1
|
Otterpohl KL, Busselman BW, Zimmerman JL, Mukherjee M, Evans C, Graber K, Thakkar VP, Johnston JG, Ilyas A, Gumz ML, Eaton DC, Sands JM, Surendran K, Chandrasekar I. Thick Ascending Limb Specific Inactivation of Myh9 and Myh10 Myosin Motors Results in Progressive Kidney Disease and Drives Sex-specific Cellular Adaptation in the Distal Nephron and Collecting Duct. FUNCTION 2025; 6:zqae048. [PMID: 39500539 PMCID: PMC11815580 DOI: 10.1093/function/zqae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 12/06/2024] Open
Abstract
Our previous work established a role for myosin motor proteins MYH9 and MYH10 in trafficking of thick ascending limb (TAL) cargoes uromodulin and Na+-K+-2Cl- cotransporter NKCC2. We have generated a TAL-specific Myh9&10 conditional knockout (Myh9&10 TAL-cKO) mouse model to determine the cell autonomous roles for MYH9&10 in TAL cargo trafficking and to understand the consequence of TAL dysfunction in adult kidney. Myh9&10 TAL-cKO mice develop progressive kidney disease with pathological tubular injury confirmed by histological changes, tubular injury markers, upregulated endoplasmic reticulum (ER) stress/unfolded protein response, and higher blood urea nitrogen and serum creatinine. However, male mice survive twice as long as female mice. We have determined this sexual dimorphism in morbidity is due to adaptation of the distal nephron and collecting duct in response to TAL dysfunction and lower NKCC2 expression. We demonstrate that this triggers a compensatory mechanism involving sex-specific cellular adaptation within the distal nephron and collecting duct to boost sodium reabsorption. While both sexes overcompensate by activating epithelial sodium channel (ENaC) expression in medullary collecting ducts resulting in hypernatremia, this is initially subdued in male Myh9&10 TAL-cKO mice through higher sodium chloride cotransporter (NCC) expression within the distal nephron. Our results indicate that compromised TAL function ultimately results in maladaptation of medullary collecting duct cells which acquire cortical-like properties including ENaC expression. This work further confirms a cell autonomous role for MYH9&10 in maintenance of NKCC2 expression in the TAL and uncover distal nephron and collecting duct adaptive mechanisms which respond to TAL dysfunction.
Collapse
Affiliation(s)
- Karla L Otterpohl
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Brook W Busselman
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA
- Basic Biomedical Sciences Graduate Program, University of South Dakota, Vermillion, SD 57069, USA
| | - Jenna L Zimmerman
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Malini Mukherjee
- Functional Genomics and Bioinformatics Core, Sanford Research, Sioux Falls, SD 57104, USA
| | - Claire Evans
- Histology and Imaging Core, Sanford Research, Sioux Falls, SD 57104, USA
| | - Kelly Graber
- Histology and Imaging Core, Sanford Research, Sioux Falls, SD 57104, USA
| | - Vedant P Thakkar
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Jermaine G Johnston
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | - Arooba Ilyas
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA
- Basic Biomedical Sciences Graduate Program, University of South Dakota, Vermillion, SD 57069, USA
| | - Michelle L Gumz
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | - Douglas C Eaton
- Department of Medicine, Renal Division, Emory University, Atlanta, GA 30322, USA
| | - Jeff M Sands
- Department of Medicine, Renal Division, Emory University, Atlanta, GA 30322, USA
| | - Kameswaran Surendran
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, USD Sanford School of Medicine, Sioux Falls, SD 57103, USA
| | - Indra Chandrasekar
- Enabling Technologies Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, USD Sanford School of Medicine, Sioux Falls, SD 57103, USA
| |
Collapse
|
2
|
Shen Y, Jiang L, Yu J, Chen B, Liu A, Guo Y. The burden of chronic kidney disease attributable to high sodium intake: a longitudinal study in 1990-2019 in China. Front Nutr 2025; 11:1531358. [PMID: 39897530 PMCID: PMC11783680 DOI: 10.3389/fnut.2024.1531358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/27/2024] [Indexed: 02/04/2025] Open
Abstract
Objective Elevated sodium consumption is associated with increased risk for chronic kidney disease (CKD) and data for this disease burden attributable to high sodium intake in China from 1990 to 2019 are scarce in China. Our study aims to estimate and present the national burden of CKD attributable to high sodium intake, as well as its profile. Methods The regional disease burden data from the China Center for Food Safety Risk Assessment (CFSA) from 1990 to 2019 were compiled based on the methodology of GBD 2019. CKD burden [deaths and disability-adjusted life years (DALYs)] was quantified according to population group (age, gender) and regions categories (province, SDI). The estimated annual percentage change (EAPC) in age-standardized mortality rate (ASMR) and age-standardized DALYs rate (ASDR) were calculated to describe long-term trends. Results Totally, the number of deaths of CKD attributable to high sodium intake reached 95,000, with DALYs amounting to 2.59 million person-years in 2019, while the trends of ASMR (EAPC: -0.31, 95%CI: -0.46, -0.17%) and ASDR (-0.33, 95%CI: -0.48, -0.18%) were down during the observation period. The age-specific numbers and rates of deaths, as well as DALYs increase with age are higher in males than in females. Significant disparities in CKD burden attributable to high sodium intake were observed across provinces and SDI regions. In both 1990 and 2019, the number of deaths and DALYs were higher in middle SDI regions, while low-middle SDI regions had highest ASMR and ASDR. The EAPC of ASDR was found to be significantly negatively correlated with the 1990 ASDR (ρ = -0.393, p = 0.024), and the EAPC of ASMR and ASDR were also significantly negatively correlated with the 2019 SDI (ASMR:ρ = -0.571, p < 0.001; ASDR:ρ = -0.368, p = 0.035). Conclusion High sodium intake accounted for a sizeable burden of disease from 1990 to 2019 in China, also presents sexual and geographic variations. Despite a slight decreasing trend exists, the absolute number increased as much as twofold, particularly among males and seniors. Targeting to reduce sodium intake remains a priority, and progress requires systematic monitoring and evaluation, particularly in middle SDI regions that are experiencing rising trends and low-middle SDI regions being susceptible to approaches.
Collapse
Affiliation(s)
- Yongyao Shen
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liying Jiang
- Jiading Central Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, China
- College of Public health, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jin Yu
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bo Chen
- Department of Epidemiology, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Aidong Liu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yongjin Guo
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- College of Public health, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
3
|
Steiger S, Li L, Bruchfeld A, Stevens KI, Moran SM, Floege J, Caravaca-Fontán F, Mirioglu S, Teng OYK, Frangou E, Kronbichler A. Sex dimorphism in kidney health and disease: mechanistic insights and clinical implication. Kidney Int 2025; 107:51-67. [PMID: 39477067 DOI: 10.1016/j.kint.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/16/2024] [Accepted: 08/09/2024] [Indexed: 11/18/2024]
Abstract
Sex is a key variable in the regulation of human physiology and pathology. Many diseases disproportionately affect one sex: autoimmune diseases, such as systemic lupus erythematosus, are more common in women but more severe in men, whereas the incidence of other disorders such as gouty arthritis and malignant cancers is higher in men. Besides the pathophysiology, sex may also influence the efficacy of therapeutics; participants in clinical trials are still predominately men, and the side effects of drugs are more common in women than in men. Sex dimorphism is a prominent feature of kidney physiology and function, and consequently affects the predisposition to many adult kidney diseases. These differences subsequently influence the response to immune stimuli, hormones, and therapies. It is highly likely that these responses differ between the sexes. Therefore, it becomes imperative to consider sex differences in translational science from basic science to preclinical research to clinical research and trials. Under-representation of one sex in preclinical animal studies or clinical trials remains an issue and key reported outcomes of such studies ought to be presented separately. Without this, it remains difficult to tailor the management of kidney disease appropriately and effectively. In this review, we provide mechanistic insights into sex differences in rodents and humans, both in kidney health and disease, highlight the importance of considering sex differences in the design of any preclinical animal or clinical study, and propose guidance on how to optimal design and conduct preclinical animal studies in future research.
Collapse
Affiliation(s)
- Stefanie Steiger
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital Munich, Munich, Germany.
| | - Li Li
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
| | - Annette Bruchfeld
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden; Department of Renal Medicine, Karolinska University Hospital and CLINTEC Karolinska Institutet, Stockholm, Sweden
| | - Kate I Stevens
- Glasgow Renal and Transplant Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Sarah M Moran
- Cork University Hospital, University College Cork, Cork, Ireland
| | - Jürgen Floege
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, Aachen, Germany
| | - Fernando Caravaca-Fontán
- Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain; Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Safak Mirioglu
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Instanbul, Turkey
| | - Onno Y K Teng
- Center of Expertise for Lupus, Vasculitis and Complement-mediated Systemic disease (LuVaCs), Department of Nephrology, Leiden University Medical Center, Leiden, the Netherlands
| | - Eleni Frangou
- Department of Nephrology, Limassol General Hospital, Limassol, Cyprus; University of Nicosia Medical School, Nicosia, Cyprus; National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Andreas Kronbichler
- Department of Internal Medicine IV, Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Castagna A, Mango G, Martinelli N, Marzano L, Moruzzi S, Friso S, Pizzolo F. Sodium Chloride Cotransporter in Hypertension. Biomedicines 2024; 12:2580. [PMID: 39595146 PMCID: PMC11591633 DOI: 10.3390/biomedicines12112580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The sodium chloride cotransporter (NCC) is essential for electrolyte balance, blood pressure regulation, and pathophysiology of hypertension as it mediates the reabsorption of ultrafiltered sodium in the renal distal convoluted tubule. Given its pivotal role in the maintenance of extracellular fluid volume, the NCC is regulated by a complex network of cellular pathways, which eventually results in either its phosphorylation, enhancing sodium and chloride ion absorption from urines, or dephosphorylation and ubiquitination, which conversely decrease NCC activity. Several factors could influence NCC function, including genetic alterations, hormonal stimuli, and pharmacological treatments. The NCC's central role is also highlighted by several abnormalities resulting from genetic mutations in its gene and consequently in its structure, leading to dysregulation of blood pressure control. In the last decade, among other improvements, the acquisition of knowledge on the NCC and other renal ion channels has been favored by studies on extracellular vesicles (EVs). Dietary sodium and potassium intake are also implicated in the tuning of NCC activity. In this narrative review, we present the main cornerstones and recent evidence related to NCC control, focusing on the context of blood pressure pathophysiology, and promising new therapeutical approaches.
