1
|
Ni X, Xu Z, Wang J, Zheng S, Cai Y. C-peptide and islet transplantation improve glomerular filtration barrier in diabetic nephropathy rats. Transpl Immunol 2020; 62:101322. [PMID: 32798711 DOI: 10.1016/j.trim.2020.101322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Islet transplantation has been proved to be effective in delaying early stage of DN. This study was established to observe the mechanism of islet transplantation on early diabetic nephropathy (DN). METHOD The diabetes mellitus (DM) rat model was established by an injection of a single-dose streptozotocin. According to the treatment, the rats were randomly divided into 4 groups: the untreated DN rats (DN group); the C-peptide treated rats (CP group); the islet transplanted rats (IT group); the normal control rats (NC group). Renal function and structure of glomerular filtration barrier (GFB) were evaluated by urinalysis and histopathological examination, respectively. The renal fibrotic factors, TGF- β1 and CTGF, as well as the anti-renal fibrosis factor HGF were assessed by immunohistochemical staining and western blotting methods. RESULTS After C-peptide treatment and islet transplantation, the GFB structure was obviously improved. The blood glucose significantly decreased in the IT group. The 24h urine protein and glomerular basement membrane thickness decreased, the pathological changes of podocytes improved, TGF- β1 and CTGF decreased and HGF increased in the CP group and the IT group compared with that in the DN group (P < 0.05), especially in the IT group. CONCLUSION Islet transplantation could ameliorate the structure of GFB of early DN in a rat model, and the treatment effect was partly attributed to the restoration of C-peptide concentration. Suppressing the fibrosis system can be the potential mechanism of islet transplantation, which is independent of blood glucose control.
Collapse
Affiliation(s)
- Xiaojie Ni
- Department of Transplantation, The First Affiliated Hospital, Wenzhou Medical University, Shangcai Cun, Ouhai Qu, Wenzhou Province, Zhejiang 325000, China
| | - Ziqiang Xu
- Department of Transplantation, The First Affiliated Hospital, Wenzhou Medical University, Shangcai Cun, Ouhai Qu, Wenzhou Province, Zhejiang 325000, China
| | - Jinjun Wang
- Department of Transplantation, The First Affiliated Hospital, Wenzhou Medical University, Shangcai Cun, Ouhai Qu, Wenzhou Province, Zhejiang 325000, China
| | - Shaoling Zheng
- Department of Transplantation, The First Affiliated Hospital, Wenzhou Medical University, Shangcai Cun, Ouhai Qu, Wenzhou Province, Zhejiang 325000, China
| | - Yong Cai
- Department of Transplantation, The First Affiliated Hospital, Wenzhou Medical University, Shangcai Cun, Ouhai Qu, Wenzhou Province, Zhejiang 325000, China.
| |
Collapse
|
2
|
Shotorbani PY, Chaudhari S, Tao Y, Tsiokas L, Ma R. Inhibitor of myogenic differentiation family isoform a, a new positive regulator of fibronectin production by glomerular mesangial cells. Am J Physiol Renal Physiol 2020; 318:F673-F682. [PMID: 31984795 PMCID: PMC7099507 DOI: 10.1152/ajprenal.00508.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
Overproduction of extracellular matrix proteins, including fibronectin by mesangial cells (MCs), contributes to diabetic nephropathy. Inhibitor of myogenic differentiation family isoform a (I-mfa) is a multifunctional cytosolic protein functioning as a transcriptional modulator or plasma channel protein regulator. However, its renal effects are unknown. The present study was conducted to determine whether I-mfa regulated fibronectin production by glomerular MCs. In human MCs, overexpression of I-mfa significantly increased fibronectin abundance. Silencing I-mfa significantly reduced the level of fibronectin mRNA and blunted transforming growth factor-β1-stimulated production of fibronectin. We further found that high glucose increased I-mfa protein content in a time course (≥48 h) and concentration (≥25 mM)-dependent manner. Although high glucose exposure increased I-mfa at the protein level, it did not significantly alter transcripts of I-mfa in MCs. Furthermore, the abundance of I-mfa protein was significantly increased in the renal cortex of rats with diabetic nephropathy. The I-mfa protein level was also elevated in the glomerulus of mice with diabetic kidney disease. However, there was no significant difference in glomerular I-mfa mRNA levels between mice with and without diabetic nephropathy. Moreover, H2O2 significantly increased I-mfa protein abundance in a dose-dependent manner in cultured human MCs. The antioxidants polyethylene glycol-catalase, ammonium pyrrolidithiocarbamate, and N-acetylcysteine significantly blocked the high glucose-induced increase of I-mfa protein. Taken together, our results suggest that I-mfa, increased by high glucose/diabetes through the production of reactive oxygen species, stimulates fibronectin production by MCs.
