1
|
DiMarco KG, Chapman CL, Weiser NE, Matsell ER, Lucernoni KM, Chacon S, Grivette MMB, Halliwill JR, Lovering AT, Minson CT. Acute exposure to carbon monoxide inhalation and/or hot water immersion transiently increases erythropoietin in females but not in males. Exp Physiol 2024; 109:1782-1795. [PMID: 39143855 PMCID: PMC11442759 DOI: 10.1113/ep091923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
The use of acute carbon monoxide inhalation (COi) and hot water immersion (HWI) are of growing interest as interventions to stimulate erythropoietin (EPO) production. However, whether EPO production is further augmented when combining these stressors and whether there are sex differences in this response are poorly understood. Therefore, we measured circulating EPO concentration in response to acute COi and HWI independently and in combination and determined whether the responses were altered by sex. Participants completed three study visits-COi, HWI, and combined COi and HWI-separated by 1 week in a randomized, balanced, crossover design. Renal blood velocity was measured during all interventions, and carboxyhaemoglobin was measured during and after COi. Serum samples were analysed every hour for 6 h post-intervention for EPO concentration. HWI decreased renal blood velocity (46.2 cm/s to 36.2 cm/s) (P < 0.0001), and COi increased carboxyhaemoglobin (1.5%-12.8%) (P < 0.0001) without changing renal blood velocity (46.4-45.2 cm/s) (P = 0.4456). All three interventions increased peak EPO concentration from baseline (COi: 6.02-9.74 mIU/mL; HWI: 6.80-11.10 mIU/mL; COi + HWI: 6.71-10.91 mIU/mL) (P = 0.0048) and to the same extent (P = 0.3505). On average, females increased EPO while males did not in response to COi (females: 6.17 mIU/mL; males: 1.27 mIU/mL) (P = 0.0010), HWI (females: 6.47 mIU/mL; males: 2.14 mIU/mL) (P = 0.0104), and COi and HWI (females: 6.65 mIU/mL; males: 1.76 mIU/mL) (P = 0.0256). These data emphasize that combining these interventions does not augment EPO secretion and that these interventions may work better in females.
Collapse
Affiliation(s)
- Kaitlyn G DiMarco
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | | | - Natasha E Weiser
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Emma R Matsell
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | | | - Samantha Chacon
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | | | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon, Eugene, Oregon, USA
| | | |
Collapse
|
2
|
Belkaniya GS, Dilenyan LR, Konkov DG, Wsol A, Martusevich AK, Puchalska LG. An anthropogenic model of cardiovascular system adaptation to the Earth's gravity as the conceptual basis of pathological anthropology. J Physiol Anthropol 2021; 40:9. [PMID: 34452641 PMCID: PMC8394646 DOI: 10.1186/s40101-021-00260-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
Applying human biological evolution to solve topical problems of medicine and preventive cardiology was inspired by the realization of the need for clinical and experimental studies of biological (evolutionary) prerequisites in the occurrence of a pathology. Although it has been stated that there is a need to provide a full biological understanding of features, including those that increase an animal's vulnerability to diseases, unfortunately, in this regard, erectile and associated adaptations to the Earth's gravity in their physiological and pathological manifestations have not been considered. At the same time, it should be noted that humans, unlike other animal species, have the greatest vulnerability of the cardiovascular system (CVS). The latter is associated with fundamental differences in the functioning and regulation of the CVS by the influence of gravity on blood circulation in humans as upright creatures. Based on a review of comparative physiological, ontogenetic, and clinical studies from an evolutionary perspective, the idea of adaptation to the Earth's gravity when walking upright in humans is justified as an anthropogenic basis for the physiology and pathology of the cardiovascular system and hemodynamic support systems (physio-anthropology and pathological anthropology).
Collapse
Affiliation(s)
- G S Belkaniya
- Laboratory of Medical Expert Systems "Anthropos Systems Lab.", Vinnitsa, Ukraine
| | - L R Dilenyan
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - D G Konkov
- National Pirogow Memorial Medical University, Vinnitsa, Ukraine
| | - A Wsol
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, ul. Banacha 1b, 02-097, Warsaw, Poland.
