1
|
Wray S, Prendergast C, Arrowsmith S. Calcium-Activated Chloride Channels in Myometrial and Vascular Smooth Muscle. Front Physiol 2021; 12:751008. [PMID: 34867456 PMCID: PMC8637852 DOI: 10.3389/fphys.2021.751008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
In smooth muscle tissues, calcium-activated chloride channels (CaCC) provide the major anionic channel. Opening of these channels leads to chloride efflux and depolarization of the myocyte membrane. In this way, activation of the channels by a rise of intracellular [Ca2+], from a variety of sources, produces increased excitability and can initiate action potentials and contraction or increased tone. We now have a good mechanistic understanding of how the channels are activated and regulated, due to identification of TMEM16A (ANO1) as the molecular entity of the channel, but key questions remain. In reviewing these channels and comparing two distinct smooth muscles, myometrial and vascular, we expose the differences that occur in their activation mechanisms, properties, and control. We find that the myometrium only expresses “classical,” Ca2+-activated, and voltage sensitive channels, whereas both tonic and phasic blood vessels express classical, and non-classical, cGMP-regulated CaCC, which are voltage insensitive. This translates to more complex activation and regulation in vascular smooth muscles, irrespective of whether they are tonic or phasic. We therefore tentatively conclude that although these channels are expressed and functionally important in all smooth muscles, they are probably not part of the mechanisms governing phasic activity. Recent knockdown studies have produced unexpected functional results, e.g. no effects on labour and delivery, and tone increasing in some but decreasing in other vascular beds, strongly suggesting that there is still much to be explored concerning CaCC in smooth muscle.
Collapse
Affiliation(s)
- Susan Wray
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Clodagh Prendergast
- Department of Women and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sarah Arrowsmith
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| |
Collapse
|
2
|
Ashmore J, Olsen H, Sørensen N, Thrasivoulou C, Ahmed A. Wnts control membrane potential in mammalian cancer cells. J Physiol 2019; 597:5899-5914. [DOI: 10.1113/jp278661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/23/2019] [Indexed: 01/30/2023] Open
Affiliation(s)
- Jonathan Ashmore
- Department of Neuroscience Physiology and Pharmacology and UCL Ear Institute University College London Gower Street London WC1E 6BT UK
| | - Hervør Olsen
- Sophion Bioscience A/S Baltorpvej 154 DK‐2750 Ballerup Denmark
| | - Naja Sørensen
- Sophion Bioscience A/S Baltorpvej 154 DK‐2750 Ballerup Denmark
| | - Christopher Thrasivoulou
- Research Department of Cell & Developmental Biology, Centre for Cell & Molecular Dynamics, Rockefeller Building University Street, University College London London WC1E 6JJ UK
| | - Aamir Ahmed
- Centre for Stem Cells and Regenerative Medicine King's College London, 28th Floor, Tower Wing, Guy's Hospital Great Maze Pond London SE1 9RT UK
- Prostate Cancer Research Centre, Division of Surgery, 3rd Floor Laboratories, Charles Bell House University College London 67 Riding House Street London W1W 7EJ UK
| |
Collapse
|
3
|
Yarotskyy V, Malysz J, Petkov GV. Properties of single-channel and whole cell Cl - currents in guinea pig detrusor smooth muscle cells. Am J Physiol Cell Physiol 2019; 316:C698-C710. [PMID: 30566392 DOI: 10.1152/ajpcell.00327.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multiple types of Cl- channels regulate smooth muscle excitability and contractility in vascular, gastrointestinal, and airway smooth muscle cells. However, little is known about Cl- channels in detrusor smooth muscle (DSM) cells. Here, we used inside-out single channel and whole cell patch-clamp recordings for detailed biophysical and pharmacological characterizations of Cl- channels in freshly isolated guinea pig DSM cells. The recorded single Cl- channels displayed unique gating with multiple subconductive states, a fully opened single-channel conductance of 164 pS, and a reversal potential of -41.5 mV, which is close to the ECl of -65 mV, confirming preferential permeability to Cl-. The Cl- channel demonstrated strong voltage dependence of activation (half-maximum of mean open probability, V0.5, ~-20 mV) and robust prolonged openings at depolarizing voltages. The channel displayed similar gating when exposed intracellularly to solutions containing Ca2+-free or 1 mM Ca2+. In whole cell patch-clamp recordings, macroscopic current demonstrated outward rectification, inhibitions by 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) and niflumic acid, and insensitivity to chlorotoxin. The outward current was reversibly reduced by 94% replacement of extracellular Cl- with I-, Br-, or methanesulfonate (MsO-), resulting in anionic permeability sequence: Cl->Br->I->MsO-. While intracellular Ca2+ levels (0, 300 nM, and 1 mM) did not affect the amplitude of Cl- current and outward rectification, high Ca2+ slowed voltage-step current activation at depolarizing voltages. In conclusion, our data reveal for the first time the presence of a Ca2+-independent DIDS and niflumic acid-sensitive, voltage-dependent Cl- channel in the plasma membrane of DSM cells. This channel may be a key regulator of DSM excitability.