Collapse
Affiliation(s)
- Annalisa Castagna
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Gabriele Mango
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Nicola Martinelli
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Luigi Marzano
- Unit of Internal Medicine B, Department of Medicine, University of Verona School of Medicine, Azienda Ospedaliera Universitaria Integrata Verona, Policlinico “G.B. Rossi”, 37134 Verona, Italy; (L.M.); (S.M.)
| | - Sara Moruzzi
- Unit of Internal Medicine B, Department of Medicine, University of Verona School of Medicine, Azienda Ospedaliera Universitaria Integrata Verona, Policlinico “G.B. Rossi”, 37134 Verona, Italy; (L.M.); (S.M.)
| | - Simonetta Friso
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Francesca Pizzolo
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| |
Collapse
|
5
|
Roostalu U, Hansen HH, Hecksher-Sørensen J. 3D light-sheet fluorescence microscopy in preclinical and clinical drug discovery. Drug Discov Today 2024; 29:104196. [PMID: 39368696 DOI: 10.1016/j.drudis.2024.104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Light-sheet fluorescence microscopy (LSFM) combined with tissue clearing has emerged as a powerful technology in drug discovery. LSFM is applicable to a variety of samples, from rodent organs to clinical tissue biopsies, and has been used for characterizing drug targets in tissues, demonstrating the biodistribution of pharmaceuticals and determining their efficacy and mode of action. LSFM is scalable to high-throughput analysis and provides resolution down to the single cell level. In this review, we describe the advantages of implementing LSFM into the drug discovery pipeline and highlight recent advances in this field.
Collapse
|
6
|
Pérez‐Rodríguez M, García‐Verdugo A, Sánchez‐Mendoza LM, Muñoz‐Martín A, Bolaños N, Pérez‐Sánchez C, Moreno JA, Burón MI, de Cabo R, González‐Reyes JA, Villalba JM. Cytochrome b 5 reductase 3 overexpression and dietary nicotinamide riboside supplementation promote distinctive mitochondrial alterations in distal convoluted tubules of mouse kidneys during aging. Aging Cell 2024; 23:e14273. [PMID: 39001573 PMCID: PMC11561664 DOI: 10.1111/acel.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 11/15/2024] Open
Abstract
The kidney undergoes structural and physiological changes with age, predominantly studied in glomeruli and proximal tubules. However, limited knowledge is available about the impact of aging and anti-aging interventions on distal tubules. In this study, we investigated the effects of cytochrome b5 reductase 3 (CYB5R3) overexpression and/or dietary nicotinamide riboside (NR) supplementation on distal tubule mitochondria. Initially, transcriptomic data were analyzed to evaluate key genes related with distal tubules, CYB5R3, and NAD+ metabolism, showing significant differences between males and females in adult and old mice. Subsequently, our emphasis focused on assessing how these interventions, that have demonstrated the anti-aging potential, influenced structural parameters of distal tubule mitochondria, such as morphology and mass, as well as abundance, distance, and length of mitochondria-endoplasmic reticulum contact sites, employing an electron microscopy approach. Our findings indicate that both interventions have differential effects depending on the age and sex of the mice. Aging resulted in an increase in mitochondrial size and a decrease in mitochondrial abundance in males, while a reduction in abundance, size, and mitochondrial mass was observed in old females when compared with their adult counterparts. Combining both the interventions, CYB5R3 overexpression and dietary NR supplementation mitigated age-related changes; however, these effects were mainly accounted by NR in males and by transgenesis in females. In conclusion, the influence of CYB5R3 overexpression and dietary NR supplementation on distal tubule mitochondria depends on sex, genotype, and diet. This underscores the importance of incorporating these variables in subsequent studies to comprehensively address the multifaceted aspects of aging.
Collapse
Affiliation(s)
- M. Pérez‐Rodríguez
- Departamento de Biología Celular, Fisiología e InmunologíaUniversidad de Córdoba, Campus de Excelencia Internacional AgroalimentarioCórdobaSpain
| | - A. García‐Verdugo
- Departamento de Biología Celular, Fisiología e InmunologíaUniversidad de Córdoba, Campus de Excelencia Internacional AgroalimentarioCórdobaSpain
- Experimental Gerontology Section, Translational Gerontology BranchNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - L. M. Sánchez‐Mendoza
- Departamento de Biología Celular, Fisiología e InmunologíaUniversidad de Córdoba, Campus de Excelencia Internacional AgroalimentarioCórdobaSpain
| | - A. Muñoz‐Martín
- Departamento de Biología Celular, Fisiología e InmunologíaUniversidad de Córdoba, Campus de Excelencia Internacional AgroalimentarioCórdobaSpain
| | - N. Bolaños
- Departamento de Biología Celular, Fisiología e InmunologíaUniversidad de Córdoba, Campus de Excelencia Internacional AgroalimentarioCórdobaSpain
| | - C. Pérez‐Sánchez
- Departamento de Biología Celular, Fisiología e InmunologíaUniversidad de Córdoba, Campus de Excelencia Internacional AgroalimentarioCórdobaSpain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina SofíaCórdobaSpain
| | - J. A. Moreno
- Departamento de Biología Celular, Fisiología e InmunologíaUniversidad de Córdoba, Campus de Excelencia Internacional AgroalimentarioCórdobaSpain
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Hospital Universitario Reina SofíaCórdobaSpain
| | - M. I. Burón
- Departamento de Biología Celular, Fisiología e InmunologíaUniversidad de Córdoba, Campus de Excelencia Internacional AgroalimentarioCórdobaSpain
| | - R. de Cabo
- Experimental Gerontology Section, Translational Gerontology BranchNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - J. A. González‐Reyes
- Departamento de Biología Celular, Fisiología e InmunologíaUniversidad de Córdoba, Campus de Excelencia Internacional AgroalimentarioCórdobaSpain
| | - J. M. Villalba
- Departamento de Biología Celular, Fisiología e InmunologíaUniversidad de Córdoba, Campus de Excelencia Internacional AgroalimentarioCórdobaSpain
| |
Collapse
|
7
|
van Megen WH, de Baaij JHF, Churchill GA, Devuyst O, Hoenderop JGJ, Korstanje R. Genetic drivers of age-related changes in urinary magnesium excretion. Physiol Genomics 2024; 56:634-647. [PMID: 39037434 PMCID: PMC11460537 DOI: 10.1152/physiolgenomics.00119.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
Although age-dependent alterations in urinary magnesium (Mg2+) excretion have been described, the underlying mechanism remains elusive. As heritability significantly contributes to variations in urinary Mg2+ excretion, we measured urinary Mg2+ excretion at different ages in a cohort of genetically variable Diversity Outbred (DO) mice. Compared with animals aged 6 mo, an increase in Mg2+ excretion was observed at 12 and 18 mo. Quantitative trait locus (QTL) analysis revealed an association of a locus on chromosome 10 with Mg2+ excretion at 6 mo of age, with Oit3 (encoding oncoprotein-induced transcript 3; OIT3) as our primary candidate gene. To study the possible role of OIT3 in renal Mg2+ handling, we generated and characterized Oit3 knockout (Oit3-/-) mice. Although a slightly lower serum Mg2+ concentration was present in male Oit3-/- mice, this effect was not observed in female Oit3-/- mice. In addition, urinary Mg2+ excretion and the expression of renal magnesiotropic genes were unaltered in Oit3-/- mice. For animals aged 12 and 18 mo, QTL analysis revealed an association with a locus on chromosome 19, which contains the gene encoding TRPM6, a known Mg2+ channel involved in renal Mg2+ reabsorption. Comparison with RNA sequencing (RNA-Seq) data revealed that Trpm6 mRNA expression is inversely correlated with the QTL effect, implying that TRPM6 may be involved in age-dependent changes in urinary Mg2+ excretion in mice. In conclusion, we show here that variants in Oit3 and Trpm6 are associated with urinary Mg2+ excretion at distinct periods of life, although OIT3 is unlikely to affect renal Mg2+ handling.NEW & NOTEWORTHY Aging increased urinary magnesium (Mg2+) excretion in mice. We show here that variation in Oit3, a candidate gene for the locus associated with Mg2+ excretion in young mice, is unlikely to be involved as knockout of Oit3 did not affect Mg2+ excretion. Differences in the expression of the renal Mg2+ channel TRPM6 may contribute to the variation in urinary Mg2+ excretion in older mice.