Collapse
Affiliation(s)
| | - Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Yu Tao
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - Leonidas Tsiokas
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| |
Collapse
|
3
|
Minville V, Mouledous L, Jaafar A, Couture R, Brouchet A, Frances B, Tack I, Girolami JP. Tibial post fracture pain is reduced in kinin receptors deficient mice and blunted by kinin receptor antagonists. J Transl Med 2019; 17:346. [PMID: 31640792 PMCID: PMC6805420 DOI: 10.1186/s12967-019-2095-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 10/11/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tibial fracture is associated with inflammatory reaction leading to severe pain syndrome. Bradykinin receptor activation is involved in inflammatory reactions, but has never been investigated in fracture pain. METHODS This study aims at defining the role of B1 and B2-kinin receptors (B1R and B2R) in a closed tibial fracture pain model by using knockout mice for B1R (B1KO) or B2R (B2KO) and wild-type (WT) mice treated with antagonists for B1R (SSR 240612 and R954) and B2R (HOE140) or vehicle. A cyclooxygenase (COX) inhibitor (ketoprofen) and an antagonist (SB366791) of Transient Receptor Potential Vaniloid1 (TRPV1) were also investigated since these pathways are associated with BK-induced pain in other models. The impact on mechanical and thermal hyperalgesia and locomotion was assessed by behavior tests. Gene expression of B1R and B2R and spinal cord expression of c-Fos were measured by RT-PCR and immunohistochemistry, respectively. RESULTS B1KO and B2KO mice demonstrated a reduction in post-fracture pain sensitivity compared to WT mice that was associated with decreased c-Fos expression in the ipsilateral spinal dorsal horn in B2KO. B1R and B2R mRNA and protein levels were markedly enhanced at the fracture site. B1R and B2R antagonists and inhibition of COX and TRPV1 pathways reduced pain in WT. However, the analgesic effect of the COX-1/COX-2 inhibitor disappeared in B1KO and B2KO. In contrast, the analgesic effect of the TRPV1 antagonist persisted after gene deletion of either receptor. CONCLUSIONS It is suggested that B1R and B2R activation contributes significantly to tibial fracture pain through COX. Hence, B1R and B2R antagonists appear potential therapeutic agents to manage post fracture pain.
Collapse
Affiliation(s)
- Vincent Minville
- Department of Anesthesiology and Intensive Care, Toulouse University Hospital, Toulouse, France. .,INSERM U 1048, I2MC, BP 84225, 31432, Toulouse Cedex, France. .,Department of Anesthesiology and Intensive Care, Rangueil University Hospital, Avenue, Jean Poulhès, Toulouse, France.
| | - Lionel Mouledous
- Centre de Recherches sur la Cognition Animale, CNRS UMR 5169, Université P Sabatier, bat 4R3, 118 route de Narbonne, 31062, Toulouse Cedex, France
| | - Acil Jaafar
- CHU de Toulouse, Service d'Explorations physiologiques rénales, 31059, Toulouse cedex, France
| | - Réjean Couture
- Department of Physiology, Medical School, University of Montreal, Montreal, QC, H3C 3J7, Canada
| | - Anne Brouchet
- Department of Pathology, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Bernard Frances
- Centre de Recherches sur la Cognition Animale, CNRS UMR 5169, Université P Sabatier, bat 4R3, 118 route de Narbonne, 31062, Toulouse Cedex, France
| | - Ivan Tack
- INSERM U 1048, I2MC, BP 84225, 31432, Toulouse Cedex, France.,CHU de Toulouse, Service d'Explorations physiologiques rénales, 31059, Toulouse cedex, France
| | | |
Collapse
|
4
|
Huang L, Ma R, Lin T, Chaudhari S, Shotorbani PY, Yang L, Wu P. Glucagon-like peptide-1 receptor pathway inhibits extracellular matrix production by mesangial cells through store-operated Ca 2+ channel. Exp Biol Med (Maywood) 2019; 244:1193-1201. [PMID: 31510798 DOI: 10.1177/1535370219876531] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glomerular mesangial cell is the major source of mesangial matrix. Our previous study demonstrated that store-operated Ca2+ channel signaling suppressed extracellular matrix protein production by mesangial cells. Recent studies demonstrated that glucagon-like peptide-1 receptor (GLP-1R) pathway had renoprotective effects. However, the underlying mechanism(s) remains unclear. The present study was aimed to determine if activation of GLP-1R decreased extracellular matrix protein production by mesangial cells through upregulation of store-operated Ca2+ function. Experiments were conducted in cultured human mesangial cells. Liraglutide and exendin 9–39 were used to activate and inhibit GLP-1R, respectively. Store-operated Ca2+ function was estimated by evaluating the SOC-mediated Ca2+ entry (SOCE). We found that liraglutide treatment reduced high glucose-stimulated production of fibronectin and collagen IV. The inhibitory effects of liraglutide were not observed in the presence of exendin 9–39. Exendin-4, another GLP-1R agonist also blunted high glucose-stimulated fibronectin and collagen IV production. Treatment of human mesangial cells with liraglutide for 24 h significantly attenuated the high glucose-induced reduction of Orai1 protein. Consistently, Ca2+ imaging experiments showed that the inhibition of high glucose on SOCE was significantly attenuated by liraglutide. However, in the presence of exendin 9–39, liraglutide failed to reverse the high glucose effect. Furthermore, liraglutide effects on fibronectin and collagen IV protein abundance were significantly attenuated by GSK-7975A, a selective blocker of store-operated Ca2+. Taken together, our findings suggest that GLP-1R signaling inhibited high glucose-induced extracellular matrix protein production in mesangial cells by restoring store-operated Ca2+ function. Impact statement Diabetic kidney disease continues to be a major challenge to health care system in the world. There are no known therapies currently available that can cure the disease. The present study provided compelling evidence that activation of GLP-1R inhibited extracellular matrix protein production by glomerular mesangial cells. We further showed that the beneficial effect of GLP-1R was attributed to upregulation of store-operated Ca2+ channel function. Therefore, we identified a novel mechanism contributing to the renal protective effects of GLP-1R pathway. Activation of GLP-1R pathway and/or store-operated Ca2+ channel signaling in MCs could be an option for patients with diabetic kidney disease.