Collapse
Affiliation(s)
- Viktor Yarotskyy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis, Tennessee
| | - John Malysz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Georgi V Petkov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center , Memphis, Tennessee
| |
Collapse
|
4
|
Low concentrations of niflumic acid enhance basal spontaneous and carbachol-induced contractions of the detrusor. Int Urol Nephrol 2013; 46:349-57. [PMID: 24036984 DOI: 10.1007/s11255-013-0550-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/22/2013] [Indexed: 12/21/2022]
Abstract
PURPOSE The urinary bladder expresses Ca(2+)-activated Cl(-) channels (CACC), but its physiological role in governing contractility remains to be defined. The CACC modulator niflumic acid (NFA) is widely used despite the variable results arisen from different drug concentrations used. This study was designed to examine the effects of NFA at low concentrations on detrusor strip contractility. METHODS Rat detrusor strips with mucosa-intact (+MU) and mucosa-denuded (-MU) were prepared in transverse (Tr) and longitudinal (Lg) with respect to the bladder orientation. Isometric force measurements were made at baseline (for spontaneous phasic contractile activity) and during drug stimulation (by carbachol, CCh) with and without NFA. RESULTS NFA (1 and 10 μmol/L) pretreatment enhanced CCh-induced contractions more in +MU than -MU strips with no selectivity on contractile direction. For spontaneous phasic contractions, NFA-treated strips in the Tr direction showed increased phasic amplitude, while phasic frequency was unchanged. CONCLUSIONS The findings suggest low concentrations of NFA having a potentiating effect on detrusor contractions that was sensitive to the MU and contractile direction.
Collapse
|
5
|
Li L, Jiang C, Song B, Yan J, Pan J. Altered expression of calcium-activated K and Cl channels in detrusor overactivity of rats with partial bladder outlet obstruction. BJU Int 2008; 101:1588-94. [PMID: 18294303 DOI: 10.1111/j.1464-410x.2008.07522.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To evaluate the activity of large- and small-conductance calcium-activated potassium channels (BKCa, SKCa) and calcium-activated chloride channels (ClCa) in detrusor overactivity (DO) cells after partial bladder outlet obstruction (PBOO) in rats. MATERIALS AND METHODS Thirteen female Wistar rats with DO caused by PBOO were studied simultaneously with eight sham-operated rats. The expression of KCa and ClCa channels was assessed by reverse transcription-polymerase chain reaction, and the function of the two groups compared. RESULTS In the DO cells the expression of BKCa, SKCa2 and SKCa3 was lower, and that of ClCa channels higher, than in the control group cells. Using confocal laser scanning microscopic analysis, the function of BKCa and SKCa channels was suppressed, and that of ClCa channels was enhanced in DO group cells. KCa and ClCa effectors altered the cell membrane potentials more significantly in the DO cells than in the control cells, indicating a decrease in KCa and an increase in ClCa in DO group in either iso- or hypo-osmolar medium. Moreover, the change in BKCa, SKCa and ClCa channel activators in DO cells showed a more excitable state in hypo-osmolar medium than in iso-osmolar medium. CONCLUSION In DO myocytes after PBOO, the expression and function of KCa channels were decreased, and those of ClCa channels increased. These changes all provoke greater cell excitability, and could partly account for the DO.