Collapse
Affiliation(s)
- Wouter H van Megen
- Department of Medical Biosciences, Radboudumc, Nijmegen, The Netherlands
| | | | | | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Ron Korstanje
- The Jackson Laboratory, Bar Harbor, Maine, United States
| |
Collapse
|
8
|
Dutta P, Layton AT. Paradoxes in magnesium transport in type 1 Bartter's syndrome and Gitelman's syndrome: a modeling analysis. Am J Physiol Renal Physiol 2024; 327:F386-F396. [PMID: 38991009 DOI: 10.1152/ajprenal.00117.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Type 1 Bartter's syndrome and Gitelman's syndrome are characterized by mutations in two key renal Na+ transporters, Na-K-2Cl cotransporter (NKCC2) and Na-Cl cotransporter (NCC). Since these two transporters play an important role in regulating magnesium (Mg2+) and calcium (Ca2+) transport in the kidney, significant alterations in the transport of these two electrolytes are observed in type 1 Bartter's syndrome and Gitelman's syndrome. In this study, we used our sex-specific computational models of renal electrolyte transport in rats to understand the complex compensatory mechanisms, in terms of alterations in tubular dimensions and ion transporter activities, that lead to Mg2+ and Ca2+ preservation or wasting in these two genetic disorders. Given the sexual dimorphism in renal transporter patterns, we also assessed how the magnitude of these alterations may differ between males and females. Model simulations showed that in type 1 Bartter's syndrome, nephron adaptations prevent salt wasting and favor Mg2+ preservation but not Ca2+, whereas in Gitelman's syndrome, those adaptations favor Ca2+ preservation over Mg2+. In addition, our models predicted that the compensatory alterations in tubular dimensions and ion transporter activities are stronger in females than in males.NEW & NOTEWORTHY Although changes in Ca2+ excretion in type 1 Bartter's syndrome and Gitelman's syndrome are well understood, Mg2+ excretion displays an interesting paradox. This computational modeling study provides insights into how renal adaptations in these two disorders impact Ca2+ and Mg2+ transport along different nephron segments. Model simulations showed that nephron adaptations favor Mg2+ preservation over Ca2+ in Bartter's syndrome and Ca2+ preservation over Mg2+ in Gitelman's syndrome and are stronger in females than in males.
Collapse
Affiliation(s)
- Pritha Dutta
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
- School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
9
|
Hendriksen LC, Mouissie MS, Herings RMC, van der Linden PD, Visser LE. Women have a higher risk of hospital admission associated with hyponatremia than men while using diuretics. Front Pharmacol 2024; 15:1409271. [PMID: 39166106 PMCID: PMC11333345 DOI: 10.3389/fphar.2024.1409271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Background Hyponatremia is a common electrolyte disturbance and known adverse drug reaction of diuretics. Women tend to be more susceptible for diuretic associated hyponatremia. The aim of this study was to find more evidence whether women have a higher risk of diuretic associated hyponatremia than men measured at hospital admission for specific diuretic groups and whether there is a sex difference in risk of severity of hyponatremia. Methods All patients using a diuretic and admitted for any reason to Tergooi MC and Haga Teaching hospital in the Netherlands between the 1st of January 2017 and the 31st of December 2021, with recorded sodium levels at admission were included in this study. Cases were defined as patients with a sodium level <135 mmol/L, while control patients had a sodium level ≥135 mmol/L at admission. Logistic regression analysis was used to calculate odds ratios (OR) with 95% CIs for women versus men and adjusted for potential confounding covariables (age, body mass index, potassium serum level, systolic and diastolic blood pressure, estimated glomerular filtration rate, number of diuretics, comedications and comorbidities). Stratified analyses were conducted for specific diuretic groups (thiazides, loop diuretics and aldosterone antagonists), and adjusted for dose. Furthermore, stratified analyses were performed by severity of hyponatremia (severe: <125 mmol/L), mild: 125-134 mmol/L). Results A total of 2,506 patients (50.0% women) were included, of which 516 had hyponatremia at admission (20.6%, 56.2% women). Women had a statistically significantly higher risk for hyponatremia at admission than men (OR 1.37; 95% CI 1.12-1.66) and after adjustment for potential risk factors (ORadj 1.55; 95% CI 1.22-1.98). Stratified analyses showed increased odds ratios for thiazides (ORadj 1.35; 95% CI 1.00-1.83) and loop diuretics (ORadj 1.62; 95% CI 1.19-2.19) among women. Use of aldosterone antagonists was also increased but not statistically significant (ORadj 1.15; 95% CI 0.73-1.81). Women had a statistically higher risk to develop mild and severe hyponatremia than men (ORadj 1.36; 95% CI 1.10-1.68 and ORadj 1.96; 95%CI 1.04-3.68, respectively). Conclusion Women have a higher risk of a hospital admission associated with hyponatremia while using diuretics than men. Further research is necessary to provide sex-specific recommendations.
Collapse
Affiliation(s)
- L. C. Hendriksen
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Pharmacy, Tergooi MC, Hilversum, Netherlands
| | - M. S. Mouissie
- Department of Pharmacy, Tergooi MC, Hilversum, Netherlands
- School of Pharmacy, Utrecht University, Utrecht, Netherlands
| | - R. M. C. Herings
- PHARMO Institute for Drug Outcomes Research, Utrecht, Netherlands
- Department of Epidemiology and Data Science, Amsterdam UMC, Location VUmc, Amsterdam, Netherlands
| | | | - L. E. Visser
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
- Department of Clinical Pharmacy, Haga Teaching Hospital, The Hague, Netherlands
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
10
|
Murillo-de-Ozores AR, Chen L. Heterogeneity of Distal Convoluted Tubule Cells. J Am Soc Nephrol 2024; 35:389-391. [PMID: 38424674 PMCID: PMC11000743 DOI: 10.1681/asn.0000000000000330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Affiliation(s)
- Adrián R Murillo-de-Ozores
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
11
|
Su XT, Reyes JV, Lackey AE, Demirci H, Bachmann S, Maeoka Y, Cornelius RJ, McCormick JA, Yang CL, Jung HJ, Welling PA, Nelson JW, Ellison DH. Enriched Single-Nucleus RNA-Sequencing Reveals Unique Attributes of Distal Convoluted Tubule Cells. J Am Soc Nephrol 2024; 35:426-440. [PMID: 38238903 PMCID: PMC11000721 DOI: 10.1681/asn.0000000000000297] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024] Open
Abstract
SIGNIFICANCE STATEMENT High-resolution single-nucleus RNA-sequencing data indicate a clear separation between primary sites of calcium and magnesium handling within distal convoluted tubule (DCT). Both DCT1 and DCT2 express Slc12a3, but these subsegments serve distinctive functions, with more abundant magnesium-handling genes along DCT1 and more calcium-handling genes along DCT2. The data also provide insight into the plasticity of the distal nephron-collecting duct junction, formed from cells of separate embryonic origins. By focusing/changing gradients of gene expression, the DCT can morph into different physiological cell states on demand. BACKGROUND The distal convoluted tubule (DCT) comprises two subsegments, DCT1 and DCT2, with different functional and molecular characteristics. The functional and molecular distinction between these segments, however, has been controversial. METHODS To understand the heterogeneity within the DCT population with better clarity, we enriched for DCT nuclei by using a mouse line combining "Isolation of Nuclei Tagged in specific Cell Types" and sodium chloride cotransporter-driven inducible Cre recombinase. We sorted the fluorescently labeled DCT nuclei using Fluorescence-Activated Nucleus Sorting and performed single-nucleus transcriptomics. RESULTS Among 25,183 DCT cells, 75% were from DCT1 and 25% were from DCT2. In addition, there was a small population (<1%) enriched in proliferation-related genes, such as Top2a , Cenpp , and Mki67 . Although both DCT1 and DCT2 expressed sodium chloride cotransporter, magnesium transport genes were predominantly expressed along DCT1, whereas calcium, electrogenic sodium, and potassium transport genes were more abundant along DCT2. The transition between these two segments was gradual, with a transitional zone in which DCT1 and DCT2 cells were interspersed. The expression of the homeobox genes by DCT cells suggests that they develop along different trajectories. CONCLUSIONS Transcriptomic analysis of an enriched rare cell population using a genetically targeted approach clarifies the function and classification of distal cells. The DCT segment is short, can be separated into two subsegments that serve distinct functions, and is speculated to derive from different origins during development.
