1
|
Ailabouni A, Prasad B. Organic cation transporters 2: Structure, regulation, functions, and clinical implications. Drug Metab Dispos 2025; 53:100044. [PMID: 40020559 DOI: 10.1016/j.dmd.2025.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/21/2025] [Indexed: 03/03/2025] Open
Abstract
The SLC22A2 gene encodes organic cation transporter 2 (OCT2), which is predominantly expressed in renal proximal tubule cells. OCT2 is critical for the active renal excretion of various cationic drugs and endogenous metabolites. OCT2 expression varies across species, with higher levels in mice and monkeys compared with humans and rats. The human OCT2 protein consists of 555 amino acids and contains 12 transmembrane domains. OCT2 functions as a uniporter, facilitating the bidirectional transport of organic cations into renal tubular cells, driven by the inside-negative membrane potential. Its expression is regulated by sex hormones, contributing to potential sex differences in Oct2 activity in rodents. OCT2 has been linked to tissue toxicity, such as cisplatin-induced nephrotoxicity. Factors such as genetic variants, age, disease states, and the coadministration of drugs, including tyrosine kinase inhibitors, contribute to interindividual variability in OCT2 activity. This, in turn, impacts the systemic exposure and elimination of drugs and endogenous substances. Regulatory agencies recommend evaluating the potential of a drug to inhibit OCT2 through in vitro and clinical drug-drug interaction (DDI) studies, often using metformin as a probe substrate. Emerging tools like transporter biomarkers and physiologically based pharmacokinetic modeling hold promise in predicting OCT2-mediated DDIs. While several OCT2 biomarkers, such as N1-methylnicotinamide, have been proposed, their reliability in predicting renal DDIs remains uncertain and requires further study. Ultimately, a better understanding of the factors influencing OCT2 activity is essential for achieving precision medicine and minimizing renal and systemic toxicity. SIGNIFICANCE STATEMENT: Organic cation transporter 2 (OCT2) is essential for the active tubular secretion of xenobiotics and endogenous cationic substances in the kidneys. This article offers a comprehensive overview of the tissue distribution, interspecies differences, and factors affecting its activity-critical for evaluating tissue toxicity and systemic exposure to cationic substances. Using OCT2 biomarkers and integrating OCT2 activity and expression data into physiologically based pharmacokinetic models are valuable tools for predicting OCT2 function and its clinical implications.
Collapse
Affiliation(s)
- Anoud Ailabouni
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington.
| |
Collapse
|
2
|
Pernecker M, Ciarimboli G. Regulation of renal organic cation transporters. FEBS Lett 2024; 598:2328-2347. [PMID: 38831380 DOI: 10.1002/1873-3468.14943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
Transporters for organic cations (OCs) facilitate exchange of positively charged molecules through the plasma membrane. Substrates for these transporters encompass neurotransmitters, metabolic byproducts, drugs, and xenobiotics. Consequently, these transporters actively contribute to the regulation of neurotransmission, cellular penetration and elimination process for metabolic products, drugs, and xenobiotics. Therefore, these transporters have significant physiological, pharmacological, and toxicological implications. In cells of renal proximal tubules, the vectorial secretion pathways for OCs involve expression of organic cation transporters (OCTs) and multidrug and toxin extrusion proteins (MATEs) on basolateral and apical membrane domains, respectively. This review provides an overview of documented regulatory mechanisms governing OCTs and MATEs. Additionally, regulation of these transporters under various pathological conditions is summarized. The expression and functionality of OCTs and MATEs are subject to diverse pre- and post-translational modifications, providing insights into their regulation in various pathological conditions. Typically, in diseases, downregulation of transporter expression is observed, probably as a protective mechanism to prevent additional damage to kidney tissue. This regulation may be attributed to the intricate network of modifications these transporters undergo, shedding light on their dynamic responses in pathological contexts.
Collapse
Affiliation(s)
- Moritz Pernecker
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Germany
| | - Giuliano Ciarimboli
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Germany
| |
Collapse
|
3
|
Meijer T, da Costa Pereira D, Klatt OC, Buitenhuis J, Jennings P, Wilmes A. Characterization of Organic Anion and Cation Transport in Three Human Renal Proximal Tubular Epithelial Models. Cells 2024; 13:1008. [PMID: 38920639 PMCID: PMC11202273 DOI: 10.3390/cells13121008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The polarised expression of specific transporters in proximal tubular epithelial cells is important for the renal clearance of many endogenous and exogenous compounds. Thus, ideally, the in vitro tools utilised for predictions would have a similar expression of apical and basolateral xenobiotic transporters as in vivo. Here, we assessed the functionality of organic cation and anion transporters in proximal tubular-like cells (PTL) differentiated from human induced pluripotent stem cells (iPSC), primary human proximal tubular epithelial cells (PTEC), and telomerase-immortalised human renal proximal tubular epithelial cells (RPTEC/TERT1). Organic cation and anion transport were studied using the fluorescent substrates 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (ASP) and 6-carboxyfluorescein (6-CF), respectively. The level and rate of intracellular ASP accumulation in PTL following basolateral application were slightly lower but within a 3-fold range compared to primary PTEC and RPTEC/TERT1 cells. The basolateral uptake of ASP and its subsequent apical efflux could be inhibited by basolateral exposure to quinidine in all models. Of the three models, only PTL showed a modest preferential basolateral-to-apical 6-CF transfer. These results show that organic cation transport could be demonstrated in all three models, but more research is needed to improve and optimise organic anion transporter expression and functionality.
Collapse
Affiliation(s)
- Tamara Meijer
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (T.M.); (D.d.C.P.); (O.C.K.); (P.J.)
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Daniel da Costa Pereira
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (T.M.); (D.d.C.P.); (O.C.K.); (P.J.)
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Olivia C. Klatt
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (T.M.); (D.d.C.P.); (O.C.K.); (P.J.)
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Joanne Buitenhuis
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (T.M.); (D.d.C.P.); (O.C.K.); (P.J.)
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Paul Jennings
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (T.M.); (D.d.C.P.); (O.C.K.); (P.J.)
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Anja Wilmes
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (T.M.); (D.d.C.P.); (O.C.K.); (P.J.)
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
4
|
Li Y, Liu H, Liang T, Han W, Bo Z, Qiu T, Li J, Xu M, Wang W, Yang S, Gui C. Importance of N-Glycosylation for the Expression and Function of Human Organic Anion Transporting Polypeptide 2B1. ACS Pharmacol Transl Sci 2023; 6:1347-1356. [PMID: 37854627 PMCID: PMC10580385 DOI: 10.1021/acsptsci.3c00076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Indexed: 10/20/2023]
Abstract
Human organic anion transporting polypeptide 2B1 (OATP2B1) is a membrane transporter widely expressed in organs crucial for drug absorption and disposition such as the intestine, liver, and kidney. Evidence indicates that OATP2B1 is a glycoprotein. However, the sites of glycosylation and their contribution to the function and expression of OATP2B1 are largely unknown. In this study, by site-directed mutagenesis, we determined that two of four potential N-glycosylation sites in OATP2B1, N176 and N538, are indeed glycosylated. Functional studies revealed that the transport activities of mutants N176Q and N538Q were greatly reduced as compared to that of wild-type OATP2B1. However, the reduced activity was not due to the impairment of transport function per se but due to the decreased surface expression as the Km and normalized Vmax values of N176Q and N538Q were comparable to those of OATP2B1. Quantitative polymerase chain reaction (PCR) revealed that N176Q and N538Q mutations did not affect the expression of OATP2B1 at a transcriptional level. Immunofluorescence analysis showed that deglycosylated OATP2B1 was largely retained in the endoplasmic reticulum, which may activate the endoplasmic reticulum-associated degradation pathway, and the ubiquitin-proteasome system played a major role in the degradation of OATP2B1. Taken together, OATP2B1 is N-glycosylated, and N-glycosylation is essential for the surface expression of OATP2B1 but not critical for the transport function of OATP2B1 per se.