Collapse
Affiliation(s)
- Linjing Huang
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Diabetes Research Institute of Fujian Province, Fuzhou 350005, China.,Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Rong Ma
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Tingting Lin
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Diabetes Research Institute of Fujian Province, Fuzhou 350005, China
| | - Sarika Chaudhari
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Parisa Y Shotorbani
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Liyong Yang
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Diabetes Research Institute of Fujian Province, Fuzhou 350005, China
| | - Peiwen Wu
- Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Diabetes Research Institute of Fujian Province, Fuzhou 350005, China
| |
Collapse
|
5
|
TGF-β1 induced up-regulation of B1 kinin receptor promotes antifibrotic activity in rat cardiac myofibroblasts. Mol Biol Rep 2019; 46:5197-5207. [PMID: 31309451 DOI: 10.1007/s11033-019-04977-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/11/2019] [Indexed: 01/14/2023]
Abstract
Cardiac myofibroblast (CMF) are non-muscle cardiac cells that play a crucial role in wound healing and in pathological remodeling. These cells are mainly derived of cardiac fibroblast (CF) differentiation mediated by TGF-β1. Evidence suggests that bradykinin (BK) regulates cardiac fibroblast function in the heart. Both B1 and B2 kinin receptors (B1R and B2R, respectively) mediate the biological effects of kinins. We recently showed that both receptors are expressed in CMF and its stimulation decreases collagen secretion. Whether TGF-β1 regulates B1R and B2R expression, and how these receptors control antifibrotic activity in CMF remains poorly understood. In this work, we sought to study, the regulation of B1R expression in cultured CMF mediated by TGF-β1, and the molecular mechanisms involved in B1R activation on CMF intracellular collagen type-I levels. Cardiac fibroblast-primary culture was obtained from neonatal rats. Hearts were digested and CFs were attached to dishes and separated from cardiomyoctes. CMF were obtained from CF differentiation with TGF-β1 5 ng/mL. CF and CMF were treated with B1R and B2R agonists and with TGF-β1 at different times and concentrations, in the presence or absence of chemical inhibitors, to evaluate signaling pathways involved in B1R expression, collagen type-I and prostacyclin levels. B1R and collagen type-I levels were evaluated by western blot. Prostacyclin levels were quantified by an ELISA kit. TGF-β1 increased B1R expression via TGFβ type I receptor kinase (ALK5) activation and its subsequent signaling pathways involving Smad2, p38, JNK and ERK1/2 activation. Moreover, in CMF, the activation of B1R and B2R by their respective agonists, reduced collagen synthesis. This effect was mediated by the canonical signaling pathway; phospholipase C (PLC), protein kinase C (PKC), phospholipase A2 (PLA2), COX-2 activation and PGI2 secretion and its autocrine effect. TGF-β1 through ALK5, Smad2, p38, JNK and ERK1/2 increases B1R expression; whereas in CMF, B1R and B2R activation share common signaling pathways for reducing collagen synthesis.
Collapse
|
6
|
Shavit-Stein E, Aronovich R, Sylantiev C, Gofrit SG, Chapman J, Dori A. The role of thrombin in the pathogenesis of diabetic neuropathy. PLoS One 2019; 14:e0219453. [PMID: 31276565 PMCID: PMC6611599 DOI: 10.1371/journal.pone.0219453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 06/24/2019] [Indexed: 02/05/2023] Open
Abstract
Diabetic neuropathy is common and disabling despite glycemic control. Novel neuroprotective approaches are needed. Thrombin and hypercoagulability are associated with diabetes and nerve conduction dysfunction. Our aim was to study the role of thrombin in diabetic neuropathy. We measured thrombin activity by a biochemical assay in streptozotocin (STZ)-induced diabetic neuropathy in male Sprague-Dawley rats. Neuropathy severity was assessed by thermal latency and nerve conduction measures. Thermal latencies were longer in diabetic rats, and improved with the non-specific serine-protease inhibitor Tosyl-L-lysine-chloromethyl ketone (TLCK) treatment (p<0.01). The tail nerve of diabetic rats showed slow conduction velocity (p˂0.01), and interestingly, increased thrombin activity was noted in the sciatic nerve (p˂0.001). Sciatic nodes of Ranvier and the thrombin receptor, protease activated receptor 1 (PAR1) reactivity showed abnormal morphology in diabetic animals by immunofluorescence staining (p<0.0001). Treatment of diabetic animals with either the specific thrombin inhibitor, N-alpha 2 naphtalenesulfonylglycyl alpha-4 amidino-phenylalaninepiperidide (NAPAP) or TLCK preserved normal conduction velocity, (p˂0.01 and p = 0.01 respectively), and prevented disruption of morphology (p˂0.05 and p˂0.03). The results establish for the first time an association between diabetic neuropathy and excessive activation of the thrombin pathway. Treatment of diabetic animals with thrombin inhibitors ameliorates both biochemical, structural and electrophysiological deficits. The thrombin pathway inhibition may be a novel neuroprotective therapeutic target in the diabetic neuropathy pathology.