Collapse
Affiliation(s)
- Xiao-Tong Su
- Division of Hypertension and Nephrology, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Jeremiah V. Reyes
- Division of Hypertension and Nephrology, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Anne E. Lackey
- Division of Hypertension and Nephrology, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Hasan Demirci
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Bachmann
- Department of Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yujiro Maeoka
- Division of Hypertension and Nephrology, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Ryan J. Cornelius
- Division of Hypertension and Nephrology, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - James A. McCormick
- Division of Hypertension and Nephrology, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Chao-Ling Yang
- Division of Hypertension and Nephrology, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Paul A. Welling
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan W. Nelson
- Division of Hypertension and Nephrology, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - David H. Ellison
- Division of Hypertension and Nephrology, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon
- Renal Section, VA Portland Healthcare System, Portland, Oregon
| |
Collapse
|
12
|
Li Y, Cao J, Zhang Q, Li J, Li X, Zhou H, Li A, Jiang T. Precise reconstruction of the entire mouse kidney at cellular resolution. BIOMEDICAL OPTICS EXPRESS 2024; 15:1474-1485. [PMID: 38495699 PMCID: PMC10942701 DOI: 10.1364/boe.515527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 03/19/2024]
Abstract
The kidney is an important organ for excreting metabolic waste and maintaining the stability of the body's internal environment. The renal function involves multiple complex and fine structures in the whole kidney, and any change in these structures may cause impaired nephric function. Consequently, achieving three-dimensional (3D) reconstruction of the entire kidney at a single-cell resolution is of significant importance for understanding the kidney's structural characteristics and exploring the pathogenesis of kidney diseases. In this paper, we propose a pipeline from sample preparation to optical microscopic imaging of the entire kidney, followed by data processing for 3D reconstruction of the whole mouse kidney. We employed transgenic fluorescent labeling and propidium iodide (PI) labeling to obtain detailed information about the vascular structure and cytoarchitecture of the kidney. Subsequently, the entire mouse kidney was imaged at submicron-resolution using high-definition fluorescent micro-optical sectioning tomography (HD-fMOST). Finally, we reconstructed the structures of interest through various data processing methods on the original images. This included detecting glomeruli throughout the entire kidney, as well as the segmentation and visualization of the renal arteries, veins, and three different types of nephrons. Our method provides a powerful tool for studying the renal microstructure and its spatial relationships throughout the entire kidney.
Collapse
Affiliation(s)
- Yuxin Li
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, 710048, China
| | - Jia Cao
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, 710048, China
| | - Qianlong Zhang
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, 710048, China
| | - Junhuai Li
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, 710048, China
| | - Xiangning Li
- State key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
- HUST-Suzhou Institute for Brainsmatics, Suzhou, 215123, China
| | - Hongfang Zhou
- Shaanxi Key Laboratory for Network Computing and Security Technology, School of Computer Science and Engineering, Xi’an University of Technology, Xi’an, 710048, China
| | - Anan Li
- HUST-Suzhou Institute for Brainsmatics, Suzhou, 215123, China
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, Suzhou, 215123, China
| |
Collapse
|
13
|
Maeoka Y, Nguyen LT, Sharma A, Cornelius RJ, Su XT, Gutierrez MR, Carbajal-Contreras H, Castañeda-Bueno M, Gamba G, McCormick JA. Dysregulation of the WNK4-SPAK/OSR1 pathway has a minor effect on baseline NKCC2 phosphorylation. Am J Physiol Renal Physiol 2024; 326:F39-F56. [PMID: 37881876 PMCID: PMC11905798 DOI: 10.1152/ajprenal.00100.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
The with-no-lysine kinase 4 (WNK4)-sterile 20/SPS-1-related proline/alanine-rich kinase (SPAK)/oxidative stress-responsive kinase 1 (OSR1) pathway mediates activating phosphorylation of the furosemide-sensitive Na+-K+-2Cl- cotransporter (NKCC2) and the thiazide-sensitive NaCl cotransporter (NCC). The commonly used pT96/pT101-pNKCC2 antibody cross-reacts with pT53-NCC in mice on the C57BL/6 background due to a five amino acid deletion. We generated a new C57BL/6-specific pNKCC2 antibody (anti-pT96-NKCC2) and tested the hypothesis that the WNK4-SPAK/OSR1 pathway strongly regulates the phosphorylation of NCC but not NKCC2. In C57BL/6 mice, anti-pT96-NKCC2 detected pNKCC2 and did not cross-react with NCC. Abundances of pT96-NKCC2 and pT53-NCC were evaluated in Wnk4-/-, Osr1-/-, Spak-/-, and Osr1-/-/Spak-/- mice and in several models of the disease familial hyperkalemic hypertension (FHHt) in which the CUL3-KLHL3 ubiquitin ligase complex that promotes WNK4 degradation is dysregulated (Cul3+/-/Δ9, Klhl3-/-, and Klhl3R528H/R528H). All mice were on the C57BL/6 background. In Wnk4-/- mice, pT53-NCC was almost absent but pT96-NKCC2 was only slightly lower. pT53-NCC was almost absent in Spak-/- and Osr1-/-/Spak-/- mice, but pT96-NKCC2 abundance did not differ from controls. pT96-NKCC2/total NKCC2 was slightly lower in Osr1-/- and Osr1-/-/Spak-/- mice. WNK4 expression colocalized not only with NCC but also with NKCC2 in Klhl3-/- mice, but pT96-NKCC2 abundance was unchanged. Consistent with this, furosemide-induced urinary Na+ excretion following thiazide treatment was similar between Klhl3-/- and controls. pT96-NKCC2 abundance was also unchanged in the other FHHt mouse models. Our data show that disruption of the WNK4-SPAK/OSR1 pathway only mildly affects NKCC2 phosphorylation, suggesting a role for other kinases in NKCC2 activation. In FHHt models NKCC2 phosphorylation is unchanged despite higher WNK4 abundance, explaining the thiazide sensitivity of FHHt.NEW & NOTEWORTHY The renal cation cotransporters NCC and NKCC2 are activated following phosphorylation mediated by the WNK4-SPAK/OSR1 pathway. While disruption of this pathway strongly affects NCC activity, effects on NKCC2 activity are unclear since the commonly used phospho-NKCC2 antibody was recently reported to cross-react with phospho-NCC in mice on the C57BL/6 background. Using a new phospho-NKCC2 antibody specific for C57BL/6, we show that inhibition or activation of the WNK4-SPAK/OSR1 pathway in mice only mildly affects NKCC2 phosphorylation.
Collapse
Affiliation(s)
- Yujiro Maeoka
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Luan T Nguyen
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Avika Sharma
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Xiao-Tong Su
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Marissa R Gutierrez
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Héctor Carbajal-Contreras
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| |
Collapse
|
14
|
McDonough AA, Harris AN, Xiong LI, Layton AT. Sex differences in renal transporters: assessment and functional consequences. Nat Rev Nephrol 2024; 20:21-36. [PMID: 37684523 PMCID: PMC11090267 DOI: 10.1038/s41581-023-00757-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 09/10/2023]
Abstract
Mammalian kidneys are specialized to maintain fluid and electrolyte homeostasis. The epithelial transport processes along the renal tubule that match output to input have long been the subject of experimental and theoretical study. However, emerging data have identified a new dimension of investigation: sex. Like most tissues, the structure and function of the kidney is regulated by sex hormones and chromosomes. Available data demonstrate sex differences in the abundance of kidney solute and electrolyte transporters, establishing that renal tubular organization and operation are distinctly different in females and males. Newer studies have provided insights into the physiological consequences of these sex differences. Computational simulations predict that sex differences in transporter abundance are likely driven to optimize reproduction, enabling adaptive responses to the nutritional requirements of serial pregnancies and lactation - normal life-cycle changes that challenge the ability of renal transporters to maintain fluid and electrolyte homeostasis. Later in life, females may also undergo menopause, which is associated with changes in disease risk. Although numerous knowledge gaps remain, ongoing studies will provide further insights into the sex-specific mechanisms of sodium, potassium, acid-base and volume physiology throughout the life cycle, which may lead to therapeutic opportunities.
Collapse
Affiliation(s)
- Alicia A McDonough
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| | - Autumn N Harris
- Department of Small Animal Clinical Sciences, University of Florida, College of Veterinary Medicine, Gainesville, FL, USA
| | - Lingyun Ivy Xiong
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
| | - Anita T Layton
- Departments of Applied Mathematics and Biology, University of Waterloo, Waterloo, Ontario, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
15
|
Xiong L, Liu J, Han SY, Koppitch K, Guo JJ, Rommelfanger M, Miao Z, Gao F, Hallgrimsdottir IB, Pachter L, Kim J, MacLean AL, McMahon AP. Direct androgen receptor control of sexually dimorphic gene expression in the mammalian kidney. Dev Cell 2023; 58:2338-2358.e5. [PMID: 37673062 PMCID: PMC10873092 DOI: 10.1016/j.devcel.2023.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
Mammalian organs exhibit distinct physiology, disease susceptibility, and injury responses between the sexes. In the mouse kidney, sexually dimorphic gene activity maps predominantly to proximal tubule (PT) segments. Bulk RNA sequencing (RNA-seq) data demonstrated that sex differences were established from 4 and 8 weeks after birth under gonadal control. Hormone injection studies and genetic removal of androgen and estrogen receptors demonstrated androgen receptor (AR)-mediated regulation of gene activity in PT cells as the regulatory mechanism. Interestingly, caloric restriction feminizes the male kidney. Single-nuclear multiomic analysis identified putative cis-regulatory regions and cooperating factors mediating PT responses to AR activity in the mouse kidney. In the human kidney, a limited set of genes showed conserved sex-linked regulation, whereas analysis of the mouse liver underscored organ-specific differences in the regulation of sexually dimorphic gene expression. These findings raise interesting questions on the evolution, physiological significance, disease, and metabolic linkage of sexually dimorphic gene activity.