Collapse
Affiliation(s)
| | | | | | - Wanjun Han
- College of Pharmaceutical
Sciences, Soochow University, 199 Renai Road, Suzhou Industrial
Park, Suzhou, Jiangsu 215123, People’s
Republic of China
| | - Zheyue Bo
- College of Pharmaceutical
Sciences, Soochow University, 199 Renai Road, Suzhou Industrial
Park, Suzhou, Jiangsu 215123, People’s
Republic of China
| | - Tian Qiu
- College of Pharmaceutical
Sciences, Soochow University, 199 Renai Road, Suzhou Industrial
Park, Suzhou, Jiangsu 215123, People’s
Republic of China
| | - Jiawei Li
- College of Pharmaceutical
Sciences, Soochow University, 199 Renai Road, Suzhou Industrial
Park, Suzhou, Jiangsu 215123, People’s
Republic of China
| | - Mingming Xu
- College of Pharmaceutical
Sciences, Soochow University, 199 Renai Road, Suzhou Industrial
Park, Suzhou, Jiangsu 215123, People’s
Republic of China
| | - Weipeng Wang
- College of Pharmaceutical
Sciences, Soochow University, 199 Renai Road, Suzhou Industrial
Park, Suzhou, Jiangsu 215123, People’s
Republic of China
| | - Shuang Yang
- College of Pharmaceutical
Sciences, Soochow University, 199 Renai Road, Suzhou Industrial
Park, Suzhou, Jiangsu 215123, People’s
Republic of China
| | - Chunshan Gui
- College of Pharmaceutical
Sciences, Soochow University, 199 Renai Road, Suzhou Industrial
Park, Suzhou, Jiangsu 215123, People’s
Republic of China
| |
Collapse
|
5
|
Puris E, Fricker G, Gynther M. The Role of Solute Carrier Transporters in Efficient Anticancer Drug Delivery and Therapy. Pharmaceutics 2023; 15:pharmaceutics15020364. [PMID: 36839686 PMCID: PMC9966068 DOI: 10.3390/pharmaceutics15020364] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Transporter-mediated drug resistance is a major obstacle in anticancer drug delivery and a key reason for cancer drug therapy failure. Membrane solute carrier (SLC) transporters play a crucial role in the cellular uptake of drugs. The expression and function of the SLC transporters can be down-regulated in cancer cells, which limits the uptake of drugs into the tumor cells, resulting in the inefficiency of the drug therapy. In this review, we summarize the current understanding of low-SLC-transporter-expression-mediated drug resistance in different types of cancers. Recent advances in SLC-transporter-targeting strategies include the development of transporter-utilizing prodrugs and nanocarriers and the modulation of SLC transporter expression in cancer cells. These strategies will play an important role in the future development of anticancer drug therapies by enabling the efficient delivery of drugs into cancer cells.
Collapse
|
6
|
Hau RK, Klein RR, Wright SH, Cherrington NJ. Localization of Xenobiotic Transporters Expressed at the Human Blood-Testis Barrier. Drug Metab Dispos 2022; 50:770-780. [PMID: 35307651 PMCID: PMC9190233 DOI: 10.1124/dmd.121.000748] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/07/2022] [Indexed: 10/21/2023] Open
Abstract
The blood-testis barrier (BTB) is formed by basal tight junctions between adjacent Sertoli cells (SCs) of the seminiferous tubules and acts as a physical barrier to protect developing germ cells in the adluminal compartment from reproductive toxicants. Xenobiotics, including antivirals, male contraceptives, and cancer chemotherapeutics, are known to cross the BTB, although the mechanisms that permit barrier circumvention are generally unknown. This study used immunohistological staining of human testicular tissue to determine the site of expression for xenobiotic transporters that facilitate transport across the BTB. Organic anion transporter (OAT) 1, OAT2, and organic cation transporter, novel (OCTN) 1 primarily localized to the basal membrane of SCs, whereas OCTN2, multidrug resistance protein (MRP) 3, MRP6, and MRP7 localized to SC basal membranes and peritubular myoid cells (PMCs) surrounding the seminiferous tubules. Concentrative nucleoside transporter (CNT) 2 localized to Leydig cells (LCs), PMCs, and SC apicolateral membranes. Organic cation transporter (OCT) 1, OCT2, and OCT3 mostly localized to PMCs and LCs, although there was minor staining in developing germ cells for OCT3. Organic anion transporting polypeptide (OATP) 1A2, OATP1B1, OATP1B3, OATP2A1, OATP2B1, and OATP3A1-v2 localized to SC basal membranes with diffuse staining for some transporters. Notably, OATP1C1 and OATP4A1 primarily localized to LCs. Positive staining for multidrug and toxin extrusion protein (MATE) 1 was only observed throughout the adluminal compartment. Definitive staining for CNT1, OAT3, MATE2, and OATP6A1 was not observed. The location of these transporters is consistent with their involvement in the movement of xenobiotics across the BTB. Altogether, the localization of these transporters provides insight into the mechanisms of drug disposition across the BTB and will be useful in developing tools to overcome the pharmacokinetic and pharmacodynamic difficulties presented by the BTB. SIGNIFICANCE STATEMENT: Although the total mRNA and protein expression of drug transporters in the testes has been explored, the localization of many transporters at the blood-testis barrier (BTB) has not been determined. This study applied immunohistological staining in human testicular tissues to identify the cellular localization of drug transporters in the testes. The observations made in this study have implications for the development of drugs that can effectively use transporters expressed at the basal membranes of Sertoli cells to bypass the BTB.
