channel that is internalized by clathrin-coated vesicles. Co-immunoprecipitation studies showed that the CaR and Kir4.1 physically associate with caveolin-1 in HEK cells and in kidney extracts. Thus, the CaR decreases cell surface expression of Kir4.1 channels via a mechanism that involves Gα(q) and caveolin. These results provide a novel molecular basis for the inhibition of renal NaCl transport by the CaR.
Collapse
Affiliation(s)
- Seung-Kuy Cha
- From the Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Chunfa Huang
- the Departments of Medicine and
- the Louis Stokes Veteran Affairs Medical Center, Cleveland, Ohio 44106, and
| | | | | | - Chou-Long Huang
- From the Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - R. Tyler Miller
- the Departments of Medicine and
- Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
- the Louis Stokes Veteran Affairs Medical Center, Cleveland, Ohio 44106, and
- the Rammelkamp Center for Research and Education, MetroHealth System Campus, Cleveland, Ohio 44109
| |
Collapse
|
37
|
McCann LM, Beto J. Roles of Calcium-Sensing Receptor and Vitamin D Receptor in the Pathophysiology of Secondary Hyperparathyroidism. J Ren Nutr 2010; 20:141-50. [DOI: 10.1053/j.jrn.2010.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Indexed: 01/01/2023] Open
|
38
|
Riccardi D, Brown EM. Physiology and pathophysiology of the calcium-sensing receptor in the kidney. Am J Physiol Renal Physiol 2010; 298:F485-99. [PMID: 19923405 PMCID: PMC2838589 DOI: 10.1152/ajprenal.00608.2009] [Citation(s) in RCA: 235] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 11/13/2009] [Indexed: 12/21/2022] Open
Abstract
The extracellular calcium-sensing receptor (CaSR) plays a major role in the maintenance of a physiological serum ionized calcium (Ca2+) concentration by regulating the circulating levels of parathyroid hormone. It was molecularly identified in 1993 by Brown et al. in the laboratory of Dr. Steven Hebert with an expression cloning strategy. Subsequent studies have demonstrated that the CaSR is highly expressed in the kidney, where it is capable of integrating signals deriving from the tubular fluid and/or the interstitial plasma. Additional studies elucidating inherited and acquired mutations in the CaSR gene, the existence of activating and inactivating autoantibodies, and genetic polymorphisms of the CaSR have greatly enhanced our understanding of the role of the CaSR in mineral ion metabolism. Allosteric modulators of the CaSR are the first drugs in their class to become available for clinical use and have been shown to treat successfully hyperparathyroidism secondary to advanced renal failure. In addition, preclinical and clinical studies suggest the possibility of using such compounds in various forms of hypercalcemic hyperparathyroidism, such as primary and lithium-induced hyperparathyroidism and that occurring after renal transplantation. This review addresses the role of the CaSR in kidney physiology and pathophysiology as well as current and in-the-pipeline treatments utilizing CaSR-based therapeutics.
Collapse
Affiliation(s)
- Daniela Riccardi
- School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| | | |
Collapse
|
39
|
Hereditary tubular transport disorders: implications for renal handling of Ca2+ and Mg2+. Clin Sci (Lond) 2009; 118:1-18. [PMID: 19780717 DOI: 10.1042/cs20090086] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The kidney plays an important role in maintaining the systemic Ca2+ and Mg2+ balance. Thus the renal reabsorptive capacity of these cations can be amended to adapt to disturbances in plasma Ca2+ and Mg2+ concentrations. The reabsorption of Ca2+ and Mg2+ is driven by transport of other electrolytes, sometimes through selective channels and often supported by hormonal stimuli. It is, therefore, not surprising that monogenic disorders affecting such renal processes may impose a shift in, or even completely blunt, the reabsorptive capacity of these divalent cations within the kidney. Accordingly, in Dent's disease, a disorder with defective proximal tubular transport, hypercalciuria is frequently observed. Dysfunctional thick ascending limb transport in Bartter's syndrome, familial hypomagnesaemia with hypercalciuria and nephrocalcinosis, and diseases associated with Ca2+-sensing receptor defects, markedly change tubular transport of Ca2+ and Mg2+. In the distal convolutions, several proteins involved in Mg2+ transport have been identified [TRPM6 (transient receptor potential melastatin 6), proEGF (pro-epidermal growth factor) and FXYD2 (Na+/K+-ATPase gamma-subunit)]. In addition, conditions such as Gitelman's syndrome, distal renal tubular acidosis and pseudohypoaldosteronism type II, as well as a mitochondrial defect associated with hypomagnesaemia, all change the renal handling of divalent cations. These hereditary disorders have, in many cases, substantially increased our understanding of the complex transport processes in the kidney and their contribution to the regulation of overall Ca2+ and Mg2+ balance.