Collapse
Affiliation(s)
- Efrat Shavit-Stein
- Department of Neurology, Sheba Medical Center, Tel HaShomer, Israel
- Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
- * E-mail:
| | - Ramona Aronovich
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Joab Chapman
- Department of Neurology, Sheba Medical Center, Tel HaShomer, Israel
- Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Robert and Martha Harden Chair in Mental and Neurological Diseases, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Dori
- Department of Neurology, Sheba Medical Center, Tel HaShomer, Israel
- Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
- Department of Neurology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Talpiot medical leadership program, Sheba Medical Center, Tel HaShomer, Israel
| |
Collapse
|
7
|
Wu P, Ren Y, Ma Y, Wang Y, Jiang H, Chaudhari S, Davis ME, Zuckerman JE, Ma R. Negative regulation of Smad1 pathway and collagen IV expression by store-operated Ca 2+ entry in glomerular mesangial cells. Am J Physiol Renal Physiol 2017; 312:F1090-F1100. [PMID: 28298362 DOI: 10.1152/ajprenal.00642.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/08/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Collagen IV (Col IV) is a major component of expanded glomerular extracellular matrix in diabetic nephropathy and Smad1 is a key molecule regulating Col IV expression in mesangial cells (MCs). The present study was conducted to determine if Smad1 pathway and Col IV protein abundance were regulated by store-operated Ca2+ entry (SOCE). In cultured human MCs, pharmacological inhibition of SOCE significantly increased the total amount of Smad1 protein. Activation of SOCE blunted high-glucose-increased Smad1 protein content. Treatment of human MCs with ANG II at 1 µM for 15 min, high glucose for 3 days, or TGF-β1 at 5 ng/ml for 30 min increased the level of phosphorylated Smad1. However, the phosphorylation of Smad1 by those stimuli was significantly attenuated by activation of SOCE. Knocking down Smad1 reduced, but expressing Smad1 increased, the amount of Col IV protein. Furthermore, activation of SOCE significantly attenuated high-glucose-induced Col IV protein production, and blockade of SOCE substantially increased the abundance of Col IV. To further verify those in vitro findings, we downregulated SOCE specifically in MCs in mice using small-interfering RNA (siRNA) against Orai1 (the channel protein mediating SOCE) delivered by the targeted nanoparticle delivery system. Immunohistochemical examinations showed that expression of both Smad1 and Col IV proteins was significantly greater in the glomeruli with positively transfected Orai1 siRNA compared with the glomeruli from the mice without Orai1 siRNA treatment. Taken together, our results indicate that SOCE negatively regulates the Smad1 signaling pathway and inhibits Col IV protein production in MCs.
Collapse
Affiliation(s)
- Peiwen Wu
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas.,Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, Peoples Republic of China
| | - Yuezhong Ren
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas.,Department of Endocrinology, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, Zhejiang, China
| | - Yuhong Ma
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas.,Department of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Yanxia Wang
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas
| | - Hui Jiang
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas.,The First Affiliated Hospital to Anhui University of Traditional Chinese Medicine, Hefei, China; and
| | - Sarika Chaudhari
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas
| | - Mark E Davis
- Chemical Engineering, California Institute of Technology, Pasadena, California
| | | | - Rong Ma
- Institute for Cardiovascular and Metabolic Disease, University of North Texas Health Science Center, Fort Worth, Texas;
| |
Collapse
|
8
|
Renoprotective Effects of Aldose Reductase Inhibitor Epalrestat against High Glucose-Induced Cellular Injury. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5903105. [PMID: 28386557 PMCID: PMC5366186 DOI: 10.1155/2017/5903105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 02/21/2017] [Indexed: 12/30/2022]
Abstract
Diabetic nephropathy (DN) is the leading cause of end stage renal disease worldwide. Increased glucose flux into the aldose reductase (AR) pathway during diabetes was reported to exert deleterious effects on the kidney. The objective of this study was to investigate the renoprotective effects of AR inhibition in high glucose milieu in vitro. Rat renal tubular (NRK-52E) cells were exposed to high glucose (30 mM) or normal glucose (5 mM) media for 24 to 48 hours with or without the AR inhibitor epalrestat (1 μM) and assessed for changes in Akt and ERK1/2 signaling, AR expression (using western blotting), and alterations in mitochondrial membrane potential (using JC-1 staining), cell viability (using MTT assay), and cell cycle. Exposure of NRK-52E cells to high glucose media caused acute activation of Akt and ERK pathways and depolarization of mitochondrial membrane at 24 hours. Prolonged high glucose exposure (for 48 hours) induced AR expression and G1 cell cycle arrest and decreased cell viability (84% compared to control) in NRK-52E cells. Coincubation of cells with epalrestat prevented the signaling changes and renal cell injury induced by high glucose. Thus, AR inhibition represents a potential therapeutic strategy to prevent DN.