Collapse
Affiliation(s)
- Raymond K Hau
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| | - Robert R Klein
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| | - Stephen H Wright
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| | - Nathan J Cherrington
- Department of Pharmacology & Toxicology, College of Pharmacy (R.K.H., N.J.C.), and Departments of Pathology (R.R.K.) and Physiology (S.H.W.), College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
7
|
Brouwer KLR, Evers R, Hayden E, Hu S, Li CY, Meyer Zu Schwabedissen HE, Neuhoff S, Oswald S, Piquette-Miller M, Saran C, Sjöstedt N, Sprowl JA, Stahl SH, Yue W. Regulation of Drug Transport Proteins-From Mechanisms to Clinical Impact: A White Paper on Behalf of the International Transporter Consortium. Clin Pharmacol Ther 2022; 112:461-484. [PMID: 35390174 PMCID: PMC9398928 DOI: 10.1002/cpt.2605] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/20/2022] [Indexed: 12/14/2022]
Abstract
Membrane transport proteins are involved in the absorption, disposition, efficacy, and/or toxicity of many drugs. Numerous mechanisms (e.g., nuclear receptors, epigenetic gene regulation, microRNAs, alternative splicing, post‐translational modifications, and trafficking) regulate transport protein levels, localization, and function. Various factors associated with disease, medications, and dietary constituents, for example, may alter the regulation and activity of transport proteins in the intestine, liver, kidneys, brain, lungs, placenta, and other important sites, such as tumor tissue. This white paper reviews key mechanisms and regulatory factors that alter the function of clinically relevant transport proteins involved in drug disposition. Current considerations with in vitro and in vivo models that are used to investigate transporter regulation are discussed, including strengths, limitations, and the inherent challenges in predicting the impact of changes due to regulation of one transporter on compensatory pathways and overall drug disposition. In addition, translation and scaling of in vitro observations to in vivo outcomes are considered. The importance of incorporating altered transporter regulation in modeling and simulation approaches to predict the clinical impact on drug disposition is also discussed. Regulation of transporters is highly complex and, therefore, identification of knowledge gaps will aid in directing future research to expand our understanding of clinically relevant molecular mechanisms of transporter regulation. This information is critical to the development of tools and approaches to improve therapeutic outcomes by predicting more accurately the impact of regulation‐mediated changes in transporter function on drug disposition and response.
Collapse
Affiliation(s)
- Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Raymond Evers
- Preclinical Sciences and Translational Safety, Johnson & Johnson, Janssen Pharmaceuticals, Spring House, Pennsylvania, USA
| | - Elizabeth Hayden
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Shuiying Hu
- College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | - Stefan Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | | | - Chitra Saran
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Noora Sjöstedt
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jason A Sprowl
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Simone H Stahl
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Wei Yue
- College of Pharmacy, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
8
|
Zhang X, Wright SH. Transport Turnover Rates for Human OCT2 and MATE1 Expressed in Chinese Hamster Ovary Cells. Int J Mol Sci 2022; 23:ijms23031472. [PMID: 35163393 PMCID: PMC8836179 DOI: 10.3390/ijms23031472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
MATE1 (multidrug and toxin extruder 1) and OCT2 (organic cation transporter 2) play critical roles in organic cation excretion by the human kidney. The transporter turnover rate (TOR) is relevant to understanding both their transport mechanisms and interpreting the in vitro-in vivo extrapolation (IVIVE) required for physiologically-based pharmacokinetic (PBPK) modeling. Here, we use a quantitative western blot method to determine TORs for MATE1 and OCT2 proteins expressed in CHO cells. MATE1 and OCT2, each with a C-terminal V-5 epitope tag, were cell surface biotinylated and the amount of cell surface MATE1 and OCT2 protein was quantified by western analysis, using standard curves for the V5 epitope. Cell surface MATE1 and OCT2 protein represented 25% and 24%, respectively, of the total expression of these proteins in CHO cells. The number of cell surface transporters was ~55 fmol cm-2 for MATE1 and ~510 fmol cm-2 for OCT2. Dividing these values into the different Jmax values for transport of MPP, metformin, and atenolol mediated by MATE1 and OCT2 resulted in calculated TOR values (±SE, n = 4) of 84.0 ± 22.0 s-1 and 2.9 ± 0.6 s-1; metformin, 461.0 ± 121.0 s-1 and 12.6 ± 2.4 s-1; atenolol, 118.0 ± 31.0 s-1, respectively. These values are consistent with the TOR values determined for a variety of exchangers (NHEs), cotransporters (SGLTs, Lac permease), and uniporters (GLUTs, ENTs).
Collapse
|
9
|
Ciarimboli G. Regulation Mechanisms of Expression and Function of Organic Cation Transporter 1. Front Pharmacol 2021; 11:607613. [PMID: 33732143 PMCID: PMC7959823 DOI: 10.3389/fphar.2020.607613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
The organic cation transporter 1 (OCT1) belongs together with OCT2 and OCT3 to the solute carrier family 22 (SLC22). OCTs are involved in the movement of organic cations through the plasma membrane. In humans, OCT1 is mainly expressed in the sinusoidal membrane of hepatocytes, while in rodents, OCT1 is strongly represented also in the basolateral membrane of renal proximal tubule cells. Considering that organic cations of endogenous origin are important neurotransmitters and that those of exogenous origin are important drugs, these transporters have significant physiological and pharmacological implications. Because of the high expression of OCTs in excretory organs, their activity has the potential to significantly impact not only local but also systemic concentration of their substrates. Even though many aspects governing OCT function, interaction with substrates, and pharmacological role have been extensively investigated, less is known about regulation of OCTs. Possible mechanisms of regulation include genetic and epigenetic modifications, rapid regulation processes induced by kinases, regulation caused by protein–protein interaction, and long-term regulation induced by specific metabolic and pathological situations. In this mini-review, the known regulatory processes of OCT1 expression and function obtained from in vitro and in vivo studies are summarized. Further research should be addressed to integrate this knowledge to known aspects of OCT1 physiology and pharmacology.
Collapse
Affiliation(s)
- Giuliano Ciarimboli
- Experimental Nephrology, Medicine Clinic D, Münster University Hospital, Münster, Germany
| |
Collapse
|
10
|
Cong X, Liu X, Dong X, Fang S, Sun Z, Fan J. Silencing GnT-V reduces oxaliplatin chemosensitivity in human colorectal cancer cells through N-glycan alteration of organic cation transporter member 2. Exp Ther Med 2020; 21:128. [PMID: 33376510 PMCID: PMC7751481 DOI: 10.3892/etm.2020.9560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
Organic cation transporter member 2 (OCT2) is an N-glycosylated transporter that has been shown to be closely associated with the transport of antitumor drugs. Oxaliplatin, a platinum-based drug, is used for the chemotherapy of colorectal cancer (CRC). However, oxaliplatin resistance is a major challenge in the treatment of advanced CRC. The aim of the present study was to better understand the mechanism underlying the chemosensitivity of CRC cells to oxaliplatin. The present study describes a potential novel strategy for enhancing oxaliplatin sensitivity involving the glycosylation of this drug transporter, specifically the modification of β-1,6-N-acetylglucosamine (GlcNAc) residues by N-acetylglucosaminyltransferase V (GnT-V). The results revealed that the downregulation of GnT-V inhibited the oxaliplatin chemosensitivity of CW-2 cells. Furthermore, the knockdown of GnT-V caused a marked reduction in the presence of β-1,6-GlcNAc structures on OCT2 and decreased the localization of OCT2 in the cytomembrane, which were associated with a reduced uptake of oxaliplatin in wild-type and oxaliplatin-resistant CW-2 cells. Overall, the study provides novel insights into the molecular mechanism by which GnT-V regulates the chemosensitivity to oxaliplatin, which involves the modulation of the drug transporter OCT2 by N-glycosylation in CRC cells.