Collapse
|
40
|
Riccardi D, Finney BA, Wilkinson WJ, Kemp PJ. Novel regulatory aspects of the extracellular Ca2+-sensing receptor, CaR. Pflugers Arch 2009; 458:1007-22. [PMID: 19484257 DOI: 10.1007/s00424-009-0681-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 04/30/2009] [Accepted: 05/05/2009] [Indexed: 01/15/2023]
Abstract
The capacity to sense and adapt to changes in environmental cues is of paramount importance for every living organism. From yeast to man, cells must be able to match cellular activities to growth environment and nutrient availability. Key to this process is the development of membrane-bound systems that can detect modifications in the extracellular environment and to translate these into biological responses. Evidence gathered over the last 15 years has demonstrated that many of these cell surface "sensors" belong to the G protein-coupled receptor superfamily. Crucial to our understanding of nutrient sensing in mammalian species has been the identification of the extracellular Ca(2+)/cation-sensing receptor, CaR. CaR was the first ion-sensing molecule identified in man and genetic studies in humans have revealed the importance of the CaR in mineral ion metabolism. Latter, it has become apparent that the CaR also plays an important role outside the Ca(2+) homeostatic system, as an integrator of multiple environmental signals for the regulation of many vital cellular processes, from cell-to-cell communication to secretion and cell survival/cell death. Recently, novel aspects of receptor function reveal an unexpected role for the CaR in the regulation of growth and development in utero.
Collapse
|
41
|
Gamba G, Friedman PA. Thick ascending limb: the Na(+):K (+):2Cl (-) co-transporter, NKCC2, and the calcium-sensing receptor, CaSR. Pflugers Arch 2009; 458:61-76. [PMID: 18982348 PMCID: PMC3584568 DOI: 10.1007/s00424-008-0607-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 10/21/2008] [Indexed: 01/12/2023]
Abstract
The thick ascending limb of Henle's loop is a nephron segment that is vital to the formation of dilute and concentrated urine. This ability is accomplished by a consortium of functionally coupled proteins consisting of the apical Na(+):K(+):2Cl(-) co-transporter, the K(+) channel, and basolateral Cl(-) channel that mediate electroneutral salt absorption. In thick ascending limbs, salt absorption is importantly regulated by the calcium-sensing receptor. Genetic or pharmacological disruption impairing the function of any of these proteins results in Bartter syndrome. The thick ascending limb is also an important site of Ca(2+) and Mg(2+) absorption. Calcium-sensing receptor activation inhibits cellular Ca(2+) absorption induced by parathyroid hormone, as well as passive paracellular Ca(2+) transport. The present review discusses these functions and their genetic and molecular regulation.