Collapse
|
9
|
Effect of bradykinin on TGF-β1-induced retinal pigment epithelial cell proliferation and extracellular matrix secretion. BMC Ophthalmol 2016; 16:199. [PMID: 27832751 PMCID: PMC5103415 DOI: 10.1186/s12886-016-0373-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/28/2016] [Indexed: 01/15/2023] Open
Abstract
Background To evaluate the effect of bradykinin (BK) on TGF-β1-induced retinal pigment epithelial (RPE) cell proliferation and extracellular matrix secretion and to elucidate the relationship between BK and the Erk/Akt signaling pathway. Methods The effects of BK on TGF-β1-induced RPE cell proliferation were examined via CCK-8 assay. Cell culture supernatant collagen I concentrations were measured via ELISA. Fibronectin (Fn), matrix metalloproteinase-2 (MMP-2) and MMP-9 mRNA and protein expression levels were measured via q-PCR and Western blotting, respectively. Changes in Akt/Erk phosphorylation induced by BK and HOE-140 were evaluated via Western blotting. Results TGF-β1 stimulated ARPE-19 cell proliferation, which was inhibited by BK, whose effects were inhibited by HOE-140. BK inhibited TGF-β1-induced collagen I, Fn and MMP-2 secretion in RPE cells, and these effects were inhibited by HOE-140. BK also inhibited TGF-β1-induced Akt phosphorylation in RPE cells, and these effects were blocked by HOE-140. BK had no significant effect on Erk-mediated signaling. Conclusions The findings from this study indicate that BK could be novel therapeutic targets for the treatment of PVR.
Collapse
|
10
|
Utero-placental cellular and nuclear expression of bradykinin B2 receptors in normal and preeclamptic pregnancies. Pregnancy Hypertens 2016; 6:30-7. [PMID: 26955769 DOI: 10.1016/j.preghy.2016.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/19/2016] [Indexed: 11/20/2022]
Abstract
The bradykinin type 2 receptor (B2R), main effector of the pleiotropic kallikrein-kinin system (KKS), has been localized in the key sites related to placentation in human, rat and guinea pig utero-placental units. The present study was directed to characterize the content, the cellular and subcellular localization of B2R in the villi and basal plate of placentas from normal and preeclamptic pregnancies by means of western blotting, immunohistochemistry and immunoelectron microscopy. The protein content of B2R was demonstrated in both placental zones. The villous placenta of normal and preeclamptic pregnancies expressed B2R in syncytiotrophoblast and fetal endothelium; the basal plate displayed B2R in extravillous trophoblasts and decidual cells. Lastly, immunogold electron microscopy revealed B2R in fetal endothelium, syncytiotrophoblast, extravillous cytotrophoblasts and decidual cells; in all cell types the receptor was mainly located in the cytosol and nucleus. The protein content of placental homogenates and the immunoreactivity in the different cells types did not differ between both study groups; however the abundance of nuclear immunogold B2R positive beads in extravillous trophoblasts was greater in the normal than in the preeclamptic placentas. The purpose of describing nuclear B2R in the utero-placental unit, and its increment in normal extravillous trophoblasts, is to stimulate the study of the functional pathways that may be relevant to understand the local role of the B2R in normal and preeclamptic gestation.
Collapse
|
11
|
Gomez-Brouchet A, Blaes N, Mouledous L, Fourcade O, Tack I, Francès B, Girolami JP, Minville V. Beneficial effects of levobupivacaine regional anaesthesia on postoperative opioid induced hyperalgesia in diabetic mice. J Transl Med 2015; 13:208. [PMID: 26136113 PMCID: PMC4488045 DOI: 10.1186/s12967-015-0575-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/16/2015] [Indexed: 12/26/2022] Open
Abstract
Background Diabetic neuropathy is one of the most common complications of diabetes and causes various problems in daily life. The aim of this study was to assess the effect of regional anaesthesia on post surgery opioid induced hyperalgesia in diabetic and non-diabetic mice. Methods Diabetic and non-diabetic mice underwent plantar surgery. Levobupivacaine and sufentanil were used before surgery, for sciatic nerve block (regional anaesthesia) and analgesia, respectively. Diabetic and non-diabetic groups were each randomly assigned to three subgroups: control, no sufentanil and no levobupivacaine; sufentanil and no levobupivacaine; sufentanil and levobupivacaine. Three tests were used to assess pain behaviour: mechanical nociception; thermal nociception and guarding behaviours using a pain scale. Results Sufentanil, alone or in combination with levobupivacaine, produced antinociceptive effects shortly after administration. Subsequently, sufentanil induced hyperalgesia in diabetic and non-diabetic mice. Opioid-induced hyperalgesia was enhanced in diabetic mice. Levobupivacaine associated to sufentanil completely prevented hyperalgesia in both groups of mice. Conclusion The results suggest that regional anaesthesia can decrease opioid-induced hyperalgesia in diabetic as well as in non-diabetic mice. These observations may be clinically relevant for the management of diabetic patients.