Collapse
Affiliation(s)
- Xi Cong
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xingwan Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Xiaopeng Dong
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Shuoshuo Fang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Zheng Sun
- Institute of Integrative Medicine, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Jianhui Fan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China.,Institute of Glycobiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
11
|
Rapid Regulation of Human Multidrug and Extrusion Transporters hMATE1 and hMATE2K. Int J Mol Sci 2020; 21:ijms21145157. [PMID: 32708212 PMCID: PMC7404265 DOI: 10.3390/ijms21145157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022] Open
Abstract
Vectorial transport of organic cations (OCs) in renal proximal tubules is mediated by sequential action of human OC transporter 2 (hOCT2) and human multidrug and toxic extrusion protein 1 and 2K (hMATE1 and hMATE2K), expressed in the basolateral (hOCT2) and luminal (hMATE1 and hMATE2K) plasma membranes, respectively. It is well known that hOCT2 activity is subjected to rapid regulation by several signaling pathways, suggesting that renal OC secretion may be acutely adapted to physiological requirements. Therefore, in this work, the acute regulation of hMATEs stably expressed in human embryonic kidney cells was characterized using the fluorescent substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium (ASP+) as a marker. A specific regulation of ASP+ transport by hMATE1 and hMATE2K measured in uptake and efflux configurations was observed. In the example of hMATE1 efflux reduction by inhibition of casein kinase II, it was also shown that this regulation is able to modify transcellular transport of ASP+ in Madin–Darby canine kidney II cells expressing hOCT2 and hMATE1 on the basolateral and apical membrane domains, respectively. The activity of hMATEs can be rapidly regulated by some intracellular pathways, which sometimes are common to those found for hOCTs. Interference with these pathways may be important to regulate renal secretion of OCs.
Collapse
|
12
|
Vildhede A, Kimoto E, Pelis RM, Rodrigues AD, Varma MV. Quantitative Proteomics and Mechanistic Modeling of Transporter‐Mediated Disposition in Nonalcoholic Fatty Liver Disease. Clin Pharmacol Ther 2019; 107:1128-1137. [DOI: 10.1002/cpt.1699] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Anna Vildhede
- Medicine Design Worldwide R&D Pfizer Inc. Groton Connecticut USA
| | - Emi Kimoto
- Medicine Design Worldwide R&D Pfizer Inc. Groton Connecticut USA
| | - Ryan M. Pelis
- Department of Pharmaceutical Sciences Binghamton University Binghamton New York USA
| | | | | |
Collapse
|
13
|
Wright SH. Molecular and cellular physiology of organic cation transporter 2. Am J Physiol Renal Physiol 2019; 317:F1669-F1679. [PMID: 31682169 DOI: 10.1152/ajprenal.00422.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Organic cation transporters play a critical role in mediating the distribution of cationic pharmaceuticals. Indeed, organic cation transporter (OCT)2 is the initial step in the renal secretion of organic cations and consequently plays a defining role in establishing the pharmacokinetics of many cationic drugs. Although a hallmark of OCTs is their broad selectivity, this characteristic also makes them targets for unwanted, adverse drug-drug interactions (DDIs), making them a focus for efforts to develop models of ligand interaction that could predict and preempt these adverse interactions. This review discusses the molecular characteristics of these transporters as well as the evidence that established the OCTs as key players in the distribution of organic cations. However, the primary focus is the present understanding of the complexity of ligand interaction with OCTs, particularly OCT2, including evidence for the presence of multiple ligand-binding sites and the influence of substrate structure on the affinity of the transporter for inhibitory ligands. This leads to a discussion of the complexities associated with the development of protocols for assessing the inhibitory potential of new molecular entities to perpetrate unwanted DDIs, the criteria that should be considered in the interpretation of the results of such protocols, and the challenges associated with development of models capable of predicting unwanted DDIs.
Collapse
Affiliation(s)
- Stephen H Wright
- Department of Physiology, University of Arizona, Tucson, Arizona
| |
Collapse
|
14
|
Brosseau N, Ramotar D. The human organic cation transporter OCT1 and its role as a target for drug responses. Drug Metab Rev 2019; 51:389-407. [PMID: 31564168 DOI: 10.1080/03602532.2019.1670204] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The human organic cation uptake transporter OCT1, encoded by the SLC22A1 gene, is highly expressed in the liver and reported to possess a broad substrate specificity. OCT1 operates by facilitated diffusion and allows the entry of nutrients into cells. Recent findings revealed that OCT1 can mediate the uptake of drugs for treating various diseases such as cancers. The levels of OCT1 expression correlate with the responses towards many drugs and functionally defective OCT1 lead to drug resistance. It has been recently proposed that OCT1 should be amongst the crucial drug targets used for pharmacogenomic analyses. Several single nucleotide polymorphisms exist and are distributed across the entire OCT1 gene. While there are differences in the OCT1 gene polymorphisms between populations, there are at least five variants that warrant consideration in any genetic screen. To date, and despite two decades of research into OCT1 functional role, it still remains uncertain what are the define substrates for this uptake transporter, although studies from mice revealed that one of the substrates is vitamin B1. It is also unclear how OCT1 recognizes a broad array of ligands and whether this involves specific modifications and interactions with other proteins. In this review, we highlight the current findings related to OCT1 with the aim of propelling further studies on this key uptake transporter.
Collapse
Affiliation(s)
- Nicolas Brosseau
- Department of Medicine, Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal, Montréal, Québec, Canada
| | - Dindial Ramotar
- Department of Medicine, Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
15
|
Evers R, Piquette-Miller M, Polli JW, Russel FGM, Sprowl JA, Tohyama K, Ware JA, de Wildt SN, Xie W, Brouwer KLR. Disease-Associated Changes in Drug Transporters May Impact the Pharmacokinetics and/or Toxicity of Drugs: A White Paper From the International Transporter Consortium. Clin Pharmacol Ther 2018; 104:900-915. [PMID: 29756222 PMCID: PMC6424581 DOI: 10.1002/cpt.1115] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/23/2018] [Accepted: 05/07/2018] [Indexed: 12/11/2022]
Abstract
Drug transporters are critically important for the absorption, distribution, metabolism, and excretion (ADME) of many drugs and endogenous compounds. Therefore, disruption of these pathways by inhibition, induction, genetic polymorphisms, or disease can have profound effects on overall physiology, drug pharmacokinetics, drug efficacy, and toxicity. This white paper provides a review of changes in transporter function associated with acute and chronic disease states, describes regulatory pathways affecting transporter expression, and identifies opportunities to advance the field.
Collapse
Affiliation(s)
- Raymond Evers
- Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Kenilworth, New Jersey, USA
| | | | - Joseph W Polli
- Mechanistic Safety and Drug Disposition, GlaxoSmithKline, King of Prussia, Pennsylvania, USA
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jason A Sprowl
- Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D'Youville College School, Buffalo, New York, USA
| | - Kimio Tohyama
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company, Fujisawa, Kanagawa, Japan
| | - Joseph A Ware
- Department of Small Molecule Pharmaceutical Sciences, Genentech, South San Francisco, California, USA
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology and Department of Intensive Care, Radboud University Medical Center, Nijmegen, The Netherlands, and Intensive Care and Department of Pediatric Surgery, Erasmus MC Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
16
|
Brosseau N, Andreev E, Ramotar D. Uptake Assays to Monitor Anthracyclines Entry into Mammalian Cells. Bio Protoc 2017; 7:e2555. [PMID: 34541201 DOI: 10.21769/bioprotoc.2555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/16/2017] [Accepted: 08/28/2017] [Indexed: 11/02/2022] Open
Abstract
Anthracyclines, such as doxorubicin and daunorubicin, are DNA damaging agents that autofluoresce and can be readily detected in cells. Herein, we developed suitable assays to quantify and localize daunorubicin in mammalian cells. These assays can be exploited to identify components that are involved in the uptake of anthracyclines.