| | - A K Martusevich
- Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - L G Puchalska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, ul. Banacha 1b, 02-097, Warsaw, Poland
| |
Collapse
|
3
|
Chapman CL, Johnson BD, Parker MD, Hostler D, Pryor RR, Schlader Z. Kidney physiology and pathophysiology during heat stress and the modification by exercise, dehydration, heat acclimation and aging. Temperature (Austin) 2020; 8:108-159. [PMID: 33997113 PMCID: PMC8098077 DOI: 10.1080/23328940.2020.1826841] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
The kidneys' integrative responses to heat stress aid thermoregulation, cardiovascular control, and water and electrolyte regulation. Recent evidence suggests the kidneys are at increased risk of pathological events during heat stress, namely acute kidney injury (AKI), and that this risk is compounded by dehydration and exercise. This heat stress related AKI is believed to contribute to the epidemic of chronic kidney disease (CKD) occurring in occupational settings. It is estimated that AKI and CKD affect upwards of 45 million individuals in the global workforce. Water and electrolyte disturbances and AKI, both of which are representative of kidney-related pathology, are the two leading causes of hospitalizations during heat waves in older adults. Structural and physiological alterations in aging kidneys likely contribute to this increased risk. With this background, this comprehensive narrative review will provide the first aggregation of research into the integrative physiological response of the kidneys to heat stress. While the focus of this review is on the human kidneys, we will utilize both human and animal data to describe these responses to passive and exercise heat stress, and how they are altered with heat acclimation. Additionally, we will discuss recent studies that indicate an increased risk of AKI due to exercise in the heat. Lastly, we will introduce the emerging public health crisis of older adults during extreme heat events and how the aging kidneys may be more susceptible to injury during heat stress.
Collapse
Affiliation(s)
- Christopher L. Chapman
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Blair D. Johnson
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Mark D. Parker
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Ophthalmology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - David Hostler
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - Riana R. Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY, USA
| | - Zachary Schlader
- Department of Kinesiology, School of Public Health, Indiana University, Bloomington, IN, USA
| |
Collapse
|
4
|
Lateef N, Virk HU, Khan MS, Lakhter V, Haseeb A, Ahsan MJ, Mirza M, Rangaswami J, Zidar DA, Holmberg M, Janzer S. Role of renal sympathetic denervation in hypertension. Future Cardiol 2020; 16:211-216. [PMID: 32166965 DOI: 10.2217/fca-2019-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Noman Lateef
- Department of Medicine, Creighton University Medical Center, Omaha, NE 68124, USA
| | - Hafeez Uh Virk
- Department of Cardiology, Einstein Medical Center, Philadelphia, PA 19141, USA
| | - Muhammad Shahzeb Khan
- Department of Medicine, John H Stroger Jr. Hospital of Cook County, Chicago, IL 60612, USA
| | - Vladimir Lakhter
- Department of Cardiovascular Disease, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Abdul Haseeb
- Department of Medicine, Wright Center of Graduate Medical Education, Scranton, PA 18505, USA
| | | | - Mohsin Mirza
- Department of Medicine, Creighton University Medical Center, Omaha, NE 68124, USA
| | - Janani Rangaswami
- Department of Nephrology, Einstein Medical Center, Philadelphia, PA 19141, USA
| | - David A Zidar
- Division of Cardiovascular Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Mark Holmberg
- Division of Cardiovascular Medicine, Creighton University Medical Center, Omaha, NE 68124, USA
| | - Sean Janzer
- Department of Cardiology, Einstein Medical Center, Philadelphia, PA 19141 USA
| |
Collapse
|
5
|
Chapman CL, Johnson BD, Hostler D, Lema PC, Schlader ZJ. Reliability and agreement of human renal and segmental artery hemodynamics measured using Doppler ultrasound. J Appl Physiol (1985) 2020; 128:627-636. [PMID: 32027544 DOI: 10.1152/japplphysiol.00813.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To optimize study design and data interpretation, there is a need to understand the reliability of Doppler ultrasound-derived measures of blood velocity (BV) measured in the renal and segmental arteries. Thus, this study tested the following two hypotheses: 1) renal and segmental artery BV measured over the current standard of three cardiac cycles have good agreement with measurements over nine cardiac cycles (study 1); and 2) renal and segmental artery BV measurements have relatively poor day-to-day reliability (study 2). In study 1, there was excellent agreement between measurements over three and nine cardiac cycles for BV in both the renal and segmental arteries, as evidenced by BV measurements that were not statistically different (P ≥ 0.68), were highly consistent (r ≥ 0.99, P < 0.01), had a coefficient of variation ≤2.5 ± 1.8%, and 97% (renal artery) and 92% (segmental artery) of the individual differences fell within the 95% limits of agreement. In study 2, there was relatively good day-to-day reliability in renal artery BV as evidenced by no differences between three separate days (P ≥ 0.30), an intraclass correlation coefficient (ICC) of 0.92 (0.78, 0.98), and 7.4 ± 5.5% coefficient of variation. The day-to-day reliability was relatively poor in the segmental artery with an ICC of 0.77 (0.41, 0.93) and 9.0 ± 5.6% coefficient of variation. These findings support measuring renal and segmental artery hemodynamics over three cardiac cycles and the utility in reporting renal BV across days. However, because of the variation across days, hemodynamic responses in the segmental arteries should be reported as changes from baseline when making comparisons across multiple days.NEW & NOTEWORTHY The present study indicates that Doppler ultrasound-derived measures of renal and segmental artery hemodynamics over three cardiac cycles have excellent agreement with those over nine cardiac cycles. These findings support the current practice of measuring renal and segmental artery blood velocity over three cardiac cycles. This study also demonstrates that there is excellent day-to-day reliability for measures of renal artery blood velocity, which supports reporting absolute values of renal artery blood velocity across days. However, it was also found that the day-to-day reliability of segmental artery measurements is relatively poor. Thus, to account for this variability, we suggest that segmental artery hemodynamics be compared as relative changes from baseline across separate days.