Collapse
Affiliation(s)
- Lingyun Xiong
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA; Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jing Liu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Seung Yub Han
- Graduate Program in Genomics and Computational Biology, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kari Koppitch
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Jin-Jin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Megan Rommelfanger
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhen Miao
- Graduate Program in Genomics and Computational Biology, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fan Gao
- Caltech Bioinformatics Resource Center at Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ingileif B Hallgrimsdottir
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam L MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Women experience unique life events, for example, pregnancy and lactation, that challenge renal regulation of electrolyte homeostasis. Recent analyses of nephron organization in female vs. male rodent kidneys, revealed distinct sexual dimorphisms in electrolyte transporter expression, abundance, and activity. This review aims to provide an overview of electrolyte transporters' organization and operation in female compared with the commonly studied male kidney, and the (patho)physiologic consequences of the differences. RECENT FINDINGS When electrolyte transporters are assessed in kidney protein homogenates from both sexes, relative transporter abundance ratios in females/males are less than one along proximal tubule and greater than one post macula densa, which is indicative of a 'downstream shift' in fractional reabsorption of electrolytes in females. This arrangement improves the excretion of a sodium load, challenges potassium homeostasis, and is consistent with the lower blood pressure and greater pressure natriuresis observed in premenopausal women. SUMMARY We summarize recently reported new knowledge about sex differences in renal transporters: abundance and expression along nephron, implications for regulation by Na + , K + and angiotensin II, and mathematical models of female nephron function.
Collapse
Affiliation(s)
- Alicia A. McDonough
- Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern California, Los Angeles, CA
| | - Anita T. Layton
- Departments of Applied Mathematics and Biology, University of Waterloo, Waterloo, Ontario, Canada; Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada; School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
17
|
Saha B, Shabbir W, Takagi E, Duan XP, Leite Dellova DCA, Demko J, Manis A, Loffing-Cueni D, Loffing J, Sørensen MV, Wang WH, Pearce D. Potassium Activates mTORC2-dependent SGK1 Phosphorylation to Stimulate Epithelial Sodium Channel: Role in Rapid Renal Responses to Dietary Potassium. J Am Soc Nephrol 2023; 34:1019-1038. [PMID: 36890646 PMCID: PMC10278851 DOI: 10.1681/asn.0000000000000109] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/06/2023] [Indexed: 03/10/2023] Open
Abstract
SIGNIFICANCE STATEMENT Rapid renal responses to ingested potassium are essential to prevent hyperkalemia and also play a central role in blood pressure regulation. Although local extracellular K + concentration in kidney tissue is increasingly recognized as an important regulator of K + secretion, the underlying mechanisms that are relevant in vivo remain controversial. To assess the role of the signaling kinase mTOR complex-2 (mTORC2), the authors compared the effects of K + administered by gavage in wild-type mice and knockout mice with kidney tubule-specific inactivation of mTORC2. They found that mTORC2 is rapidly activated to trigger K + secretion and maintain electrolyte homeostasis. Downstream targets of mTORC2 implicated in epithelial sodium channel regulation (SGK1 and Nedd4-2) were concomitantly phosphorylated in wild-type, but not knockout, mice. These findings offer insight into electrolyte physiologic and regulatory mechanisms. BACKGROUND Increasing evidence implicates the signaling kinase mTOR complex-2 (mTORC2) in rapid renal responses to changes in plasma potassium concentration [K + ]. However, the underlying cellular and molecular mechanisms that are relevant in vivo for these responses remain controversial. METHODS We used Cre-Lox-mediated knockout of rapamycin-insensitive companion of TOR (Rictor) to inactivate mTORC2 in kidney tubule cells of mice. In a series of time-course experiments in wild-type and knockout mice, we assessed urinary and blood parameters and renal expression and activity of signaling molecules and transport proteins after a K + load by gavage. RESULTS A K + load rapidly stimulated epithelial sodium channel (ENaC) processing, plasma membrane localization, and activity in wild-type, but not in knockout, mice. Downstream targets of mTORC2 implicated in ENaC regulation (SGK1 and Nedd4-2) were concomitantly phosphorylated in wild-type, but not knockout, mice. We observed differences in urine electrolytes within 60 minutes, and plasma [K + ] was greater in knockout mice within 3 hours of gavage. Renal outer medullary potassium (ROMK) channels were not acutely stimulated in wild-type or knockout mice, nor were phosphorylation of other mTORC2 substrates (PKC and Akt). CONCLUSIONS The mTORC2-SGK1-Nedd4-2-ENaC signaling axis is a key mediator of rapid tubule cell responses to increased plasma [K + ] in vivo . The effects of K + on this signaling module are specific, in that other downstream mTORC2 targets, such as PKC and Akt, are not acutely affected, and ROMK and Large-conductance K + (BK) channels are not activated. These findings provide new insight into the signaling network and ion transport systems that underlie renal responses to K +in vivo .
Collapse
Affiliation(s)
- Bidisha Saha
- Department of Medicine, Division of Nephrology, Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California
| | - Waheed Shabbir
- Department of Medicine, Division of Nephrology, Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California
| | - Enzo Takagi
- Department of Medicine, Division of Nephrology, Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California
| | - Xin-Peng Duan
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Deise Carla Almeida Leite Dellova
- Department of Medicine, Division of Nephrology, Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California
- Current address: Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Sao Paulo, Brazil
| | - John Demko
- Department of Medicine, Division of Nephrology, Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California
| | - Anna Manis
- Department of Medicine, Division of Nephrology, Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California
| | | | | | - Mads Vaarby Sørensen
- Department of Biomedicine, Unit of Physiology, Aarhus University, Aarhus, Denmark
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - David Pearce
- Department of Medicine, Division of Nephrology, Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California
| |
Collapse
|
18
|
Xiong L, Liu J, Han SY, Koppitch K, Guo JJ, Rommelfanger M, Gao F, Hallgrimsdottir IB, Pachter L, Kim J, MacLean AL, McMahon AP. Direct androgen receptor regulation of sexually dimorphic gene expression in the mammalian kidney. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539585. [PMID: 37205355 PMCID: PMC10187285 DOI: 10.1101/2023.05.06.539585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Mammalian organs exhibit distinct physiology, disease susceptibility and injury responses between the sexes. In the mouse kidney, sexually dimorphic gene activity maps predominantly to proximal tubule (PT) segments. Bulk RNA-seq data demonstrated sex differences were established from 4 and 8 weeks after birth under gonadal control. Hormone injection studies and genetic removal of androgen and estrogen receptors demonstrated androgen receptor (AR) mediated regulation of gene activity in PT cells as the regulatory mechanism. Interestingly, caloric restriction feminizes the male kidney. Single-nuclear multiomic analysis identified putative cis-regulatory regions and cooperating factors mediating PT responses to AR activity in the mouse kidney. In the human kidney, a limited set of genes showed conserved sex-linked regulation while analysis of the mouse liver underscored organ-specific differences in the regulation of sexually dimorphic gene expression. These findings raise interesting questions on the evolution, physiological significance, and disease and metabolic linkage, of sexually dimorphic gene activity.
Collapse
Affiliation(s)
- Lingyun Xiong
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jing Liu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Seung Yub Han
- Graduate Program in Genomics and Computational Biology, Biomedical Graduate Studies, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kari Koppitch
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Jin-Jin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Megan Rommelfanger
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Fan Gao
- Caltech Bioinformatics Resource Center at Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Junhyong Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam L. MacLean
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
- Lead Contact
| |
Collapse
|
19
|
Chen L, Chou CL, Yang CR, Knepper MA. Multiomics Analyses Reveal Sex Differences in Mouse Renal Proximal Subsegments. J Am Soc Nephrol 2023; 34:829-845. [PMID: 36758122 PMCID: PMC10125651 DOI: 10.1681/asn.0000000000000089] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
SIGNIFICANCE STATEMENT Sex-dependent differences in kidney function are recognized but the underlying molecular mechanisms are largely unexplored. Advances in genomics and proteomic technologies now allow extensive characterization of differences between the same cell types of males and females. Multiomics integrating RNA-seq, ATAC-seq, and proteomics data to investigate differences in gene expression, chromatin accessibility, and protein expression in proximal tubules of male and female mice identified many sex-biased genes and proteins associated with kidney functions, including metabolic and transport processes. Sex differences may also arise from variations of the interaction between transcription factors and accessible chromatin regions. A comprehensive web resource is provided to advance understanding of sex differences in cells of the proximal tubule. BACKGROUND Sex differences have been increasingly recognized as important in kidney physiology and pathophysiology, but limited resources are available for comprehensive interrogation of sex differences. METHODS RNA-seq and ATAC-seq of microdissected mouse proximal tubules and protein mass spectrometry of homogenized perfused mouse kidneys reveal differences in proximal tubule cells of males and females. RESULTS The transcriptomic data indicated that the major differences in the proximal tubules between the sexes were in the S2/S3 segments, and most of the sex-biased transcripts mapped to autosomes rather than to the sex chromosomes. Many of the transcripts exhibiting sex-biased expression are involved in monocarboxylic acid metabolic processes, organic anion transport, and organic acid transport. The ATAC-seq method on microdissected tubules captured chromatin accessibility. Many of the more than 7000 differentially accessible DNA regions identified were in distal regions. Motif analyses revealed a lack of direct involvement of estrogen receptors or the androgen receptor (absence of canonical hormone response elements), suggesting an indirect regulatory role of sex hormones. Instead, analyses identified several transcription factors (TFs) ( Tead1 , Nfia/b , and Pou3f3 ) whose interplay with proximal tubule-specific TFs ( e.g. , Hnf1b , Hnf4a ) may contribute to sex differences. Finally, the whole-kidney proteome was correlated with the transcriptome, and many sex-biased proteins ( e.g. , Cyp2e1, Acsm2/3) were identified. CONCLUSIONS Sex-dependent cis-regulatory elements interact with TFs in ways that lead to sex-biased gene expression in proximal tubule cells. These data are provided as a user-friendly web page at https://esbl.nhlbi.nih.gov/MRECA/PT/ .