Collapse
Affiliation(s)
- Nicolas Brosseau
- Maisonneuve-Rosemont Hospital Research Center, and the Université de Montréal, Faculty of Medicine, Department of Medicine, Montréal, Quebec, Canada
| | - Emil Andreev
- Maisonneuve-Rosemont Hospital Research Center, and the Université de Montréal, Faculty of Medicine, Department of Medicine, Montréal, Quebec, Canada
| | - Dindial Ramotar
- Maisonneuve-Rosemont Hospital Research Center, and the Université de Montréal, Faculty of Medicine, Department of Medicine, Montréal, Quebec, Canada
| |
Collapse
|
17
|
Xu D, You G. Loops and layers of post-translational modifications of drug transporters. Adv Drug Deliv Rev 2017; 116:37-44. [PMID: 27174152 DOI: 10.1016/j.addr.2016.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022]
Abstract
Drug transporters encoded by solute carrier (SLC) family are distributed in multiple organs including kidney, liver, placenta, brain, and intestine, where they mediate the absorption, distribution, and excretion of a diverse array of environmental toxins and clinically important drugs. Alterations in the expression and function of these transporters play important roles in intra- and inter-individual variability of the therapeutic efficacy and the toxicity of many drugs. Consequently, the activity of these transporters must be highly regulated to carry out their normal functions. While it is clear that the regulation of these transporters tightly depends on genetic mechanisms, many studies have demonstrated that these transporters are the target of various post-translational modifications. This review article summarizes the recent advances in identifying the posttranslational modifications underlying the regulation of the drug transporters of SLC family. Such mechanisms are pivotal not only in physiological conditions, but also in diseases.
Collapse
|
18
|
Unstirred Water Layers and the Kinetics of Organic Cation Transport. Pharm Res 2015; 32:2937-49. [PMID: 25791216 DOI: 10.1007/s11095-015-1675-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/10/2015] [Indexed: 01/21/2023]
Abstract
PURPOSE Unstirred water layers (UWLs) present an unavoidable complication to the measurement of transport kinetics in cultured cells, and the high rates of transport achieved by overexpressing heterologous transporters exacerbate the UWL effect. This study examined the correlation between measured Jmax and Kt values and the effect of manipulating UWL thickness or transport Jmax on the accuracy of experimentally determined kinetics of the multidrug transporters, OCT2 and MATE1. METHODS Transport of TEA and MPP was measured in CHO cells that stably expressed human OCT2 or MATE1. UWL thickness was manipulated by vigorous reciprocal shaking. Several methods were used to manipulate maximal transport rates. RESULTS Vigorous stirring stimulated uptake of OCT2-mediated transport by decreasing apparent Kt (Ktapp) values. Systematic reduction in transport rates was correlated with reduction in Ktapp values. The slope of these relationships indicated a 1500 μm UWL in multiwell plates. Reducing the influence of UWLs (by decreasing either their thickness or the Jmax of substrate transport) reduced Ktapp by 2-fold to >10-fold. CONCLUSIONS Failure to take into account the presence of UWLs in experiments using cultured cells to measure transport kinetics can result in significant underestimates of the apparent affinity of multidrug transporters for substrates.
Collapse
|
19
|
Expression of xenobiotic transporters in the human renal proximal tubule cell line RPTEC/TERT1. Toxicol In Vitro 2014; 30:95-105. [PMID: 25500123 DOI: 10.1016/j.tiv.2014.12.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 11/17/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022]
Abstract
The kidney is a major target for drug-induced injury, primarily due the fact that it transports a wide variety of chemical entities into and out of the tubular lumen. Here, we investigated the expression of the main xenobiotic transporters in the human renal proximal tubule cell line RPTEC/TERT1 at an mRNA and/or protein level. RPTEC/TERT1 cells expressed OCT2, OCT3, OCTN2, MATE1, MATE2, OAT1, OAT3 and OAT4. The functionality of the OCTs was demonstrated by directional transport of the fluorescent dye 4-Di-1-ASP. In addition, P-glycoprotein activity in RPTEC/TERT1 cells was verified by fluorescent dye retention in presence of various P-glycoprotein inhibitors. In comparison to proliferating cells, contact inhibited RPTEC/TERT1 cells expressed increased mRNA levels of several ABC transporter family members and were less sensitive to cyclosporine A. We conclude that differentiated RPTEC/TERT1 cells are well suited for utilisation in xenobiotic transport and pharmacokinetic studies.
Collapse
|
20
|
Abstract
Organic anions and cations (OAs and OCs, respectively) comprise an extraordinarily diverse array of compounds of physiological, pharmacological, and toxicological importance. The kidney, primarily the renal proximal tubule, plays a critical role in regulating the plasma concentrations of these organic electrolytes and in clearing the body of potentially toxic xenobiotics agents, a process that involves active, transepithelial secretion. This transepithelial transport involves separate entry and exit steps at the basolateral and luminal aspects of renal tubular cells. Basolateral and luminal OA and OC transport reflects the concerted activity of a suite of separate proteins arranged in parallel in each pole of proximal tubule cells. The cloning of multiple members of several distinct transport families, the subsequent characterization of their activity, and their subcellular localization within distinct regions of the kidney, now allows the development of models describing the molecular basis of the renal secretion of OAs and OCs. New information on naturally occurring genetic variation of many of these processes provides insight into the basis of observed variability of drug efficacy and unwanted drug-drug interactions in human populations. The present review examines recent work on these issues.
Collapse
Affiliation(s)
- Ryan M Pelis
- Novartis Pharmaceuticals Corp., Translational Sciences, East Hanover, New Jersey, USA
| | | |
Collapse
|
21
|
Klotho has dual protective effects on cisplatin-induced acute kidney injury. Kidney Int 2013; 85:855-70. [PMID: 24304882 PMCID: PMC3972320 DOI: 10.1038/ki.2013.489] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 09/11/2013] [Accepted: 09/19/2013] [Indexed: 02/07/2023]
Abstract
Klotho protects the kidney from ischemia-reperfusion injury, but its effect on nephrotoxins is unknown. Here we determined whether Klotho protects the kidney from cisplatin toxicity. Cisplatin increased plasma creatinine and induced tubular injury, which were exaggerated in Klotho haplosufficient (Kl/+) and ameliorated in transgenic Klotho overexpressing (Tg-Kl) mice. Neutrophil gelatinase-associated lipocalin and active caspase-3 protein and the number of apoptotic cells in the kidney were higher in Kl/+ and lower in Tg-Kl compared with wild-type mice. Klotho suppressed basolateral uptake of cisplatin by the normal rat kidney cell line (NRK), an effect similar to cimetidine, a known inhibitor of organic cation transport (OCT). A decrease in cell surface and total OCT2 protein and OCT activity by Klotho was mimicked by β-glucuronidase. The Klotho effect was attenuated by β-glucuronidase inhibition. On the other hand, OCT2 mRNA was reduced by Klotho but not by β-glucuronidase. Moreover, cimetidine inhibited OCT activity but not OCT2 expression. Unlike cimetidine, Klotho reduced cisplatin-induced apoptosis from either the basolateral or apical side and even when added after NRK cells were already loaded with cisplatin. Thus, Klotho protects the kidney against cisplatin nephrotoxicity by reduction of basolateral uptake of cisplatin by OCT2 and a direct anti-apoptotic effect independent of cisplatin uptake. Klotho may be a useful agent to prevent and treat cisplatin-induced nephrotoxicity.