Collapse
Affiliation(s)
- Anne Gomez-Brouchet
- Service d'Anatomie Pathologique et Histologie-Cytologie, IUCT Oncopôle, 1 Avenue du Juliot Curie, 31059, Toulouse Cedex 9, France.
| | - Nelly Blaes
- Institute of Metabolic and Cardiovascular Diseases, I2MC, INSERM, U1048, Université Paul Sabatier, 31432, Toulouse, France.
| | - Lionel Mouledous
- CNRS, IPBS, Institut de Pharmacologie et de Biologie Structurale, 205 Route de Narbonne, 31077, Toulouse, France.
| | - Olivier Fourcade
- Department of Anaesthesiology and Intensive Care, Toulouse University Hospital, 31432, Toulouse, France.
| | - Ivan Tack
- Institute of Metabolic and Cardiovascular Diseases, I2MC, INSERM, U1048, Université Paul Sabatier, 31432, Toulouse, France.
| | - Bernard Francès
- Université de Toulouse, Centre de Recherches sur la Cognition Animale, CNRS, UMR 5169, Université Paul Sabatier, 118 Route de Narbonne, 31062, Toulouse, France.
| | - Jean-Pierre Girolami
- Institute of Metabolic and Cardiovascular Diseases, I2MC, INSERM, U1048, Université Paul Sabatier, 31432, Toulouse, France.
| | - Vincent Minville
- Department of Anaesthesiology and Intensive Care, Toulouse University Hospital, 31432, Toulouse, France. .,Institute of Metabolic and Cardiovascular Diseases, I2MC, INSERM, U1048, Université Paul Sabatier, 31432, Toulouse, France.
| |
Collapse
|
12
|
Wu P, Wang Y, Davis ME, Zuckerman JE, Chaudhari S, Begg M, Ma R. Store-Operated Ca2+ Channels in Mesangial Cells Inhibit Matrix Protein Expression. J Am Soc Nephrol 2015; 26:2691-702. [PMID: 25788524 DOI: 10.1681/asn.2014090853] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/22/2014] [Indexed: 11/03/2022] Open
Abstract
Accumulation of extracellular matrix derived from glomerular mesangial cells is an early feature of diabetic nephropathy. Ca(2+) signals mediated by store-operated Ca(2+) channels regulate protein production in a variety of cell types. The aim of this study was to determine the effect of store-operated Ca(2+) channels in mesangial cells on extracellular matrix protein expression. In cultured human mesangial cells, activation of store-operated Ca(2+) channels by thapsigargin significantly decreased fibronectin protein expression and collagen IV mRNA expression in a dose-dependent manner. Conversely, inhibition of the channels by 2-aminoethyl diphenylborinate significantly increased the expression of fibronectin and collagen IV. Similarly, overexpression of stromal interacting molecule 1 reduced, but knockdown of calcium release-activated calcium channel protein 1 (Orai1) increased fibronectin protein expression. Furthermore, 2-aminoethyl diphenylborinate significantly augmented angiotensin II-induced fibronectin protein expression, whereas thapsigargin abrogated high glucose- and TGF-β1-stimulated matrix protein expression. In vivo knockdown of Orai1 in mesangial cells of mice using a targeted nanoparticle siRNA delivery system resulted in increased expression of glomerular fibronectin and collagen IV, and mice showed significant mesangial expansion compared with controls. Similarly, in vivo knockdown of stromal interacting molecule 1 in mesangial cells by recombinant adeno-associated virus-encoded shRNA markedly increased collagen IV protein expression in renal cortex and caused mesangial expansion in rats. These results suggest that store-operated Ca(2+) channels in mesangial cells negatively regulate extracellular matrix protein expression in the kidney, which may serve as an endogenous renoprotective mechanism in diabetes.
