1
|
Tolentino MAK, Seyedzadeh MH, Peres NG, Du EY, Zhu L, Gaus K, Goyette J, Gooding JJ. Polyethylene Glycol-Based Hydrogel as a 3D Extracellular Matrix Mimic for Cytotoxic T Lymphocytes. J Biomed Mater Res A 2025; 113:e37811. [PMID: 39429059 DOI: 10.1002/jbm.a.37811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 10/05/2024] [Indexed: 10/22/2024]
Abstract
Three-dimensional (3D) in vitro models enable us to understand cell behavior that is a better reflection of what occurs in vivo than 2D in vitro models. As a result, developing 3D models for extracellular matrix (ECM) has been growing exponentially. Most of the efforts for these 3D models are geared toward understanding cancer cells. An intricate network of cells that engages with cancer cells and can kill them are the immune cells, particularly cytotoxic T lymphocytes (CTLs). However, limited reports are available for 3D ECM mimics to understand CTL dynamics. Currently, we lack ECM mimetic hydrogels for immune cells, with sufficient control over variables, such as stiffness, to fully understand CTL dynamics in vitro. Here, we developed PEG-based hydrogels as ECM mimics for CTLs. The ECM mimics are targeted to mimic the stiffness of soft tissues where CTLs reside, migrate, and deliver their function. To understand cell-material interaction, we determined the porosity, biocompatibility, and stiffness of the ECM mimics. The ECM mimics have median pore sizes of 10.7 and 13.3 μm, close to the average nucleus size of CTLs (~8.6 μm), and good biocompatibility to facilitate cell migration. The stiffness of the ECM mimics corresponds to biologically relevant microenvironments such as lungs and kidneys. Using time-lapse fluorescence microscopy, 3D cell migration was imaged and measured. CTLs migrated faster in softer ECM mimic with larger pores, consistent with previous studies in collagen (the gold standard ECM mimic for CTLs). The work herein demonstrates that the PEG-based ECM mimic can serve as an in vitro tool to elucidate the cell dynamics of CTLs. Thus, this study opens possibilities to study the mechanics of CTLs in well-defined ECM mimic conditions in vitro.
Collapse
Affiliation(s)
- M A Kristine Tolentino
- School of Chemistry and Australian Centre of NanoMedicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Mir Hadi Seyedzadeh
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Newton Gil Peres
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Eric Yiwei Du
- School of Chemistry and Australian Centre of NanoMedicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Lin Zhu
- School of Chemistry and Australian Centre of NanoMedicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Katharina Gaus
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jesse Goyette
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - J Justin Gooding
- School of Chemistry and Australian Centre of NanoMedicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Stabinska J, Wittsack HJ, Lerman LO, Ljimani A, Sigmund EE. Probing Renal Microstructure and Function with Advanced Diffusion MRI: Concepts, Applications, Challenges, and Future Directions. J Magn Reson Imaging 2024; 60:1259-1277. [PMID: 37991093 PMCID: PMC11117411 DOI: 10.1002/jmri.29127] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023] Open
Abstract
Diffusion measurements in the kidney are affected not only by renal microstructure but also by physiological processes (i.e., glomerular filtration, water reabsorption, and urine formation). Because of the superposition of passive tissue diffusion, blood perfusion, and tubular pre-urine flow, the limitations of the monoexponential apparent diffusion coefficient (ADC) model in assessing pathophysiological changes in renal tissue are becoming apparent and motivate the development of more advanced diffusion-weighted imaging (DWI) variants. These approaches take advantage of the fact that the length scale probed in DWI measurements can be adjusted by experimental parameters, including diffusion-weighting, diffusion gradient directions and diffusion time. This forms the basis by which advanced DWI models can be used to capture not only passive diffusion effects, but also microcirculation, compartmentalization, tissue anisotropy. In this review, we provide a comprehensive overview of the recent advancements in the field of renal DWI. Following a short introduction on renal structure and physiology, we present the key methodological approaches for the acquisition and analysis of renal DWI data, including intravoxel incoherent motion (IVIM), diffusion tensor imaging (DTI), non-Gaussian diffusion, and hybrid IVIM-DTI. We then briefly summarize the applications of these methods in chronic kidney disease and renal allograft dysfunction. Finally, we discuss the challenges and potential avenues for further development of renal DWI. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Julia Stabinska
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension and Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Eric E. Sigmund