Collapse
Affiliation(s)
- Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | | |
Collapse
|
20
|
Hendriksen LC, van der Linden PD, Herings RMC, Stricker BH, Visser LE. Women on diuretics have a higher risk of hospital admission because of hyponatremia than men. Pharmacoepidemiol Drug Saf 2023; 32:635-642. [PMID: 36633523 DOI: 10.1002/pds.5592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
PURPOSE Recent studies suggest that women are more susceptible to diuretic-induced hyponatremia resulting in hospital admission than men. The aim of this study was to confirm whether these sex differences in hyponatremia-related hospital admissions in diuretic users remain after adjusting for several confounding variables such as age, dose, and concurrent medication. METHODS In a case-control design nested in diuretic users, cases of hyponatremia associated hospital admissions between 2005 and 2017 were identified from the PHARMO Data Network. Cases were 1:10 matched to diuretic users as controls. Odds ratios (OR) with 95%CIs were calculated for women versus men and adjusted for potential confounders (age, number of diuretics, other hyponatremia-inducing drugs, chronic disease score) using unconditional logistic regression analysis. A subgroup analysis was performed for specific diuretic groups (thiazides, loop diuretics and aldosterone antagonists). RESULTS Women had a statistically significantly higher risk of a hospital admission associated with hyponatremia than men while using diuretics (OR 1.86, 95%CI 1.64-2.11). Adjusting for the potential confounders resulted in an increased risk for women compared to men (ORadj 2.65, 95% CI 2.31-3.04). This higher risk in women was also seen in the three subgroup analyses after adjustment. CONCLUSION Our findings show a higher risk of hyponatremia-related hospital admission in women than men while using diuretics. Further research is needed to understand the underlying mechanism of this sex difference to be able to provide sex-specific recommendations.
Collapse
Affiliation(s)
- Linda C Hendriksen
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Pharmacy, Tergooi MC, Hilversum, The Netherlands
| | | | - Ron M C Herings
- PHARMO Institute for Drug Outcomes Research, Utrecht, The Netherlands.,Department of Epidemiology and Data Science, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Loes E Visser
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Pharmacy, Haga Teaching Hospital, The Hague, The Netherlands.,Department of Hospital Pharmacy, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
21
|
Stadt MM, Layton AT. Sex and species differences in epithelial transport in rat and mouse kidneys: Modeling and analysis. Front Physiol 2022; 13:991705. [PMID: 36246142 PMCID: PMC9559190 DOI: 10.3389/fphys.2022.991705] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
The goal of this study was to investigate the functional implications of sex and species differences in the pattern of transporters along nephrons in the rat and mouse kidney, as reported by Veiras et al. (J Am Soc Nephrol 28: 3504–3517, 2017). To do so, we developed the first sex-specific computational models of epithelial water and solute transport along the nephrons from male and female mouse kidneys, and conducted simulations along with our published rat models. These models account for the sex differences in the abundance of apical and basolateral transporters, glomerular filtration rate, and tubular dimensions. Model simulations predict that 73% and 57% of filtered Na+ is reabsorbed by the proximal tubules of male and female rat kidneys, respectively. Due to their smaller transport area and lower NHE3 activity, the proximal tubules in the mouse kidney reabsorb a significantly smaller fraction of the filtered Na+, at 53% in male and only 34% in female. The lower proximal fractional Na+ reabsorption in female kidneys of both rat and mouse is due primarily to their smaller transport area, lower Na+/H+ exchanger activity, and lower claudin-2 abundance, culminating in significantly larger fractional delivery of water and Na+ to the downstream nephron segments in female kidneys. Conversely, the female distal nephron exhibits a higher abundance of key Na+ transporters, including Na+-Cl− cotransporters in both species, epithelial Na+ channels for the female rat, and Na+-K+-Cl−cotransporters for the female mouse. The higher abundance of transporters accounts for the enhanced water and Na+ transport along the female rat and mouse distal nephrons, relative to the respective male, resulting in similar urine excretion between the sexes. Model simulations indicate that the sex and species differences in renal transporter patterns may partially explain the experimental observation that, in response to a saline load, the diuretic and natriuretic responses were more rapid in female rats than males, but no significant sex difference was found in mice. These computational models can serve as a valuable tool for analyzing findings from experimental studies conducted in rats and mice, especially those involving genetic modifications.
Collapse
Affiliation(s)
- Melissa Maria Stadt
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Anita T. Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: Anita T. Layton,
| |
Collapse
|
22
|
Gohar EY, De Miguel C, Obi IE, Daugherty EM, Hyndman KA, Becker BK, Jin C, Sedaka R, Johnston JG, Liu P, Speed JS, Mitchell T, Kriegel AJ, Pollock JS, Pollock DM. Acclimation to a High-Salt Diet Is Sex Dependent. J Am Heart Assoc 2022; 11:e020450. [PMID: 35191321 PMCID: PMC9075092 DOI: 10.1161/jaha.120.020450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/03/2021] [Indexed: 01/01/2023]
Abstract
Background Premenopausal women are less likely to develop hypertension and salt-related complications than are men, yet the impact of sex on mechanisms regulating Na+ homeostasis during dietary salt challenges is poorly defined. Here, we determined whether female rats have a more efficient capacity to acclimate to increased dietary salt intake challenge. Methods and Results Age-matched male and female Sprague Dawley rats maintained on a normal-salt (NS) diet (0.49% NaCl) were challenged with a 5-day high-salt diet (4.0% NaCl). We assessed serum, urinary, skin, and muscle electrolytes; total body water; and kidney Na+ transporters during the NS and high-salt diet phases. During the 5-day high-salt challenge, natriuresis increased more rapidly in females, whereas serum Na+ and body water concentration increased only in males. To determine if females are primed to handle changes in dietary salt, we asked the question whether the renal endothelin-1 natriuretic system is more active in female rats, compared with males. During the NS diet, female rats had a higher urinary endothelin-1 excretion rate than males. Moreover, Ingenuity Pathway Analysis of RNA sequencing data identified the enrichment of endothelin signaling pathway transcripts in the inner medulla of kidneys from NS-fed female rats compared with male counterparts. Notably, in human subjects who consumed an Na+-controlled diet (3314-3668 mg/day) for 3 days, women had a higher urinary endothelin-1 excretion rate than men, consistent with our findings in NS-fed rats. Conclusions These results suggest that female sex confers a greater ability to maintain Na+ homeostasis during acclimation to dietary Na+ challenges and indicate that the intrarenal endothelin-1 natriuretic pathway is enhanced in women.
Collapse
Affiliation(s)
- Eman Y. Gohar
- Section of Cardio‐Renal Physiology & MedicineDivision of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
- Present address:
Division of Nephrology and HypertensionVanderbilt University Medical CenterNashvilleTN
| | - Carmen De Miguel
- Section of Cardio‐Renal Physiology & MedicineDivision of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - Ijeoma E. Obi
- Section of Cardio‐Renal Physiology & MedicineDivision of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - Elizabeth M. Daugherty
- Section of Cardio‐Renal Physiology & MedicineDivision of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - Kelly A. Hyndman
- Section of Cardio‐Renal Physiology & MedicineDivision of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - Bryan K. Becker
- Section of Cardio‐Renal Physiology & MedicineDivision of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - Chunhua Jin
- Section of Cardio‐Renal Physiology & MedicineDivision of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - Randee Sedaka
- Section of Cardio‐Renal Physiology & MedicineDivision of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - Jermaine G. Johnston
- Section of Cardio‐Renal Physiology & MedicineDivision of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - Pengyuan Liu
- Department of PhysiologyMedical College of WisconsinMilwaukeeWI
| | - Joshua S. Speed
- Department of PhysiologyUniversity of Mississippi Medical CenterJacksonMS
| | | | | | - Jennifer S. Pollock
- Section of Cardio‐Renal Physiology & MedicineDivision of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| | - David M. Pollock
- Section of Cardio‐Renal Physiology & MedicineDivision of NephrologyDepartment of MedicineUniversity of Alabama at BirminghamAL
| |
Collapse
|
23
|
Wieërs MLAJ, Mulder J, Rotmans JI, Hoorn EJ. Potassium and the kidney: a reciprocal relationship with clinical relevance. Pediatr Nephrol 2022; 37:2245-2254. [PMID: 35195759 PMCID: PMC9395506 DOI: 10.1007/s00467-022-05494-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 10/26/2022]
Abstract
By controlling urinary potassium excretion, the kidneys play a key role in maintaining whole-body potassium homeostasis. Conversely, low urinary potassium excretion (as a proxy for insufficient dietary intake) is increasingly recognized as a risk factor for the progression of kidney disease. Thus, there is a reciprocal relationship between potassium and the kidney: the kidney regulates potassium balance but potassium also affects kidney function. This review explores this relationship by discussing new insights into kidney potassium handling derived from recently characterized tubulopathies and studies on sexual dimorphism. These insights reveal a central but non-exclusive role for the distal convoluted tubule in sensing potassium and subsequently modifying the activity of the sodium-chloride cotransporter. This is another example of reciprocity: activation of the sodium-chloride cotransporter not only reduces distal sodium delivery and therefore potassium secretion but also increases salt sensitivity. This mechanism helps explain the well-known relationship between dietary potassium and blood pressure. Remarkably, in children, blood pressure is related to dietary potassium but not sodium intake. To explore how potassium deficiency can cause kidney injury, we review the mechanisms of hypokalemic nephropathy and discuss if these mechanisms may explain the association between low dietary potassium intake and adverse kidney outcomes. We discuss if potassium should be repleted in patients with kidney disease and what role dietary potassium plays in the risk of hyperkalemia. Supported by data and physiology, we reach the conclusion that we should view potassium not only as a potentially dangerous cation but also as a companion in the battle against kidney disease.