Collapse
Affiliation(s)
- Peiwen Wu
- Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas; Department of Endocrinology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Yanxia Wang
- Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas
| | - Mark E Davis
- Chemical Engineering, California Institute of Technology, Pasadena, California; and
| | - Jonathan E Zuckerman
- Chemical Engineering, California Institute of Technology, Pasadena, California; and
| | - Sarika Chaudhari
- Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas
| | - Malcolm Begg
- Respiratory Therapy Area Unit, Medicines Research Center, GlaxoSmithKline, Stevenage, United Kingdom
| | - Rong Ma
- Department of Integrative Physiology and Anatomy and Cardiovascular Research Institute, University of North Texas Health Science Center, Fort Worth, Texas;
| |
Collapse
|
13
|
Girolami JP, Blaes N, Bouby N, Alhenc-Gelas F. Genetic manipulation and genetic variation of the kallikrein-kinin system: impact on cardiovascular and renal diseases. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 69:145-196. [PMID: 25130042 DOI: 10.1007/978-3-319-06683-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Genetic manipulation of the kallikrein-kinin system (KKS) in mice, with either gain or loss of function, and study of human genetic variability in KKS components which has been well documented at the phenotypic and genomic level, have allowed recognizing the physiological role of KKS in health and in disease. This role has been especially documented in the cardiovascular system and the kidney. Kinins are produced at slow rate in most organs in resting condition and/or inactivated quickly. Yet the KKS is involved in arterial function and in renal tubular function. In several pathological situations, kinin production increases, kinin receptor synthesis is upregulated, and kinins play an important role, whether beneficial or detrimental, in disease outcome. In the setting of ischemic, diabetic or hemodynamic aggression, kinin release by tissue kallikrein protects against organ damage, through B2 and/or B1 bradykinin receptor activation, depending on organ and disease. This has been well documented for the ischemic or diabetic heart, kidney and skeletal muscle, where KKS activity reduces oxidative stress, limits necrosis or fibrosis and promotes angiogenesis. On the other hand, in some pathological situations where plasma prekallikrein is inappropriately activated, excess kinin release in local or systemic circulation is detrimental, through oedema or hypotension. Putative therapeutic application of these clinical and experimental findings through current pharmacological development is discussed in the chapter.
Collapse
|
14
|
Delemasure S, Blaes N, Richard C, Couture R, Bader M, Dutartre P, Girolami JP, Connat JL, Rochette L. Antioxidant/oxidant status and cardiac function in bradykinin B(1)- and B(2)-receptor null mice. Physiol Res 2013; 62:511-7. [PMID: 24020815 DOI: 10.33549/physiolres.932496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Kinin-vasoactive peptides activate two G-protein-coupled receptors (R), B(1)R (inducible) and B(2)R (constitutive). Their complex role in cardiovascular diseases could be related to differential actions on oxidative stress. This study investigated impacts of B(1)R or B(2)R gene deletion in mice on the cardiac function and plasma antioxidant and oxidant status. Echocardiography-Doppler was performed in B(1)R (B(1)R(-/-)) and B(2)R (B(2)R(-/-)) deficient and wild type (WT) adult male mice. No functional alteration was observed in B(2)R(-/-) hearts. B(1)R(-/-) mice had significantly lowered fractional shortening and increased isovolumetric contraction time. The diastolic E and A waves velocity ratio was similar in all mice groups. Thus B(1)R(-/-) mice provide a model of moderate systolic dysfunction, whereas B(2)R(-/-) mice displayed a normal cardiac phenotype. Plasma antioxidant capacity (ORAC) was significantly decreased in both B(1)R(-/-) and B(2)R(-/-) mice whereas the vitamin C levels were decreased in B(2)R(-/-) mice only. Plasma ascorbyl free radical was significantly higher in B(1)R(-/-) compared to WT and B(2)R(-/-) mice. Therefore, the oxidative stress index, ascorbyl free radical to vitamin C ratio, was increased in both B(1)R(-/-) and B(2)R(-/-) mice. Hence, B(1)R and B(2)R deficiency are associated with increased oxidative stress, but there is a differential imbalance between free radical production and antioxidant defense. The interrelationship between the differential B(1)R and B(2)R roles in oxidative stress and cardiovascular diseases remain to be investigated.
Collapse
Affiliation(s)
- S Delemasure
- COHIRO Biotechnology, Faculty of Medicine, Dijon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Blaes N, Girolami JP. Targeting the 'Janus face' of the B2-bradykinin receptor. Expert Opin Ther Targets 2013; 17:1145-66. [PMID: 23957374 DOI: 10.1517/14728222.2013.827664] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Kinins are main active mediators of the kallikrein-kinin system (KKS) via bradykinin type 1 inducible (B1R) and type 2 constitutive (B2R) receptors. B2R mediates most physiological bradykinin (BK) responses, including vasodilation, natriuresis, NO, prostaglandins release. AREAS COVERED The article summarizes knowledge on kinins, B2R signaling and biological functions; highlights crosstalks between B2R and renin-angiotensin system (RAS). The double role (Janus face) in physiopathology, namely the beneficial protection of the endothelium, which forms the basis for the therapeutical utilization of B2 receptor agonists, on the one side, and the involvement of B2R in inflammation or infection diseases and in pain mechanisms, which justifies the use of B2R antagonists, on the other side, is extensively analyzed. EXPERT OPINION For decades, the B2R has been unconsciously activated during angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) treatments. Whether direct B2R targeting with stable agonists could bring additional therapeutic benefit to RAS inhibition should be investigated. Efficacy, established in experimental models, should be confirmed by translational studies in cardiovascular pathologies, glaucoma, Duchenne cardiopathy and during brain cancer therapy. The other face of B2R is targeted by antagonists already approved to treat hereditary angioedema. The use of antagonists could be extended to other angioedema and efficacy tested against acute pain and inflammatory diseases.