Collapse
Affiliation(s)
- Christopher L Chapman
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, Buffalo, New York
| | - Blair D Johnson
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, Buffalo, New York
| | - David Hostler
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, Buffalo, New York
| | - Penelope C Lema
- Department of Emergency Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Zachary J Schlader
- Department of Exercise and Nutrition Sciences, Center for Research and Education in Special Environments, University at Buffalo, Buffalo, New York.,Department of Kinesiology, School of Public Health, Indiana University, Bloomington, Indiana
| |
Collapse
|
6
|
Kiuchi MG, Esler MD, Fink GD, Osborn JW, Banek CT, Böhm M, Denton KM, DiBona GF, Everett TH, Grassi G, Katholi RE, Knuepfer MM, Kopp UC, Lefer DJ, Lohmeier TE, May CN, Mahfoud F, Paton JF, Schmieder RE, Pellegrino PR, Sharabi Y, Schlaich MP. Renal Denervation Update From the International Sympathetic Nervous System Summit. J Am Coll Cardiol 2019; 73:3006-3017. [DOI: 10.1016/j.jacc.2019.04.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
|
7
|
Christou GA, Christou KA, Kiortsis DN. Pathophysiology of Noncardiac Syncope in Athletes. Sports Med 2018; 48:1561-1573. [PMID: 29605837 DOI: 10.1007/s40279-018-0911-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The most frequent cause of syncope in young athletes is noncardiac etiology. The mechanism of noncardiac syncope (NCS) in young athletes is neurally-mediated (reflex). NCS in athletes usually occurs either as orthostasis-induced, due to a gravity-mediated reduced venous return to the heart, or in the context of exercise. Exercise-related NCS typically occurs after the cessation of an exercise bout, while syncope occurring during exercise is highly indicative of the existence of a cardiac disorder. Postexercise NCS appears to result from hypotension due to impaired postexercise vasoconstriction, as well as from hypocapnia. The mechanisms of postexercise hypotension can be divided into obligatory (which are always present and include sympathoinhibition, histaminergic vasodilation, and downregulation of cardiovagal baroreflex) and situational (which include dehydration, hyperthermia and gravitational stress). Regarding postexercise hypocapnia, both hyperventilation during recovery from exercise and orthostasis-induced hypocapnia when recovery occurs in an upright posture can produce postexercise cerebral vasoconstriction. Athletes have been shown to exhibit differential orthostatic responses compared with nonathletes, involving augmented stroke volume and increased peripheral vasodilation in the former, with possibly lower propensity to orthostatic intolerance.
Collapse
Affiliation(s)
- Georgios A Christou
- Laboratory of Physiology, Medical School, University of Ioannina, 45110, Ioannina, Greece.