Collapse
Affiliation(s)
- Gerardo Gamba
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, 14000 Mexico City, Mexico
| | - Peter A. Friedman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
42
|
Parks JH, Coe FL, Evan AP, Worcester EM. Clinical and laboratory characteristics of calcium stone-formers with and without primary hyperparathyroidism. BJU Int 2009; 103:670-8. [DOI: 10.1111/j.1464-410x.2008.08064.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Tastan I, Schreckenberg R, Mufti S, Abdallah Y, Piper HM, Schlüter KD. Parathyroid hormone improves contractile performance of adult rat ventricular cardiomyocytes at low concentrations in a non-acute way. Cardiovasc Res 2009; 82:77-83. [PMID: 19168854 DOI: 10.1093/cvr/cvp027] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS In patients with congestive heart failure, plasma parathyroid hormone (PTH) levels are positively associated with cardiac function. PTH, used to mobilize stem cells from the bone marrow after myocardial infarction, causes an increased left ventricular ejection fraction. The aim of this study was to investigate whether low but plasma-relevant concentrations of PTH directly influence the contractile properties of cardiomyocytes. METHODS AND RESULTS Isolated adult rat ventricular cardiomyocytes were exposed to PTH(1-34) or full-length PTH at picomolar concentrations for 24 h. Cell shortening was measured at 2 Hz as a cellular correlate of inotropic responsiveness. Intracellular calcium was measured in Fura-AM-loaded cells. PTH(1-3) (20-200 pM) and full-length PTH (200 pM) increased cell shortening within 24 h. PTH had no effect on cell size, but resting and peak systolic calcium concentrations were elevated. The beneficial effect of PTH was mediated via its cAMP/protein kinase A-activating domain and attenuated by addition of a protein kinase A inhibitor. In contrast, PTH peptides representing a protein kinase C-activating domain but not a cAMP/protein kinase A-activating domain or peptides that represent none of these domains had no effect on cell shortening. The effect of PTH on cell shortening was strong at low concentrations of extracellular calcium but declined at higher calcium concentrations. PTH downregulated the expression of the calcium sensing receptor, a receptor known to antagonize the action of PTH on calcium transport. Furthermore, PTH antagonized the angiotensin II-induced loss of cell function. CONCLUSION Low concentrations of PTH improve cell shortening by increasing calcium load at rest. By this mechanism cardiomyocytes compensate reduced extracellular calcium levels as they occur in patients with heart failure.
Collapse
Affiliation(s)
- Ilhan Tastan
- Justus-Liebig-Universität Giessen, Physiologisches Institut, Aulweg 129, D-35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
44
|
Smajilovic S, Tfelt-Hansen J. Novel Role of the Calcium-Sensing Receptor in Blood Pressure Modulation. Hypertension 2008; 52:994-1000. [DOI: 10.1161/hypertensionaha.108.117689] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Sanela Smajilovic
- From the Laboratory of Molecular Cardiology (S.S., J.T-H.), Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Denmark; and the Danish National Research Foundation Centre for Cardiac Arrhythmia (S.S., J.T-H.), Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- From the Laboratory of Molecular Cardiology (S.S., J.T-H.), Department of Cardiology, Copenhagen University Hospital, Rigshospitalet, Denmark; and the Danish National Research Foundation Centre for Cardiac Arrhythmia (S.S., J.T-H.), Copenhagen, Denmark
| |
Collapse
|
45
|
Tfelt-Hansen J, Brown EM. THE CALCIUM-SENSING RECEPTOR IN NORMAL PHYSIOLOGY AND PATHOPHYSIOLOGY: A Review. Crit Rev Clin Lab Sci 2008; 42:35-70. [PMID: 15697170 DOI: 10.1080/10408360590886606] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The discovery of a G protein-coupled, calcium-sensing receptor (CaR) a decade ago and of diseases caused by CaR mutations provided unquestionable evidence of the CaR's critical role in the maintenance of systemic calcium homeostasis. On the cell membrane of the chief cells of the parathyroid glands, the CaR "senses" the extracellular calcium concentration and, subsequently, alters the release of parathyroid hormone (PTH). The CaR is likewise functionally expressed in bone, kidney, and gut--the three major calcium-translocating organs involved in calcium homeostasis. Intracellular signal pathways to which the CaR couples via its associated G proteins include phospholipase C (PLC), protein kinase B (AKT); and mitogen-activated protein kinases (MAPKs). The receptor is widely expressed in various tissues and regulates important cellular functions in addition to its role in maintaining systemic calcium homeostasis, i.e., protection against apoptosis, cellular proliferation, and membrane voltage. Functionally significant mutations in the receptor have been shown to induce diseases of calcium homeostasis owing to changes in the set point for calcium-regulated PTH release as well as alterations in the renal handling of calcium. Gain-of-function mutations cause hypocalcemia, whereas loss-of-function mutations produce hypercalcemia. Recent studies have shown that the latter clinical presentation can also be caused by inactivating autoantibodies directed against the CaR Newly discovered type II allosteric activators of the CaR have been found to be effective as a medical treatment for renal secondary hyperparathyroidism.