Collapse
Affiliation(s)
- Nelly Blaes
- INSERM, U1048, Institute of Metabolic and Cardiovascular Diseases, I2MC, Université Paul Sabatier , F-31432, Toulouse , France
| | | |
Collapse
|
16
|
Yu HS, Lin TH, Tang CH. Involvement of intercellular adhesion molecule-1 up-regulation in bradykinin promotes cell motility in human prostate cancers. Int J Mol Sci 2013; 14:13329-45. [PMID: 23803661 PMCID: PMC3742189 DOI: 10.3390/ijms140713329] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 06/04/2013] [Accepted: 06/05/2013] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy in men and shows a predilection for metastasis to distant organs. Bradykinin (BK) is an inflammatory mediator and has recently been shown to mediate tumor growth and metastasis. The adhesion molecule intercellular adhesion molecule-1 (ICAM-1) plays a critical role during tumor metastasis. The aim of this study was to examine whether BK promotes prostate cancer cell migration via ICAM-1 expression. The motility of cancer cells was increased following BK treatment. Stimulation of prostate cancer cells with BK induced mRNA and protein expression of ICAM-1. Transfection of cells with ICAM-1 small interfering RNA reduced BK-increased cell migration. Pretreatment of prostate cancer cells with B2 receptor, phosphatidylinositol 3-kinase (PI3K), Akt, and activator protein 1 (AP-1) inhibitors or mutants abolished BK-promoted migration and ICAM-1 expression. In addition, treatment with a B2 receptor, PI3K, or Akt inhibitor also reduced BK-mediated AP-1 activation. Our results indicate that BK enhances the migration of prostate cancer cells by increasing ICAM-1 expression through a signal transduction pathway that involves the B2 receptor, PI3K, Akt, and AP-1. Thus, BK represents a promising new target for treating prostate cancer metastasis.
Collapse
Affiliation(s)
- Hsin-Shan Yu
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan; E-Mail:
| | - Tien-Huang Lin
- Department of Urology, Buddhist Tzu Chi General Hospital Taichung Branch, Taichung 42743, Taiwan; E-Mail:
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan; E-Mail:
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-4-2205-2121 (ext. 7726); Fax: +886-4-2233-3641
| |
Collapse
|
17
|
Ardiles L, Cardenas A, Burgos ME, Droguett A, Ehrenfeld P, Carpio D, Mezzano S, Figueroa CD. Antihypertensive and renoprotective effect of the kinin pathway activated by potassium in a model of salt sensitivity following overload proteinuria. Am J Physiol Renal Physiol 2013; 304:F1399-410. [PMID: 23552867 DOI: 10.1152/ajprenal.00604.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The albumin overload model induces proteinuria and tubulointersitial damage, followed by hypertension when rats are exposed to a hypersodic diet. To understand the effect of kinin system stimulation on salt-sensitive hypertension and to explore its potential renoprotective effects, the model was induced in Sprague-Dawley rats that had previously received a high-potassium diet to enhance activity of the kinin pathway, followed with/without administration of icatibant to block the kinin B₂ receptor (B₂R). A disease control group received albumin but not potassium or icatibant, and all groups were exposed to a hypersodic diet to induce salt-sensitive hypertension. Potassium treatment increased the synthesis and excretion of tissue kallikrein (Klk1/rKLK1) accompanied by a significant reduction in blood pressure and renal fibrosis and with downregulation of renal transforming growth factor-β (TGF-β) mRNA and protein compared with rats that did not receive potassium. Participation of the B₂R was evidenced by the fact that all beneficial effects were lost in the presence of the B₂R antagonist. In vitro experiments using the HK-2 proximal tubule cell line showed that treatment of tubular cells with 10 nM bradykinin reduced the epithelial-mesenchymal transdifferentiation and albumin-induced production of TGF-β, and the effects produced by bradykinin were prevented by pretreatment with the B₂R antagonist. These experiments support not only the pathogenic role of the kinin pathway in salt sensitivity but also sustain its role as a renoprotective, antifibrotic paracrine system that modulates renal levels of TGF-β.
Collapse
Affiliation(s)
- Leopoldo Ardiles
- Department of Nephrology, Universidad Austral de Chile, Valdivia, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Animal models of diabetes mellitus for islet transplantation. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:256707. [PMID: 23346100 PMCID: PMC3546491 DOI: 10.1155/2012/256707] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/12/2012] [Indexed: 01/09/2023]
Abstract
Due to current improvements in techniques for islet isolation and transplantation and protocols for immunosuppressants, islet transplantation has become an effective treatment for severe diabetes patients. Many diabetic animal models have contributed to such improvements. In this paper, we focus on 3 types of models with different mechanisms for inducing diabetes mellitus (DM): models induced by drugs including streptozotocin (STZ), pancreatomized models, and spontaneous models due to autoimmunity. STZ-induced diabetes is one of the most commonly used experimental diabetic models and is employed using many specimens including rodents, pigs or monkeys. The management of STZ models is well established for islet studies. Pancreatomized models reveal different aspects compared to STZ-induced models in terms of loss of function in the increase and decrease of blood glucose and therefore are useful for evaluating the condition in total pancreatomized patients. Spontaneous models are useful for preclinical studies including the assessment of immunosuppressants because such models involve the same mechanisms as type 1 DM in the clinical setting. In conclusion, islet researchers should select suitable diabetic animal models according to the aim of the study.
Collapse
|