| | | | - Dimitrios N Kiortsis
- Laboratory of Physiology, Medical School, University of Ioannina, 45110, Ioannina, Greece
| |
Collapse
|
8
|
Miller AJ, Sauder CL, Cauffman AE, Blaha CA, Leuenberger UA. Endurance training attenuates the increase in peripheral chemoreflex sensitivity with intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol 2016; 312:R223-R228. [PMID: 28039190 DOI: 10.1152/ajpregu.00105.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 11/22/2022]
Abstract
Patients with heart failure and sleep apnea have greater chemoreflex sensitivity, presumably due to intermittent hypoxia (IH), and this is predictive of mortality. We hypothesized that endurance training would attenuate the effect of IH on peripheral chemoreflex sensitivity in healthy humans. Fifteen young healthy subjects (9 female, 26 ± 1 yr) participated. Between visits, 11 subjects underwent 8 wk of endurance training that included running four times/wk at 80% predicted maximum heart rate and interval training, and four control subjects did not change activity. Chemoreflex sensitivity (the slope of ventilation responses to serial oxygen desaturations), blood pressure, heart rate, and muscle sympathetic nerve activity (MSNA) were assessed before and after 30 min of IH. Endurance training decreased resting systolic blood pressure (119 ± 3 to 113 ± 3 mmHg; P = 0.027) and heart rate (67 ± 3 to 61 ± 2 beats/min; P = 0.004) but did not alter respiratory parameters at rest (P > 0.2). Endurance training attenuated the IH-induced increase in chemoreflex sensitivity (pretraining: Δ 0.045 ± 0.026 vs. posttraining: Δ -0.028 ± 0.040 l·min-1·% O2 desaturation-1; P = 0.045). Furthermore, IH increased mean blood pressure and MSNA burst rate before training (P < 0.05), but IH did not alter these measures after training (P > 0.2). All measurements were similar in the control subjects at both visits (P > 0.05). Endurance training attenuates chemoreflex sensitization to IH, which may partially explain the beneficial effects of exercise training in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Amanda J Miller
- Pennsylvania State University College of Medicine, Penn State Hershey Heart and Vascular Institute, Hershey, Pennsylvania
| | - Charity L Sauder
- Pennsylvania State University College of Medicine, Penn State Hershey Heart and Vascular Institute, Hershey, Pennsylvania
| | - Aimee E Cauffman
- Pennsylvania State University College of Medicine, Penn State Hershey Heart and Vascular Institute, Hershey, Pennsylvania
| | - Cheryl A Blaha
- Pennsylvania State University College of Medicine, Penn State Hershey Heart and Vascular Institute, Hershey, Pennsylvania
| | - Urs A Leuenberger
- Pennsylvania State University College of Medicine, Penn State Hershey Heart and Vascular Institute, Hershey, Pennsylvania
| |
Collapse
|
9
|
Muller MD, Drew RC, Cui J, Blaha CA, Mast JL, Sinoway LI. Effect of oxidative stress on sympathetic and renal vascular responses to ischemic exercise. Physiol Rep 2013; 1. [PMID: 24098855 PMCID: PMC3787721 DOI: 10.1002/phy2.47] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Reactive oxygen species (ROS), produced acutely during skeletal muscle contraction, are known to stimulate group IV muscle afferents and accentuate the exercise pressor reflex (EPR) in rodents. The effect of ROS on the EPR in humans is unknown. We conducted a series of studies using ischemic fatiguing rhythmic handgrip to acutely increase ROS within skeletal muscle, ascorbic acid infusion to scavenge free radicals, and hyperoxia inhalation to further increase ROS production. We hypothesized that ascorbic acid would attenuate the EPR and that hyperoxia would accentuate the EPR. Ten young healthy subjects participated in two or three experimental trials on separate days. Beat-by-beat measurements of heart rate (HR), mean arterial pressure (MAP), muscle sympathetic nerve activity (MSNA), and renal vascular resistance index (RVRI) were measured and compared between treatments (saline and ascorbic acid; room air and hyperoxia). At fatigue, the reflex increases in MAP (31 ± 3 versus 29 ± 2 mmHg), HR (19 ± 3 versus 20 ± 3 bpm), MSNA burst rate (21 ± 4 versus 23 ± 4 burst/min), and RVRI (39 ± 12 versus 44 ± 13%) were not different between saline and ascorbic acid. Relative to room air, hyperoxia did not augment the reflex increases in MAP, HR, MSNA, or RVRI in response to exercise. Muscle metaboreflex activation and time/volume control experiments similarly showed no treatment effects. While contrary to our initial hypotheses, these findings suggest that ROS do not play a significant role in the normal reflex adjustments to ischemic exercise in young healthy humans.