Collapse
Affiliation(s)
- Jacob Tfelt-Hansen
- Laboratory of Molecular Cardiology, Medical Department B, H:S Rigshospitalet, University of Copenhagen, Copenhagen O, Denmark.
| | | |
Collapse
|
46
|
Hypercalcaemic and hypocalcaemic conditions due to calcium-sensing receptor mutations. Best Pract Res Clin Rheumatol 2008; 22:129-48. [PMID: 18328986 DOI: 10.1016/j.berh.2007.11.006] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The extracellular calcium (Ca2+o)-sensing receptor (CaSR) enables the parathyroid glands and other CaSR-expressing cells involved in calcium homeostasis, such as the kidney and bone, to sense alterations in the level of Ca2+o and to respond with changes in function that are directed at normalizing the blood calcium concentration. Several disorders of Ca2+o sensing arise from inherited or acquired abnormalities that 'reset' the serum calcium concentration upwards or downwards. Heterozygous inactivating mutations of the CaSR produce a benign form of hypercalcaemia, termed 'familial hypocalciuric hypercalcaemia', while homozygous mutations produce a much more severe hypercalcaemic disorder resulting from marked hyperparathyroidism, called 'neonatal severe hyperparathyroidism'. Activating mutations cause a hypocalcaemic syndrome of varying severity, termed 'autosomal-dominant hypocalcaemia or hypoparathyroidism' as well as Bartter's syndrome type V. Calcimimetic CaSR activators and calcilytic CaSR antagonists have also been developed with potential for use in the treatment of these disorders.
Collapse
|
47
|
Abstract
Hypercalcuria is the most common metabolic disorder found in patients with nephrolithiasis. As the prevalence of kidney stones rises in industrialized nations, understanding the pathogenesis and treatment of hypercalciuria becomes increasingly important. Idiopathic hypercalciuria (IH), defined as an excess urine calcium excretion without an apparent underlying etiology, is the most frequent cause of hypercalciuria and will be the focus of this paper. Calcium homeostasis is tightly controlled and slight disturbances in transport at the level of the intestine, bone, and/or kidney can lead to excessive urine calcium excretion and promote stone formation. IH is a systemic disorder with dysregulation of calcium transport at a combination of these calcium regulatory sites. The goal of treatment is to prevent stone formation and relies on a combination of dietary and pharmaceutical interventions. Dietary management includes increasing fluid intake, salt restriction, animal protein restriction, and maintaining a normal calcium intake. Thiazide diuretics have proven effective in preventing calcium stone formation by reducing the urinary excretion of calcium. It is important to note that while decreasing urinary calcium excretion is important the clinician should focus primarily on reducing the supersaturation of calcium oxalate as this determines the true tendency for stone formation.
Collapse
Affiliation(s)
- Scott E Liebman
- University of Rochester School of Medicine and Dentistry, Nephrology Division, Strong Memorial Hospital, 601 Elmwood Avenue, Box 675, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
48
|
Brown EM. Clinical lessons from the calcium-sensing receptor. ACTA ACUST UNITED AC 2007; 3:122-33. [PMID: 17237839 DOI: 10.1038/ncpendmet0388] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 07/21/2006] [Indexed: 11/09/2022]
Abstract
The extracellular calcium ion (Ca(2+)(e))-sensing receptor (CaR) enables key tissues that maintain Ca(2+)(e) homeostasis to sense changes in the Ca(2+)(e) concentration. These tissues respond to changes in Ca(2+)(e) with functional alterations that will help restore Ca(2+)(e) to normal. For instance, decreases in Ca(2+)(e) act via the CaR to stimulate secretion of parathyroid hormone-a Ca(2+)(e)-elevating hormone-and to increase renal tubular calcium reabsorption; each response helps promote normalization of Ca(2+)(e) levels. Further work is needed to determine whether the CaR regulates other parameters of renal function (e.g. 1,25-dihydroxyvitamin D(3) synthesis, intestinal absorption of mineral ions, and/or bone turnover). Identification of the CaR has also elucidated the pathogenesis and pathophysiology of inherited disorders of mineral and electrolyte metabolism; moreover, acquired abnormalities of Ca(2+)(e)-sensing can result from autoimmunity to the CaR, and reduced CaR expression in the parathyroid may contribute to the abnormal parathyroid secretory control that is observed in primary and secondary hyperparathyroidism. Finally, calcimimetics-allosteric activators of the CaR-treat secondary hyperparathyroidism effectively in end-stage renal failure.