Collapse
|
22
|
Organic cation transporter 2 (SLC22A2), a low-affinity and high-capacity choline transporter, is preferentially enriched on synaptic vesicles in cholinergic neurons. Neuroscience 2013; 252:212-21. [DOI: 10.1016/j.neuroscience.2013.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/07/2013] [Accepted: 08/07/2013] [Indexed: 01/11/2023]
|
23
|
Pelis RM, Dangprapai Y, Cheng Y, Zhang X, Terpstra J, Wright SH. Functional significance of conserved cysteines in the human organic cation transporter 2. Am J Physiol Renal Physiol 2012; 303:F313-20. [PMID: 22573376 PMCID: PMC3404585 DOI: 10.1152/ajprenal.00038.2012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 04/26/2012] [Indexed: 01/11/2023] Open
Abstract
The significance of conserved cysteines in the human organic cation transporter 2 (hOCT2), namely the six cysteines in the long extracellular loop (loop cysteines) and C474 in transmembrane helix 11, was examined. Uptake of tetraethylammonium (TEA) and 1-methyl-4-phenypyridinium (MPP) into Chinese hamster ovary cells was stimulated >20-fold by hOCT2 expression. Both cell surface expression and transport activity were reduced considerably following mutation of individual loop cysteines (C51, C63, C89, C103, and C143), and the C89 and C103 mutants had reduced Michaelis constants (K(t)) for MPP. The loop cysteines were refractory to interaction with thiol-reactive biotinylation reagents, except after pretreatment of intact cells with dithiothreitol or following cell membrane solubilization. Reduction of disulfide bridge(s) did not affect transport, but labeling the resulting free thiols with maleimide-PEO(2)-biotin did. Mutation of C474 to an alanine or phenylalanine did not affect the K(t) value for MPP. In contrast, the K(t) value associated with TEA transport was reduced sevenfold in the C474A mutant, and the C474F mutant failed to transport TEA. This study shows that some but not all of the six extracellular loop cysteines exist within disulfide bridge(s). Each loop cysteine is important for plasma membrane targeting, and their mutation can influence substrate binding. The effect of C474 mutation on TEA transport suggests that it contributes to a TEA binding surface. Given that TEA and MPP are competitive inhibitors, the differential effects of C474 modification on TEA and MPP binding suggest that the binding surfaces for each are distinct, but overlapping in area.
Collapse
Affiliation(s)
- Ryan M Pelis
- Department of Pharmacology, Dalhousie University, 5850 College St., Halifax, Nova Scotia, Canada.
| | | | | | | | | | | |
Collapse
|
24
|
Zhang X, He X, Baker J, Tama F, Chang G, Wright SH. Twelve transmembrane helices form the functional core of mammalian MATE1 (multidrug and toxin extruder 1) protein. J Biol Chem 2012; 287:27971-82. [PMID: 22722930 DOI: 10.1074/jbc.m112.386979] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The x-ray structure of the prototypic MATE family member, NorM from Vibrio cholerae, reveals a protein fold composed of 12 transmembrane helices (TMHs), confirming hydropathy analyses of the majority of (prokaryotic and plant) MATE transporters. However, the mammalian MATEs are generally predicted to have a 13(th) TMH and an extracellular C terminus. Here we affirm this prediction, showing that the C termini of epitope-tagged, full-length human, rabbit, and mouse MATE1 were accessible to antibodies from the extracellular face of the membrane. Truncation of these proteins at or near the predicted junction between the 13(th) TMH and the long cytoplasmic loop that precedes it resulted in proteins that (i) trafficked to the membrane and (ii) interacted with antibodies only after permeabilization of the plasma membrane. CHO cells expressing rbMate1 truncated at residue Gly-545 supported levels of pH-sensitive transport similar to that of cells expressing the full-length protein. Although the high transport rate of the Gly-545 truncation mutant was associated with higher levels of membrane expression (than full-length MATE1), suggesting the 13(th) TMH may influence substrate translocation, the selectivity profile of the mutant indicated that TMH13 has little impact on ligand binding. We conclude that the functional core of MATE1 consists of 12 (not 13) TMHs. Therefore, we used the x-ray structure of NorM to develop a homology model of the first 12 TMHs of MATE1. The model proved to be stable in molecular dynamic simulations and agreed with topology evident from preliminary cysteine scanning of intracellular versus extracellular loops.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Department of Physiology, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | | | |
Collapse
|
25
|
Brast S, Grabner A, Sucic S, Sitte HH, Hermann E, Pavenstädt H, Schlatter E, Ciarimboli G. The cysteines of the extracellular loop are crucial for trafficking of human organic cation transporter 2 to the plasma membrane and are involved in oligomerization. FASEB J 2011; 26:976-86. [PMID: 22085643 DOI: 10.1096/fj.11-180679] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human organic cation transporter 2 (hOCT2) is involved in transport of many endogenous and exogenous organic cations, mainly in kidney and brain cells. Because the quaternary structure of transmembrane proteins plays an essential role for their cellular trafficking and function, we investigated whether hOCT2 forms oligomeric complexes, and if so, which part of the transporter is involved in the oligomerization. A yeast 2-hybrid mating-based split-ubiquitin system (mbSUS), fluorescence resonance energy transfer, Western blot analysis, cross-linking experiments, immunofluorescence, and uptake measurements of the fluorescent organic cation 4-(4-(dimethylamino)styryl)-N-methylpyridinium were applied to human embryonic kidney 293 (HEK293) cells transfected with hOCT2 and partly also to freshly isolated human proximal tubules. The role of cysteines for oligomerization and trafficking of the transporter to the plasma membranes was investigated in cysteine mutants of hOCT2. hOCT2 formed oligomers both in the HEK293 expression system and in native human kidneys. The cysteines of the large extracellular loop are important to enable correct folding, oligomeric assembly, and plasma membrane insertion of hOCT2. Mutation of the first and the last cysteines of the loop at positions 51 and 143 abolished oligomer formation. Thus, the cysteines of the extracellular loop are important for correct trafficking of the transporter to the plasma membrane and for its oligomerization.