Collapse
Affiliation(s)
- Longkun Li
- Urologic Center, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | | | | | | | | |
Collapse
|
6
|
Oscillatory membrane currents paradoxically induced via NO-activated pathways in detrusor cells. Cell Calcium 2008; 44:202-9. [PMID: 18241917 DOI: 10.1016/j.ceca.2007.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 11/12/2007] [Accepted: 11/24/2007] [Indexed: 11/23/2022]
Abstract
Oscillatory inward membrane currents (I(oscil-in)) reflecting intracellular Ca(2+) ([Ca(2+)](i)) activity in detrusor cells, are thought to play an important role in producing tonic bladder contractions during micturition. The present patch clamp study revealed a new activation mechanism: sodium nitroprusside (SNP), a nitric oxide (NO) donor induced I(oscil-in) in a subpopulation of detrusor cells. The inhibitory effect of niflumic acid on SNP-induced I(oscil-in) suggests that Ca(2+)-activated Cl(-) channels are responsible for this current. In addition, SNP-induced I(oscil-in) required the cooperation of Ca(2+) influx through SK&F96365-sensitive channels and intracellular Ca(2+) release channels sensitive to ryanodine but insensitive to xestospongin C (XeC). This is also true for muscarinic agonist (carbachol: CCh)-induced I(oscil-in). However, 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a guanylyl cyclase inhibitor, suppressed SNP-induced I(oscil-in) but not CCh-induced I(oscil-in). The results suggest that a subpopulation of detrusor cells employ the NO/cGMP cascade to potentiate bladder contraction. Mechanisms underlying NO-induced I(oscil-in) are likely to contribute not only to the physiology but also to the pathophysiology of the lower urinary tract.
Collapse
|
7
|
Gur S, Kadowitz PJ, Hellstrom WJG. Guide to Drug Therapy for Lower Urinary Tract Symptoms in Patients with Benign Prostatic Obstruction. Drugs 2008; 68:209-29. [DOI: 10.2165/00003495-200868020-00005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Watterson KR, Berg KM, Kapitonov D, Payne SG, Miner AS, Bittman R, Milstien S, Ratz PH, Spiegel S. Sphingosine‐1‐phosphate and the immunosuppressant, FTY720‐phosphate, regulate detrusor muscle tone. FASEB J 2007; 21:2818-28. [PMID: 17449719 DOI: 10.1096/fj.06-7326com] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Overactive bladder syndrome (OBS) results from disturbances of bladder function. Bladder smooth muscle (detrusor) exhibits spontaneous rhythmic activity (tone) independent of neurogenic control, which is enhanced in patients with OBS. We have now uncovered a prominent role for the bioactive sphingolipid metabolite, sphingosine-1-phosphate (S1P), in regulating rabbit detrusor smooth muscle tone and contraction. S1P-induced contraction of detrusor muscle was dependent on stretch and intracellular calcium. Although detrusor expresses the S1P receptors S1P1 and S1P2, only S1P2 appeared to be involved in S1P-induced contraction, since SEW2871 (S1P1 agonist) and dihydro-S1P (potent agonist for all S1P receptors except S1P2) were poor contractile agents. In agreement, the S1P2 antagonist JTE013 inhibited S1P-induced contraction. The fast, transient muscle contraction (phasic) mediated by S1P was dependent on phospholipase C (PLC) whereas the slower, sustained contraction (tonic) was not. Surprisingly, the immunosuppressant FTY720-phosphate, an agonist for all S1P receptors except S1P2, had distinct contractile properties and also induced slow, sustained contraction. Thus, FTY720-phosphate and/or S1P may regulate calcium channels in an S1P receptor-independent manner. Collectively, our results demonstrate that S1P may regulate detrusor smooth muscle tone and suggest that dysregulation of complex S1P signaling might contribute to OBS.