Collapse
Affiliation(s)
- Michiel L. A. J. Wieërs
- grid.5645.2000000040459992XDepartment of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Room Ns403, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jaap Mulder
- grid.5645.2000000040459992XDepartment of Pediatrics, Division of Pediatric Nephrology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands ,grid.10419.3d0000000089452978Department of Pediatrics, Division of Pediatric Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Joris I. Rotmans
- grid.10419.3d0000000089452978Department of Internal Medicine, Division of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ewout J. Hoorn
- grid.5645.2000000040459992XDepartment of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, University Medical Center Rotterdam, Room Ns403, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
24
|
Torres-Pinzon DL, Ralph DL, Veiras LC, McDonough AA. Sex-specific adaptations to high-salt diet preserve electrolyte homeostasis with distinct sodium transporter profiles. Am J Physiol Cell Physiol 2021; 321:C897-C909. [PMID: 34613843 PMCID: PMC8616593 DOI: 10.1152/ajpcell.00282.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 02/04/2023]
Abstract
Kidneys continuously filter an enormous amount of sodium and adapt kidney Na+ reabsorption to match Na+ intake to maintain circulatory volume and electrolyte homeostasis. Males (M) respond to high-salt (HS) diet by translocating proximal tubule Na+/H+ exchanger isoform 3 (NHE3) to the base of the microvilli, reducing activated forms of the distal NaCl cotransporter (NCC) and epithelial Na+ channel (ENaC). Males (M) and females (F) on normal-salt (NS) diet present sex-specific profiles of "transporters" (cotransporters, channels, pumps, and claudins) along the nephron, e.g., F exhibit 40% lower NHE3 and 200% higher NCC abundance than M. We tested the hypothesis that adaptations to HS diet along the nephron will, likewise, exhibit sexual dimorphisms. C57BL/6J mice were fed for 15 days with 4% NaCl diet (HS) versus 0.26% NaCl diet (NS). On HS, M and F exhibited normal plasma [Na+] and [K+], similar urine volume, Na+, K+, and osmolal excretion rates normalized to body weight. In F, like M, HS lowered abundance of distal NCC, phosphorylated NCC, and cleaved (activated) forms of ENaC. The adaptations associated with achieving electrolyte homeostasis exhibit sex-dependent and independent mechanisms. Sex differences in baseline "transporters" abundance persist during HS diet, yet the fold changes during HS diet (normalized to NS) are similar along the distal nephron and collecting duct. Sex-dependent differences observed along the proximal tubule during HS show that female kidneys adapt differently from patterns reported in males, yet achieve and maintain fluid and electrolyte homeostasis.
Collapse
Affiliation(s)
- Diana L Torres-Pinzon
- Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Donna L Ralph
- Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Luciana C Veiras
- Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Alicia A McDonough
- Department of Physiology and Neuroscience, Keck School of Medicine of University of Southern California, Los Angeles, California
| |
Collapse
|
25
|
Hu R, McDonough AA, Layton AT. Sex differences in solute and water handling in the human kidney: Modeling and functional implications. iScience 2021; 24:102667. [PMID: 34169242 PMCID: PMC8209279 DOI: 10.1016/j.isci.2021.102667] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
The kidneys maintain homeostasis by controlling the amount of water and electrolytes in the blood. That function is accomplished by the nephrons, which transform glomerular filtrate into urine by a transport process mediated by membrane transporters. We postulate that the distribution of renal transporters along the nephron is markedly different between men and women, as recently shown in rodents. We hypothesize that the larger abundance of a renal Na+ transport in the proximal tubules in females may also better prepare them for the fluid retention adaptations required during pregnancy and lactation. Also, kidneys play a key role in blood pressure regulation, and a popular class of anti-hypertensive medications and angiotensin converting enzymes (ACE) inhibitors have been reported to be less effective in women. Model simulations suggest that the blunted natriuretic and diuretic effects of ACE inhibition in women can be attributed, in part, to their higher distal baseline transport capacity.
Collapse
Affiliation(s)
- Rui Hu
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Alicia A. McDonough
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anita T. Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
26
|
Puelles VG, Combes AN, Bertram JF. Clearly imaging and quantifying the kidney in 3D. Kidney Int 2021; 100:780-786. [PMID: 34089762 DOI: 10.1016/j.kint.2021.04.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
For decades, measurements of kidney microanatomy using 2-dimensional sections has provided us with a detailed knowledge of kidney morphology under physiological and pathological conditions. However, the rapid development of tissue clearing methods in recent years, in combination with the development of novel 3-dimensional imaging modalities have provided new insights into kidney structure and function. This review article describes a range of novel insights into kidney development and disease obtained recently using these new methodological approaches. For example, in the developing kidney these approaches have provided new understandings of ureteric branching morphogenesis, nephron progenitor cell proliferation and commitment, interactions between ureteric tip cells and nephron progenitor cells, and the establishment of nephron segmentation. In whole adult mouse kidneys, tissue clearing combined with light sheet microscopy can image and quantify the total number of glomeruli, a major breakthrough in the field. Similar approaches have provided new insights into the structure of the renal vasculature and innervation, tubulointerstitial remodeling, podocyte loss and hypertrophy, cyst formation, the evolution of cellular crescents, and the structure of the glomerular filtration barrier. Many more advances in the understanding of kidney biology and pathology can be expected as additional clearing and imaging techniques are developed and adopted by more investigators.
Collapse
Affiliation(s)
- Victor G Puelles
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Anatomy and Developmental Biology, and Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Alexander N Combes
- Department of Anatomy and Developmental Biology, and Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - John F Bertram
- Department of Anatomy and Developmental Biology, and Stem Cells and Development Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
| |
Collapse
|
27
|
Xiao Y, Duan XP, Zhang DD, Wang WH, Lin DH. Deletion of renal Nedd4-2 abolishes the effect of high K + intake on Kir4.1/Kir5.1 and NCC activity in the distal convoluted tubule. Am J Physiol Renal Physiol 2021; 321:F1-F11. [PMID: 34029145 DOI: 10.1152/ajprenal.00072.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
High-dietary K+ (HK) intake inhibits basolateral Kir4.1/Kir5.1 activity in the distal convoluted tubule (DCT), and HK-induced inhibition of Kir4.1/Kir5.1 is essential for HK-induced inhibition of NaCl cotransporter (NCC). Here, we examined whether neural precursor cell expressed developmentally downregulated 4-2 (Nedd4-2) deletion compromises the effect of HK on basolateral Kir4.1/Kir5.1 and NCC in the DCT. Single-channel recording and whole cell recording showed that neither HK decreased nor low-dietary K+ (LK) increased basolateral Kir4.1/Kir5.1 activity of the DCT in kidney tubule-specific Nedd4-2 knockout (Ks-Nedd4-2 KO) mice. In contrast, HK inhibited and LK increased Kir4.1/Kir5.1 activity in control mice [neural precursor cell expressed developmentally downregulated 4-like (Nedd4l)flox/flox]. Also, HK intake decreased the negativity of K+ current reversal potential in the DCT (depolarization) only in control mice but not in Ks-Nedd4-2 KO mice. Renal clearance experiments showed that HK intake decreased, whereas LK intake increased, hydrochlorothiazide-induced renal Na+ excretion only in control mice, but this effect was absent in Ks-Nedd4-2 KO mice. Western blot analysis also demonstrated that HK-induced inhibition of phosphorylated NCC (Thr53) and total NCC was observed only in control mice but not in Ks-Nedd4-2 KO mice. Furthermore, expression of all three subunits of the epithelial Na+ channel in Ks-Nedd4-2 KO mice on HK was higher than in control mice. Thus, plasma K+ concentrations were similar between Nedd4lflox/flox and Ks-Nedd4-2 KO mice on HK for 7 days despite high NCC expression. We conclude that Nedd4-2 plays a role in regulating HK-induced inhibition of Kir4.1/Kir5.1 and NCC in the DCT.NEW & NOTEWORTHY Basolateral Kir4.1/Kir5.1 in the distal convoluted tubule plays an important role as a "K+ sensor" in the regulation of renal K+ excretion after high K+ intake. We found that neural precursor cell expressed developmentally downregulated 4-2 (Nedd4-2) a role in mediating the effect of K+ diet on Kir4.1/Kir5.1 and NaCl cotransporter because high K+ intake failed to inhibit basolateral Kir4.1/Kir5.1 and NaCl cotransporter in kidney tubule-specific Nedd4-2 knockout mice.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Physiology, Qiqihar Medical College, Heilongjiang, China.,Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Xin-Peng Duan
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dan-Dan Zhang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York
| |
Collapse
|
28
|
Al-Qusairi L, Grimm PR, Zapf AM, Welling PA. Rapid development of vasopressin resistance in dietary K + deficiency. Am J Physiol Renal Physiol 2021; 320:F748-F760. [PMID: 33749322 PMCID: PMC8174811 DOI: 10.1152/ajprenal.00655.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
The association between diabetes insipidus (DI) and chronic dietary K+ deprivation is well known, but it remains uncertain how the disorder develops and whether it is influenced by the sexual dimorphism in K+ handling. Here, we determined the plasma K+ (PK) threshold for DI in male and female mice and ascertained if DI is initiated by polydipsia or by a central or nephrogenic defect. C57BL6J mice were randomized to a control diet or to graded reductions in dietary K+ for 8 days, and kidney function and transporters involved in water balance were characterized. We found that male and female mice develop polyuria and secondary polydipsia. Altered water balance coincided with a decrease in aquaporin-2 (AQP2) phosphorylation and apical localization despite increased levels of the vasopressin surrogate marker copeptin. No change in the protein abundance of urea transporter-A1 was observed. The Na+-K+-2Cl- cotransporter decreased only in males. Desmopressin treatment failed to reverse water diuresis in K+-restricted mice. These findings indicate that even a small fall in PK is associated with nephrogenic DI (NDI), coincident with the development of altered AQP2 regulation, implicating low PK as a causal trigger of NDI. We found that PK decreased more in females, and, consequently, females were more prone to develop NDI. Together, these data indicate that AQP2 regulation is disrupted by a small decrease in PK and that the response is influenced by sexual dimorphism in K+ handling. These findings provide new insights into the mechanisms linking water and K+ balances and support defining the disorder as "potassium-dependent NDI."NEW & NOTEWORTHY This study shows that aquaporin-2 regulation is disrupted by a small fall in plasma potassium levels and the response is influenced by sexual dimorphism in renal potassium handling. The findings provided new insights into the mechanisms by which water balance is altered in dietary potassium deficiency and support defining the disorder as "potassium-dependent nephrogenic diabetes insipidus."