Collapse
Affiliation(s)
- Sabine Brast
- Experimentelle Nephrologie, Medizinische Klinik und Poliklinik D, Domagkstrasse 3A, 48149 Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Astorga B, Wunz TM, Morales M, Wright SH, Pelis RM. Differences in the substrate binding regions of renal organic anion transporters 1 (OAT1) and 3 (OAT3). Am J Physiol Renal Physiol 2011; 301:F378-86. [PMID: 21543413 PMCID: PMC3154592 DOI: 10.1152/ajprenal.00735.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/02/2011] [Indexed: 12/22/2022] Open
Abstract
This study examined the selectivity of organic anion transporters OAT1 and OAT3 for structural congeners of the heavy metal chelator 2,3-dimercapto-1-propanesulfonic acid (DMPS). Thiol-reactive reagents were also used to test structural predictions based on a homology model of OAT1 structure. DMPS was near equipotent in its ability to inhibit OAT1 (IC(50) = 83 μM) and OAT3 (IC(50) = 40 μM) expressed in Chinese hamster ovary cells. However, removal of a thiol group (3-mercapto-1-propanesulfonic acid) resulted in a 2.5-fold increase in IC(50) toward OAT1 vs. a ∼55-fold increase in IC(50) toward OAT3. The data suggested that compound volume/size is important for binding to OAT1/OAT3. The sensitivity to HgCl(2) of OAT1 and OAT3 was also dramatically different, with IC(50) values of 104 and 659 μM, respectively. Consistent with cysteines of OAT1 being more accessible from the external medium than those of OAT3, thiol-reactive reagents reacted preferentially with OAT1 in cell surface biotinylation assays. OAT1 was less sensitive to HgCl(2) inhibition and less reactive toward membrane-impermeant thiol reactive reagents following mutation of cysteine 440 (C440) to an alanine. These data indicate that C440 in transmembrane helix 10 of OAT1 is accessible from the extracellular space. Indeed, C440 was exposed to the aqueous phase of the presumptive substrate translocation pathway in a homology model of OAT1 structure. The limited thiol reactivity in OAT3 suggests that the homologous cysteine residue (C428) is less accessible. Consistent with their homolog-specific selectivities, these data highlight structural differences in the substrate binding regions of OAT1 and OAT3.
Collapse
Affiliation(s)
- Bethzaida Astorga
- Dept. of Pharmacology, College of Medicine, University of Arizona, Tucson, USA
| | | | | | | | | |
Collapse
|
27
|
Filippo CADS, Ardon O, Longo N. Glycosylation of the OCTN2 carnitine transporter: study of natural mutations identified in patients with primary carnitine deficiency. Biochim Biophys Acta Mol Basis Dis 2010; 1812:312-20. [PMID: 21126579 DOI: 10.1016/j.bbadis.2010.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 11/14/2010] [Accepted: 11/19/2010] [Indexed: 12/30/2022]
Abstract
Primary carnitine deficiency is caused by impaired activity of the Na(+)-dependent OCTN2 carnitine/organic cation transporter. Carnitine is essential for entry of long-chain fatty acids into mitochondria and its deficiency impairs fatty acid oxidation. Most missense mutations identified in patients with primary carnitine deficiency affect putative transmembrane or intracellular domains of the transporter. Exceptions are the substitutions P46S and R83L located in an extracellular loop close to putative glycosylation sites (N57, N64, and N91) of OCTN2. P46S and R83L impaired glycosylation and maturation of OCTN2 transporters to the plasma membrane. We tested whether glycosylation was essential for the maturation of OCTN2 transporters to the plasma membrane. Substitution of each of the three asparagine (N) glycosylation sites with glutamine (Q) decreased carnitine transport. Substitution of two sites at a time caused a further decline in carnitine transport that was fully abolished when all three glycosylation sites were substituted by glutamine (N57Q/N64Q/N91Q). Kinetic analysis of carnitine and sodium-stimulated carnitine transport indicated that all substitutions decreased the Vmax for carnitine transport, but N64Q/N91Q also significantly increased the Km toward carnitine, indicating that these two substitutions affected regions of the transporter important for substrate recognition. Western blot analysis confirmed increased mobility of OCTN2 transporters with progressive substitutions of asparagines 57, 64 and/or 91 with glutamine. Confocal microscopy indicated that glutamine substitutions caused progressive retention of OCTN2 transporters in the cytoplasm, up to full retention (such as that observed with R83L) when all three glycosylation sites were substituted. Tunicamycin prevented OCTN2 glycosylation, but it did not impair maturation to the plasma membrane. These results indicate that OCTN2 is physiologically glycosylated and that the P46S and R83L substitutions impair this process. Glycosylation does not affect maturation of OCTN2 transporters to the plasma membrane, but the 3 asparagines that are normally glycosylated are located in a region important for substrate recognition and turnover rate.
Collapse
|
28
|
Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 2010; 62:1-96. [PMID: 20103563 PMCID: PMC2835398 DOI: 10.1124/pr.109.002014] [Citation(s) in RCA: 580] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting beta polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) alpha and beta] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory factors that influence transporter expression and function, including transcriptional activation and post-translational modifications as well as subcellular trafficking. Sex differences, ontogeny, and pharmacological and toxicological regulation of transporters are also addressed. Transporters are important transmembrane proteins that mediate the cellular entry and exit of a wide range of substrates throughout the body and thereby play important roles in human physiology, pharmacology, pathology, and toxicology.
Collapse
Affiliation(s)
- Curtis D Klaassen
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160-7417, USA.