Collapse
Affiliation(s)
- Kenneth R Watterson
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, 1101 E. Marshall St., Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Yanai Y, Hashitani H, Kubota Y, Sasaki S, Kohri K, Suzuki H. The role of Ni2+-sensitive T-type Ca2+ channels in the regulation of spontaneous excitation in detrusor smooth muscles of the guinea-pig bladder. BJU Int 2006; 97:182-9. [PMID: 16336353 DOI: 10.1111/j.1464-410x.2006.05894.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To explore the role of Ni(2+)-sensitive T-type Ca(2+) channels in the generation of spontaneous excitation of detrusor smooth muscles. MATERIALS AND METHODS In isolated detrusor smooth muscle bundles of the guinea-pig bladder, changes in the membrane potential and muscle tension were measured using intracellular microelectrodes and isometric tension recording. Changes in the intracellular Ca(2+) concentration were recorded from bundles loaded with the fluorescent dye fura-PE3. RESULTS Detrusor smooth muscles had two types of spontaneous electrical activity, i.e. individual and bursting action potentials. Ni(2+) (30 microM), a blocker for T-type Ca(2+) channels, reduced the frequency of individual action potentials without changing their amplitude. Higher concentrations of Ni(2+) (100-300 microM) converted individual action potentials into the bursts, as did apamin (0.1 microM), a blocker of small-conductance Ca(2+)-activated K(+) channels (SK). They also increased the amplitudes of spontaneous Ca(2+) transients and corresponding contractions whilst reducing their frequencies. In preparations which generated bursting action potentials, nifedipine (1 microm) converted action potentials into spontaneous transient depolarizations (STDs), and subsequent applications of Ni(2+) (100 microm) abolished STDs. Gadolinium (100 microM) and SKF96365 (10 microM), blockers for nonselective cation channels, and niflumic acid (100 microm), a blocker for Ca(2+)-activated Cl- channels, had no effect on either the amplitude or frequency of spontaneous action potentials. CONCLUSIONS The T-type Ca(2+) channel may have dual roles in generating spontaneous excitation in detrusor smooth muscles. First, activity of these channels may account for the preceding depolarizations that lead to action potentials. Second, Ca(2+) influx through T-type Ca(2+) channels may couple functionally to SK channels, contributing to the stability of the resting membrane potential in detrusor smooth muscle. Thus, pharmacological manipulation of T-type Ca(2+) channels in detrusor smooth muscles could be of potential value for treating the overactive bladder.
Collapse
Affiliation(s)
- Yoshimasa Yanai
- Department of Nephro-urology, Nagoya City University Medical School, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Kajioka S, Nakayama S, Asano H, Brading AF. Involvement of ryanodine receptors in muscarinic receptor-mediated membrane current oscillation in urinary bladder smooth muscle. Am J Physiol Cell Physiol 2004; 288:C100-8. [PMID: 15317662 DOI: 10.1152/ajpcell.00161.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The urinary bladder pressure during micturition consists of two components: an initial, phasic component and a subsequent, sustained component. To investigate the excitation mechanisms underlying the sustained pressure, we recorded from membranes of isolated detrusor cells from the pig, which can be used as a model for human micturition. Parasympathomimetic agents promptly evoke a large transient inward current, and subsequently during its continuous presence, oscillating inward currents of relatively small amplitudes are observed. The two types of inward current are considered to cause the phasic and sustained pressure rises, respectively. Ionic substitution and applications of channel blockers revealed that Ca(2+)-activated Cl(-) channels were responsible for the large transient and oscillating inward currents. Furthermore, the inclusion of guanosine 5'-O-(2-thiodiphosphate) in the patch pipette indicates that both inward currents involve G proteins. However, applications of heparin in the patch pipette and of xestospongin C in the bathing solution suggest a signaling pathway other than inositol 1,4,5-trisphosphate (IP(3)) operating in the inward current oscillations, unlike the initial transient inward current. This IP(3)-independent inward current oscillation system required both sustained Ca(2+) influx from the extracellular space and Ca(2+) release from the intracellular stores. These two requirements are presumably SKF-96365-sensitive cation channels and ryanodine receptors, respectively. Experiments with various Ca(2+) concentrations suggested that Ca(2+) influx from the extracellular space plays a major role in pacing the oscillatory rhythm. The fact that distinct mechanisms underlie the two types of inward current may help in development of clinical treatments of, for example, urinary incontinence and residual urine volume control.
Collapse
|