Collapse
Affiliation(s)
- Lama Al-Qusairi
- Departments of Medicine, Nephrology, and Physiology, Johns Hopkins University Medical School, Baltimore, Maryland
| | - P Richard Grimm
- Departments of Medicine, Nephrology, and Physiology, Johns Hopkins University Medical School, Baltimore, Maryland
| | - Ava M Zapf
- Graduate Program in Life Sciences, University of Maryland, Baltimore, Maryland
| | - Paul A Welling
- Departments of Medicine, Nephrology, and Physiology, Johns Hopkins University Medical School, Baltimore, Maryland
| |
Collapse
|
29
|
Chen L, Chou CL, Knepper MA. A Comprehensive Map of mRNAs and Their Isoforms across All 14 Renal Tubule Segments of Mouse. J Am Soc Nephrol 2021; 32:897-912. [PMID: 33769951 PMCID: PMC8017530 DOI: 10.1681/asn.2020101406] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/13/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The repertoire of protein expression along the renal tubule depends both on regulation of transcription and regulation of alternative splicing that can generate multiple proteins from a single gene. METHODS A full-length, small-sample RNA-seq protocol profiled transcriptomes for all 14 renal tubule segments microdissected from mouse kidneys. RESULTS This study identified >34,000 transcripts, including 3709 that were expressed in a segment-specific manner. All data are provided as an online resource (https://esbl.nhlbi.nih.gov/MRECA/Nephron/). Many of the genes expressed in unique patterns along the renal tubule were solute carriers, transcription factors, or G protein-coupled receptors that account for segment-specific function. Mapping the distribution of transcripts associated with Wnk-SPAK-PKA signaling, renin-angiotensin-aldosterone signaling, and cystic diseases of the kidney illustrated the applications of the online resource. The method allowed full-length mapping of RNA-seq reads, which facilitated comprehensive, unbiased characterization of alternative exon usage along the renal tubule, including known isoforms of Cldn10, Kcnj1 (ROMK), Slc12a1 (NKCC2), Wnk1, Stk39 (SPAK), and Slc14a2 (UT-A urea transporter). It also identified many novel isoforms with segment-specific distribution. These included variants associated with altered protein structure (Slc9a8, Khk, Tsc22d1, and Scoc), and variants that may affect untranslated, regulatory regions of transcripts (Pth1r, Pkar1a, and Dab2). CONCLUSIONS Full-length, unbiased sequencing of transcripts identified gene-expression patterns along the mouse renal tubule. The data, provided as an online resource, include both quantitative and qualitative differences in transcripts. Identification of alternative splicing along the renal tubule may prove critical to understanding renal physiology and pathophysiology.
Collapse
Affiliation(s)
- Lihe Chen
- Epithelial Systems Biology Laboratory, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | | | | |
Collapse
|
30
|
Kortenoeven MLA, Cheng L, Wu Q, Fenton RA. An in vivo protein landscape of the mouse DCT during high dietary K + or low dietary Na + intake. Am J Physiol Renal Physiol 2021; 320:F908-F921. [PMID: 33779313 DOI: 10.1152/ajprenal.00064.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The hormone aldosterone is essential for maintaining K+ and Na+ balance and controlling blood pressure. Aldosterone has different effects if it is secreted due to hypovolemia or hyperkalemia. The kidney distal convoluted tubule (DCT) is believed to play a central role in mediating the differential responses to aldosterone. To determine the alterations in the DCT that may be responsible for these effects, male mice with green fluorescent protein expression specifically in the DCT were maintained on diets containing low NaCl (hypovolemic state) or high potassium citrate (hyperkalemic state) for 4 days, and DCT cells were isolated using fluorescence-activated cell sorting. This pure population of DCT cells was subjected to analysis by liquid chromatography-coupled tandem mass spectrometry. Over 3,000 proteins were identified in the DCT, creating the first proteome of the mouse DCT. Of the identified proteins, 210 proteins were altered in abundance following a low-NaCl diet and 625 proteins following the high-K+ diet. Many of these changes were not detectable by analyzing whole kidney samples from the same animals. When comparing responses to high-K+ versus low-Na+ diets, protein translation, chaperone-mediated protein folding, and protein ubiquitylation were likely to be significantly altered in the DCT subsequent to a high-K+ diet. In conclusion, this study defines an in vivo protein landscape of the DCT in male mice following either a low-NaCl or a high-K+ diet and acts as an essential resource for the kidney research community.NEW & NOTEWORTHY The mineralocorticoid aldosterone, essential for maintaining body K+ and Na+ balance, has different effects if secreted due to hypovolemia or hyperkalemia. Here, we used proteomics to profile kidney distal convoluted tubule (DCT) cells isolated by a novel FACS approach from mice fed a low-Na+ diet (mimicking hypovolemia) or a high-K+ diet (mimicking hyperkalemia). The study provides the first in-depth proteome of the mouse DCT and insights into how it is physiologically regulated.
Collapse
Affiliation(s)
- Marleen L A Kortenoeven
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark.,Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lei Cheng
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Qi Wu
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | - Robert A Fenton
- Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| |
Collapse
|
31
|
Pechère-Bertschi A, Olivier V, Burnier M, Udwan K, de Seigneux S, Ponte B, Maillard M, Martin PY, Feraille E. Dietary sodium intake does not alter renal potassium handling and blood pressure in healthy young males. Nephrol Dial Transplant 2021; 37:548-557. [PMID: 33492394 PMCID: PMC8875469 DOI: 10.1093/ndt/gfaa381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 12/03/2022] Open
Abstract
Background The effects of sodium (Na+) intakes on renal handling of potassium (K+) are insufficiently studied. Methods We assessed the effect of Na+ on renal K+ handling in 16 healthy males assigned to three 7-day periods on low salt diet [LSD, 3 g sodium chloride (NaCl)/day], normal salt diet (NSD, 6 g NaCl/day) and high salt diet (HSD, 15 g NaCl/day), with constant K+ intake. Contributions of distal NaCl co-transporter and epithelial Na+ channel in the collecting system on K+ and Na+ handling were assessed at steady state by acute response to 100 mg oral hydrochlorothiazide and with addition of 10 mg of amiloride to hydrochlorothiazide, respectively. Results Diurnal blood pressure slightly increased from 119.30 ± 7.95 mmHg under LSD to 123.00 ± 7.50 mmHg (P = 0.02) under HSD, while estimated glomerular filtration rate increased from 133.20 ± 34.68 mL/min under LSD to 187.00 ± 49.10 under HSD (P = 0.005). The 24-h K+ excretion remained stable on all Na+ intakes (66.28 ± 19.12 mmol/24 h under LSD; 55.91 ± 21.17 mmol/24 h under NSD; and 66.81 ± 20.72 under HSD, P = 0.9). The hydrochlorothiazide-induced natriuresis was the highest under HSD (30.22 ± 12.53 mmol/h) and the lowest under LSD (15.38 ± 8.94 mmol/h, P = 0.02). Hydrochlorothiazide increased kaliuresis and amiloride decreased kaliuresis similarly on all three diets. Conclusions Neither spontaneous nor diuretic-induced K+ excretion was influenced by Na+ intake in healthy male subjects. However, the respective contribution of the distal convoluted tubule and the collecting duct to renal Na+ handling was dependent on dietary Na+ intake.
Collapse
Affiliation(s)
| | - Valérie Olivier
- Service of Nephrology and Hypertension, University Hospital Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| | - Michel Burnier
- Service of Nephrology and Hypertension, CHUV, Lausanne, Switzerland
| | - Khalil Udwan
- Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| | - Sophie de Seigneux
- Service of Nephrology and Hypertension, University Hospital Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| | - Belén Ponte
- Service of Nephrology and Hypertension, University Hospital Geneva, Switzerland
| | - Marc Maillard
- Service of Nephrology and Hypertension, CHUV, Lausanne, Switzerland
| | - Pierre-Yves Martin
- Service of Nephrology and Hypertension, University Hospital Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| | - Eric Feraille
- Service of Nephrology and Hypertension, University Hospital Geneva, Switzerland.,Department of Cell Physiology and Metabolism, University of Geneva, Switzerland
| |
Collapse
|