Collapse
Affiliation(s)
- Matthew D Muller
- Pennsylvania State University College of Medicine, Penn State Hershey Heart and Vascular Institute, 500 University Drive, Hershey, PA 17033
| | | | | | | | | | | |
Collapse
|
10
|
Patel HM, Mast JL, Sinoway LI, Muller MD. Effect of healthy aging on renal vascular responses to local cooling and apnea. J Appl Physiol (1985) 2013; 115:90-6. [PMID: 23640587 DOI: 10.1152/japplphysiol.00089.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sympathetically mediated renal vasoconstriction may contribute to the pathogenesis of hypertension in older adults, but empirical data in support of this concept are lacking. In 10 young (26 ± 1 yr) and 11 older (67 ± 2 yr) subjects, we quantified acute hemodynamic responses to three sympathoexcitatory stimuli: local cooling of the forehead, cold pressor test (CPT), and voluntary apnea. We hypothesized that all stimuli would increase mean arterial blood pressure (MAP) and renal vascular resistance index (RVRI) and that aging would augment these effects. Beat-by-beat MAP, heart rate (HR), and renal blood flow velocity (from Doppler) were measured in the supine posture, and changes from baseline were compared between groups. In response to 1°C forehead cooling, aging was associated with an augmented MAP (20 ± 3 vs. 6 ± 2 mmHg) and RVRI (35 ± 6 vs. 16 ± 9%) but not HR. In older adults, there was a positive correlation between the cold-induced pressor response and forehead pain (R = 0.726), but this effect was not observed in young subjects. The CPT raised RVRI in both young (56 ± 13%) and older (45 ± 8%) subjects, but this was not different between groups. Relative to baseline, end-expiratory apnea increased RVRI to a similar extent in both young (46 ± 14%) and older (41 ± 9%) subjects. During sympathetic activation, renal vasoconstriction occurred in both groups. Forehead cooling caused an augmented pressor response in older adults that was related to pain perception.
Collapse
Affiliation(s)
- Hardikkumar M Patel
- Pennsylvania State University College of Medicine, Penn State Hershey Heart and Vascular Institute, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
11
|
Muller MD, Mast JL, Cui J, Heffernan MJ, McQuillan PM, Sinoway LI. Tactile stimulation of the oropharynx elicits sympathoexcitation in conscious humans. J Appl Physiol (1985) 2013; 115:71-7. [PMID: 23599399 DOI: 10.1152/japplphysiol.00197.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tactile stimulation of the oropharynx (TSO) elicits the gag reflex and increases heart rate (HR) and mean arterial pressure (MAP) in anesthetized patients. However, the interaction between upper-airway defense reflexes and the sympathetic nervous system has not been investigated in conscious humans. In Experiment 1, beat-by-beat measurements of HR, MAP, muscle sympathetic nerve activity (MSNA), and renal vascular resistance (RVR) were measured during TSO and tactile stimulation of the hard palate (Sham) in the supine posture. In Experiment 2, TSO was performed before (pre) and after (post) inhalation of 4% lidocaine via nebulizer. Rate pressure product (RPP) was determined. Compared with Sham, TSO elicited the gag reflex and increased RPP [absolute change (Δ)36 ± 6 vs. 17 ± 5%], MSNA (Δ122 ± 39 vs. 19 ± 19%), and RVR (Δ55 ± 11 vs. 4 ± 4%). This effect occurred within one to two cardiac cycles of TSO. The ΔMAP (12 ± 3 vs. 6 ± 1 mmHg) and the ΔHR (10 ± 3 vs. 3 ± 3 beats/min) were also greater following TSO compared with Sham. Lidocaine inhalation blocked the gag reflex and attenuated increases in MAP (Δpre: 16 ± 2; Δpost: 5 ± 2 mmHg) and HR (Δpre: 12 ± 3; Δpost: 2 ± 2 beats/min) in response to TSO. When mechanically stimulated, afferents in the oropharynx not only serve to protect the airway but also cause reflex increases in MSNA, RVR, MAP, and HR. An augmented sympathoexcitatory response during intubation and laryngoscopy may contribute to perioperative cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Matthew D Muller
- Penn State Hershey Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
12
|
Czarkowska-Paczek B, Zendzian-Piotrowska M, Gala K, Sobol M, Paczek L. Exercise Differentially Regulates Renalase Expression in Skeletal Muscle and Kidney. TOHOKU J EXP MED 2013; 231:321-9. [DOI: 10.1620/tjem.231.321] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | | | - Kamila Gala
- Department of Immunology, Transplantology, and Internal Diseases, Medical University of Warsaw
| | - Maria Sobol
- Department of Biophysics and Human Physiology, Medical University of Warsaw
| | - Leszek Paczek
- Department of Immunology, Transplantology, and Internal Diseases, Medical University of Warsaw
| |
Collapse
|