- Bernard and Irene Schwartz Center for Biomedical Imaging Center for Advanced Imaging Innovation and Research (CAI2R), New York University Langone Health, New York City, New York, USA
| |
Collapse
|
3
|
Antley MH, Chalmers D, Ramanand A, Cohen LH, Velez JC, Janech MG. Dimensions of muddy brown granular casts in patients with acute tubular injury. Am J Med Sci 2024; 368:196-202. [PMID: 38885928 PMCID: PMC11330370 DOI: 10.1016/j.amjms.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The presence of "muddy" brown granular casts (MBGC) in the urine sediment is pathognomonic for acute tubular injury (ATI). Although MBGC have been noted for years, there are no reports regarding their length nor width. The objective of this study was to measure MBGC using images obtained by light microscopy and investigate associations with clinically relevant parameters. METHODS Patients with diagnosis of ATI as evidenced by visualization of abundant MBGC (>30% low power fields) were sampled. Bright-field images were measured using ImageJ. Twenty-five patients were included: 44% women; median age 64 yrs; 52% white, 36% black. Mean MBGC width (n = 350) was 34.4 ± 13.1 µm (range: 9 to 110 µm). RESULTS Mean MBGC length was 98.7 ± 42.7 µm (range: 33 to 317 µm). Based on a previous report of cortical tubular diameters, MBGC width corresponded well with the median reported range. MBGC width was positively correlated with patient height (ρ=0.41, p=0.04), and length was positively correlated with fractional excretion of sodium (ρ=0.57. p=0.02) and urine chloride concentration (ρ=0.90, p=0.001). Mean MBGC length was negatively correlated with age (ρ=-0.47, p=0.02) and urine phosphate concentration (ρ=-0.72, p=0.03). There were no differences between cases that required renal replacement therapy (RRT, n =10) and those that did not require RRT (n=15). CONCLUSION This is the first study reporting dimensions of MBGC from cases with ATI. Clinical implications of these observations require further study.
Collapse
Affiliation(s)
- McKinley H Antley
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29424, USA
| | - Dustin Chalmers
- Department of Nephrology, Ochsner Medical Center, 1514 Jefferson Hwy, New Orleans, LA 70121, USA
| | - Akanksh Ramanand
- Department of Nephrology, Ochsner Medical Center, 1514 Jefferson Hwy, New Orleans, LA 70121, USA
| | - Lauren H Cohen
- Department of Nephrology, Ochsner Medical Center, 1514 Jefferson Hwy, New Orleans, LA 70121, USA
| | - Juan Carlos Velez
- Department of Nephrology, Ochsner Medical Center, 1514 Jefferson Hwy, New Orleans, LA 70121, USA; Ochsner Clinical School, The University of Queensland, Brisbane, QLD, Australia
| | - Michael G Janech
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29424, USA.
| |
Collapse
|
4
|
Gilani N, Mikheev A, Brinkmann IM, Kumbella M, Babb JS, Basukala D, Wetscherek A, Benkert T, Chandarana H, Sigmund EE. Spatial profiling of in vivo diffusion-weighted MRI parameters in the healthy human kidney. MAGMA (NEW YORK, N.Y.) 2024; 37:671-680. [PMID: 38703246 PMCID: PMC11963357 DOI: 10.1007/s10334-024-01159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/17/2024] [Accepted: 03/26/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVE Diffusion-weighted MRI is a technique that can infer microstructural and microcirculatory features from biological tissue, with particular application to renal tissue. There is extensive literature on diffusion tensor imaging (DTI) of anisotropy in the renal medulla, intravoxel incoherent motion (IVIM) measurements separating microstructural from microcirculation effects, and combinations of the two. However, interpretation of these features and adaptation of more specific models remains an ongoing challenge. One input to this process is a whole organ distillation of corticomedullary contrast of diffusion metrics, as has been explored for other renal biomarkers. MATERIALS AND METHODS In this work, we probe the spatial dependence of diffusion MRI metrics with concentrically layered segmentation in 11 healthy kidneys at 3 T. The metrics include those from DTI, IVIM, a combined approach titled "REnal Flow and Microstructure AnisotroPy (REFMAP)", and a multiply encoded model titled "FC-IVIM" providing estimates of fluid velocity and branching length. RESULTS Fractional anisotropy decreased from the inner kidney to the outer kidney with the strongest layer correlation in both parenchyma (including cortex and medulla) and medulla with Spearman correlation coefficients and p-values (r, p) of (0.42, <0.001) and (0.37, <0.001), respectively. Also, dynamic parameters derived from the three models significantly decreased with a high correlation from the inner to the outer parenchyma or medulla with (r, p) ranges of (0.46-0.55, <0.001). CONCLUSIONS These spatial trends might find implications for indirect assessments of kidney physiology and microstructure using diffusion MRI.