| | | |
Collapse
|
29
|
Zhang X, Wright SH. MATE1 has an external COOH terminus, consistent with a 13-helix topology. Am J Physiol Renal Physiol 2009; 297:F263-71. [PMID: 19515813 DOI: 10.1152/ajprenal.00123.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The mammalian members of the Multidrug And Toxin Extruder family, i.e., MATE1 and MATE2-K, are suspected of mediating the luminal step in renal secretion of organic cations. The 1,000+ prokaryotic/fungal/plant MATE family members are predicted to have 12 transmembrane helices (TMHs), whereas MATE1/2-K appear to have an additional (13th) COOH-terminal helix. Here, we determined whether rabbit MATE1 has an external COOH terminus, consistent with the presence of 13 TMHs. A V5 epitope tag at the COOH terminus of MATE1 was freely accessible to external V5 antibody, whereas tags at the NH(2) terminus, or at sites of truncation within the long cytoplasmic loop between predicted TMHs 12 and 13, were only accessible to the V5 antibody following permeabilization of the membrane. The truncated mutants that lacked TMH13 still retained transport activity, indicating that the terminal helix was not necessary for transport function. Cells that expressed a mutant lacking only TMH13 displayed similar K(t) and J(max) values to those of the full-length protein, although when normalized to protein expressed at the plasma membrane, the transport rate of the mutant was <10% that of full-length MATE1. An effectively cysteine-less MATE1 mutant (Delta13Cys) was functional and refractory to reaction with the impermeant marker of accessible cysteine residues, maleimide-PEO(2)-biotin. Delta13Cys mutants with an added cysteine residue at the truncation sites within the terminal cytoplasmic loop reacted with maleimide biotin only after permeabilization of the membrane, whereas a mutant with a cysteine residue at the COOH terminus was freely accessible to maleimide biotin. These data are consistent with a mammalian MATE topology that includes 13 TMHs and indicate that the terminal TMH, although not necessary for transport function, may influence the turnover characteristics of the transporter.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA
| | | |
Collapse
|
30
|
Cheng Y, Wright SH, Hooth MJ, Sipes IG. Characterization of the disposition and toxicokinetics of N-butylpyridinium chloride in male F-344 rats and female B6C3F1 mice and its transport by organic cation transporter 2. Drug Metab Dispos 2009; 37:909-16. [PMID: 19171679 PMCID: PMC2680530 DOI: 10.1124/dmd.108.022681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 01/21/2009] [Indexed: 01/07/2023] Open
Abstract
Studies were conducted to characterize the effect of dose and route of administration on the disposition of N-butylpyridinium chloride (NBuPy-Cl), an ionic liquid with solvent properties. Urine was the major route of NBuPy-Cl excretion after intravenous (5 mg/kg), single oral (0.5, 5, or 50 mg/kg), or repeated oral (50 mg/kg/day, 5 days) administration to male F-344 rats and single oral (50 mg/kg) administration to female B6C3F1 mice. Depending on the vehicle, absorption after dermal application (5 mg/kg, 125 microg/cm(2)) was 10 to 35% at 96 h. After the single intravenous dose, the blood concentration of NBuPy-Cl decreased in a biphasic manner with an elimination half-life of 2.2 h and a clearance of 7 ml/min. After single oral administration of NBuPy-Cl (50 mg/kg), maximum blood concentration was reached at 1.3 h, and the bioavailability was determined to be 47% at 6 h based on the blood toxicokinetics and 67% at 72 h based on urinary excretion. In all the urine and blood samples, only the parent compound was detected. Coadministration of NBuPy-Cl and inulin (by intravenous injection) revealed that the clearance of NBuPy-Cl exceeded the rat glomerular filtration rate. After incubation with Chinese hamster ovary cells expressing human organic cation transporter 2 (hOCT2), NBuPy-Cl was transported effectively (K(t) = 18 microM), and also a potent inhibitor of hOCT2 mediated tetraethylammonium transport (IC(50) = 2.3 microM). In summary, NBuPy-Cl is partially absorbed from the gastrointestinal tract and eliminated rapidly in the urine as parent compound most likely by renal glomerular filtration and OCT2-mediated secretion.
Collapse
Affiliation(s)
- Y Cheng
- Department of Pharmacology, College of Medicine, The University of Arizona, P.O. Box 245050, Tucson, AZ 85724-5050, USA
| | | | | | | |
Collapse
|
31
|
Abstract
1. Organic cation transporters (OCTs) translocate endogenous (e.g. dopamine) and exogenous (e.g. drugs) substances of cationic nature and, therefore, play an important role in the detoxification of exogenous compounds. This review aims to furnish essential information on OCTs, with an emphasis on pharmacological aspects. 2. Analysis of the literature on OCTs makes clear that there is a species- and organ-specific distribution of the different isoforms, which can also be differentially regulated. OCTs are responsible for the excretion and/or distribution of many drugs and also for serious tissue-specific side-effects such as cisplatin-induced nephrotoxicity. The presence of single nucleotide polymorphisms in these transporters significantly influences the response of patients to medication, as demonstrated for the antidiabetic drug metformin. 3. A substantial amount of research has to be undertaken to clarify further the OCT structure-function relationships specifically to define the role of oligomerization on their activity and regulation, to identify intracellular interaction partners of OCTs, and to characterize their pharmacogenetic aspects.
Collapse
Affiliation(s)
- G Ciarimboli
- Medizinische Klinik und Poliklinik D, Experimentelle Nephrologie, Universitatsklinikum Munster, Germany.
| |
Collapse
|
32
|
Ahlin G, Karlsson J, Pedersen JM, Gustavsson L, Larsson R, Matsson P, Norinder U, Bergström CAS, Artursson P. Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1. J Med Chem 2008; 51:5932-42. [PMID: 18788725 DOI: 10.1021/jm8003152] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The liver-specific organic cation transport protein (OCT1; SLC22A1) transports several cationic drugs including the antidiabetic drug metformin and the anticancer agents oxaliplatin and imatinib. In this study, we explored the chemical space of registered oral drugs with the aim of studying the inhibition pattern of OCT1 and of developing predictive computational models of OCT1 inhibition. In total, 191 structurally diverse compounds were examined in HEK293-OCT1 cells. The assay identified 47 novel inhibitors and confirmed 15 previously known inhibitors. The enrichment of OCT1 inhibitors was seen in several drug classes including antidepressants. High lipophilicity and a positive net charge were found to be the key physicochemical properties for OCT1 inhibition, whereas a high molecular dipole moment and many hydrogen bonds were negatively correlated to OCT1 inhibition. The data were used to generate OPLS-DA models for OCT1 inhibitors; the final model correctly predicted 82% of the inhibitors and 88% of the noninhibitors of the test set.
Collapse
Affiliation(s)
- Gustav Ahlin
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pelis RM, Hartman RC, Wright SH, Wunz TM, Groves CE. Influence of estrogen and xenoestrogens on basolateral uptake of tetraethylammonium by opossum kidney cells in culture. J Pharmacol Exp Ther 2007; 323:555-61. [PMID: 17684116 DOI: 10.1124/jpet.107.126748] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The sex steroid hormone estrogen down-regulates renal organic cation (OC) transport in animals, and it may contribute to sex-related differences in xenobiotic accumulation and excretion. Also, the presence of various endocrine-disrupting chemicals, i.e., environmental chemicals that possess estrogenic activity (e.g., xenoestrogens) may down-regulate various transporters involved in renal accumulation and excretion of xenobiotics. The present study characterizes the mechanism by which long-term (6-day) incubation with physiological concentrations of 17beta-estradiol (E(2)) or the xenoestrogens diethylstilbestrol (DES) and bisphenol A (BPA) regulates the basolateral membrane transport of the OC tetraethylammonium (TEA) in opossum kidney (OK) cell renal cultures. Both 17beta-E(2) and the xenoestrogen DES produced a dose- and time-dependent inhibition of basolateral TEA uptake in OK cell cultures, whereas the weakly estrogenic BPA had no effect on TEA uptake. Treatment for 6 days with either 1 nM 17beta-E(2) or DES reduced TEA uptake by approximately 30 and 40%, respectively. These effects were blocked completely by the estrogen receptor antagonist ICI 182780 (Faslodex, fulvestrant), suggesting that these estrogens regulate OC transport through the estrogen receptor, which was detected (estrogen receptor alpha) in OK cell cultures by reverse transcription-polymerase chain reaction. The J(max) value for TEA uptake in 17beta-E(2)- and DES-treated OK cell cultures was approximately 40 to 50% lower than for ethanol-treated cultures, whereas K(t) was unaffected. This reduction in transport capacity was correlated with a reduction in OC transporter OCT1 protein expression following treatment with both agents.
Collapse
Affiliation(s)
- Ryan M Pelis
- Department of Physiology, The University of Arizona, Tucson, AZ 85724, USA.
| | | | | | | | | |
Collapse
|