Collapse
Affiliation(s)
- Edward M Brown
- Division of Endocrinology, Diabetes and Hypertension at Brigham and Women's Hospital in Boston, MA, USA.
| |
Collapse
|
49
|
Worcester EM, Gillen DL, Evan AP, Parks JH, Wright K, Trumbore L, Nakagawa Y, Coe FL. Evidence that postprandial reduction of renal calcium reabsorption mediates hypercalciuria of patients with calcium nephrolithiasis. Am J Physiol Renal Physiol 2007; 292:F66-75. [PMID: 17210796 DOI: 10.1152/ajprenal.00115.2006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Idiopathic hypercalciuria (IH) is common among calcium stone formers (IHSF). The increased urinary calcium arises from increased intestinal absorption of calcium, but it is unclear whether increased filtered load or decreased renal tubular reabsorption of calcium is the main mechanism for the increased renal excretion. To explore this question, 10 IHSF and 7 normal subjects (N) were studied for 1 day. Urine and blood samples were collected at 30- to 60-min intervals while subjects were fasting and after they ate three meals providing known amounts of calcium, phosphorus, sodium, protein, and calories. Fasting and fed, ultrafiltrable calcium levels, and filtered load of calcium did not differ between N and IHSF. Urine calcium rose with meals, and fractional reabsorption fell in all subjects, but the change was significantly higher in IHSF. The changes in calcium excretion were independent of sodium excretion. Serum parathyroid hormone levels did not differ between N and IHSF, and they could not account for the greater fall in calcium reabsorption in IHSF. Serum magnesium and phosphorus levels in IHSF were below N throughout the day, and tubule phosphate reabsorption was lower in IHSF than N after meals. The primary mechanism by which kidneys ferry absorbed calcium into the urine after meals is via reduced tubule calcium reabsorption, and IHSF differ from N in the magnitude of the response. Parathyroid hormone is not likely to be a sufficient explanation for this difference.
Collapse
Affiliation(s)
- Elaine M Worcester
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The extracellular calcium (Ca(o)2+)-sensing receptor (CaR) enables the parathyroid glands and other CaR-expressing cells to sense alterations in the level of Ca(o)2+ and to respond with changes in function that are directed at normalizing the blood calcium concentration. In addition to the parathyroid gland, the kidney is a key site for Ca(o)2(+)-sensing that enables it to make physiologically relevant alterations in divalent cation and water metabolism. Several disorders of Ca(o)2(+)-sensing arise from inherited or acquired abnormalities that "reset" the serum calcium concentration upward or downward. Inactivating mutations produce a benign form of hypercalcemia when present in the heterozygous state, termed Familial Hypocalciuric Hypercalcemia (FHH), while homozygous mutations produce a much more severe hypercalcemic disorder resulting from marked hyperparathyroidism, called Neonatal Severe Hyperparathyroidism (NSHPT). Activating mutations cause a hypocalcemic syndrome of varying severity, termed autosomal dominant hypocalcemia or hypoparathyroidism. Inactivating or activating antibodies directed at the CaR produce the expected hyper- or hypocalcemic syndromes, respectively. "Calcimimetic" CaR activators and "calcilytic" CaR antagonists have been developed. The calcimimetics are currently in use for controlling severe hyperparathyroidism in patients receiving dialysis treatment for end stage renal disease or with parathyroid cancer. Calcilytics are being evaluated as a means of inducing a "pulse" in the circulating parathyroid hormone (PTH) concentration, which would mimic that resulting from injection of PTH, an established anabolic form of treatment for osteoporosis.
Collapse
Affiliation(s)
- E M Brown
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|