Collapse
Affiliation(s)
- Nima Gilani
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA.
| | - Artem Mikheev
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA
| | | | - Malika Kumbella
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA
| | - James S Babb
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA
| | - Dibash Basukala
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA
| | - Andreas Wetscherek
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Hersh Chandarana
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA
| | - Eric E Sigmund
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), Center for Biomedical Imaging, NYU Langone Health, New York, USA
| |
Collapse
|
5
|
Sigmund EE, Mikheev A, Brinkmann IM, Gilani N, Babb JS, Basukala D, Benkert T, Veraart J, Chandarana H. Cardiac Phase and Flow Compensation Effects on REnal Flow and Microstructure AnisotroPy MRI in Healthy Human Kidney. J Magn Reson Imaging 2023; 58:210-220. [PMID: 36399101 PMCID: PMC10192459 DOI: 10.1002/jmri.28517] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Renal diffusion-weighted imaging (DWI) involves microstructure and microcirculation, quantified with diffusion tensor imaging (DTI), intravoxel incoherent motion (IVIM), and hybrid models. A better understanding of their contrast may increase specificity. PURPOSE To measure modulation of DWI with cardiac phase and flow-compensated (FC) diffusion gradient waveforms. STUDY TYPE Prospective. POPULATION Six healthy volunteers (ages: 22-48 years, five females), water phantom. FIELD STRENGTH/SEQUENCE 3-T, prototype DWI sequence with 2D echo-planar imaging, and bipolar (BP) or FC gradients. 2D Half-Fourier Single-shot Turbo-spin-Echo (HASTE). Multiple-phase 2D spoiled gradient-echo phase contrast (PC) MRI. ASSESSMENT BP and FC water signal decays were qualitatively compared. Renal arteries and velocities were visualized on PC-MRI. Systolic (peak velocity), diastolic (end stable velocity), and pre-systolic (before peak velocity) phases were identified. Following mutual information-based retrospective self-registration of DWI within each kidney, and Marchenko-Pastur Principal Component Analysis (MPPCA) denoising, combined IVIM-DTI analysis estimated mean diffusivity (MD), fractional anisotropy (FA), and eigenvalues (λi) from tissue diffusivity (Dt ), perfusion fraction (fp ), and pseudodiffusivity (Dp , Dp,axial , Dp,radial ), for each tissue (cortex/medulla, segmented on b0/FA respectively), phase, and waveform (BP, FC). Monte Carlo water diffusion simulations aided data interpretation. STATISTICAL TESTS Mixed model regression probed differences between tissue types and pulse sequences. Univariate general linear model analysis probed variations among cardiac phases. Spearman correlations were measured between diffusion metrics and renal artery velocities. Statistical significance level was set at P < 0.05. RESULTS Water BP and FC signal decays showed no differences. Significant pulse sequence dependence occurred for λ1 , λ3 , FA, Dp , fp , Dp,axial , Dp,radial in cortex and medulla, and medullary λ2 . Significant cortex/medulla differences occurred with BP for all metrics except MD (systole [P = 0.224]; diastole [P = 0.556]). Significant phase dependence occurred for Dp , Dp,axial , Dp,radial for BP and medullary λ1 , λ2 , λ3 , MD for FC. FA correlated significantly with velocity. Monte Carlo simulations indicated medullary measurements were consistent with a 34 μm tubule diameter. DATA CONCLUSION Cardiac gating and flow compensation modulate of measurements of renal diffusion. EVIDENCE LEVEL 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Eric E Sigmund
- Center for Advanced Imaging and Innovation (CAI2R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Artem Mikheev
- Center for Advanced Imaging and Innovation (CAI2R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | | | - Nima Gilani
- Center for Advanced Imaging and Innovation (CAI2R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - James S Babb
- Center for Advanced Imaging and Innovation (CAI2R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Dibash Basukala
- Center for Advanced Imaging and Innovation (CAI2R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Thomas Benkert
- Siemens Medical Solutions USA Inc., Malvern, Pennsylvania, USA
| | - Jelle Veraart
- Center for Advanced Imaging and Innovation (CAI2R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| | - Hersh Chandarana
- Center for Advanced Imaging and Innovation (CAI2R), Center for Biomedical Imaging, Department of Radiology, NYU Langone Health, New York, New York, USA
| |
Collapse
|