1
|
Huynh NV, Mendoza LD, Nguyen H, Rehage C, Saurage EB, Davis P, Hyndman KA. Lysine acetylation of aquaporin-3 promotes water permeability but is not essential for urine concentrating ability. Am J Physiol Renal Physiol 2025; 328:F517-F529. [PMID: 40062363 DOI: 10.1152/ajprenal.00037.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Aquaporin-3 (AQP3) mediates basolateral water transport in the kidney principal cells contributing to urine concentration. We previously identified the acetylation of lysine 282 (K282) in the C-terminus of AQP3, which we hypothesized as a positive regulator of AQP3 water permeability. AQP3 acetylation (K282Q or Q) or deacetylation (K282R or R) mimetic mutant mice models were created using CRISPR/Cas9. Male and female wild-type (WT) and mutant mice were assigned to hydrating diets and water deprivation protocols. Urine and plasma osmolality in response to acute vasopressin receptor-2 activation with desmopressin (dDAVP) or inhibition by tolvaptan were determined. In vitro water permeability of murine principal kidney cortical collecting duct (mpkCCD) cells stably expressing AQP3 WT, Q, or R was measured. Acetylated AQP3 was prominent in the cortical to inner medullary collecting ducts of dehydrated versus hydrated mice. At baseline, the mutations did not affect the kidney transcriptome, AQP3 abundance, or subcellular localization. Urine osmolality of the mutant mice was within the normal range. With dehydration, all mice excreted concentrated urine; however, the female Q mutants exhibited significantly greater 24-h urine osmolality than WT, suggesting greater water reabsorption. In response to acute dDAVP, all mice produced concentrated urine; however, female Q mutants had a more dilute plasma than WT, further suggesting greater water retention. mpkCCD Q mutant cells exhibited greater water permeability than WT and R cells. We conclude that AQP3 K282 acetylation promotes principal cell water permeability in a sex-dependent manner; however, it is not essential for urine concentration.NEW & NOTEWORTHY The water channel, AQP3, is lysine 282 acetylated (acAQP3) in rodents and humans. When dehydrated, mouse cortical to inner medullary collecting ducts express acAQP3, suggesting that it promotes water reabsorption. acAQP3 expressing principal cells have high water permeability, and in vivo acute desmopressin resulted in a dilute plasma in female acAQP3 mice. However, all mice produced concentrated urine during water deprivation. Thus, acAQP3 promotes water permeability but is not essential for urine concentration during antidiuresis.
Collapse
Affiliation(s)
- Nha V Huynh
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Luciano D Mendoza
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Hung Nguyen
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Cassidy Rehage
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Elizabeth B Saurage
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Parker Davis
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Kelly A Hyndman
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
2
|
Banerjee S, Smith IM, Hengen AC, Stroka KM. Methods for studying mammalian aquaporin biology. Biol Methods Protoc 2023; 8:bpad031. [PMID: 38046463 PMCID: PMC10689382 DOI: 10.1093/biomethods/bpad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Aquaporins (AQPs), transmembrane water-conducting channels, have earned a great deal of scrutiny for their critical physiological roles in healthy and disease cell states, especially in the biomedical field. Numerous methods have been implemented to elucidate the involvement of AQP-mediated water transport and downstream signaling activation in eliciting whole cell, tissue, and organ functional responses. To modulate these responses, other methods have been employed to investigate AQP druggability. This review discusses standard in vitro, in vivo, and in silico methods for studying AQPs, especially for biomedical and mammalian cell biology applications. We also propose some new techniques and approaches for future AQP research to address current gaps in methodology.
Collapse
Affiliation(s)
- Shohini Banerjee
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Ian M Smith
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Autumn C Hengen
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore MD 21201, United States
- Biophysics Program, University of Maryland, MD 20742, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore MD 21201, United States
| |
Collapse
|
3
|
Roy D, Udugiri GHS, Ranganath SH. Evaluation of suitability and detection range of fluorescent dye-loaded nanoliposomes for sensitive and rapid sensing of wide ranging osmolarities. J Liposome Res 2023:1-14. [PMID: 36744858 DOI: 10.1080/08982104.2023.2172582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Measurement of osmolarity is critical for optimizing bioprocesses including antibody production and detecting pathologies. Thus, rapid, sensitive, and in situ sensing of osmolarity is desirable. This study aims to develop and assess the suitability of calcein- and sulforhodamine-loaded nanoliposomes for ratiometric sensing of osmolarity by fluorescence spectroscopy and evaluate the range of detection. The detection is based on concentration-dependent self-quenching of calcein fluorescence (sensor dye at 6-15 mM) and concentration-independent fluorescence of sulforhodamine (reference dye) due to osmotic shrinkage of the nanoliposomes when exposed to hyperosmotic solutions. Using mathematical modeling, 6 mM calcein loading was found to be optimal to sense osmolarity between 300 and 3000 mOsM. Calcein (6 mM)- and sulforhodamine (2 mM)-loaded nanoliposomes were produced by thin-film hydration and serial extrusion. The nanoliposomes were unilamellar, spherical (108 ± 9 nm), and uniform in size (polydispersity index [PDI] 0.12 ± 0.04). Their shrinkage induced by exposure to hyperosmotic solutions led to rapid self-quenching of calcein fluorescence (FGreen), but no effect on sulforhodamine fluorescence (FRed) was observed. FGreen/FRed decreased linearly with increasing osmolarity, obeying Boyle van't Hoff's relationship, thus proving that the nanoliposomes are osmosensitive. A calibration curve was generated to compute osmolarity based on FGreen/FRed measurements. As a proof-of-concept, dynamic changes in osmolarity in a yeast-based fermentation process was demonstrated. Thus, the nanoliposomes have great potential as sensors to rapidly and sensitively measure wide-ranging osmolarities.
Collapse
Affiliation(s)
- Debjyoti Roy
- Department of Chemical Engineering, Bio-IN𝙫ENT Lab, Siddaganga Institute of Technology, Tumakuru, India
| | - Gangaram H S Udugiri
- Department of Chemical Engineering, Bio-IN𝙫ENT Lab, Siddaganga Institute of Technology, Tumakuru, India
| | - Sudhir H Ranganath
- Department of Chemical Engineering, Bio-IN𝙫ENT Lab, Siddaganga Institute of Technology, Tumakuru, India
| |
Collapse
|
4
|
Abstract
Aquaporins (AQP) working as membrane channels facilitated water transport, play vital roles in various physiological progress including cell migration, energy metabolism, inflammation, etc. They are quite important drug targets, but elusive for discovery due to their undruggable properties. In this chapter, we summarized most fluently used methods for screening AQP inhibitors, including cell swelling assay, cell shrinking assay, and stopped-flow assay. And three classes of AQP inhibitors have been discussed, including metal-related inhibitors, quaternary ammonium salts, and small molecule inhibitors which further divided into four parts, sulfanilamide analogies, TGN-020, antiepileptic drugs, and others. It has been suggested that although they showed inhibition effects on AQP1, AQP3, AQP4, AQP7, or AQP9 in some researches, none of them could be asserted as AQP inhibitors to some extent. Discovering AQP inhibitors is a big challenge, but if successful, it will be a great contribution for human health.
Collapse
Affiliation(s)
- Shuyuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | | | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
5
|
Thanuja M, Ranganath SH, Bonanno JA, Srinivas SP. Nanoliposomes for Sensing Local Osmolarity of the Tear Film on the Corneal Surface. J Ocul Pharmacol Ther 2022; 38:549-560. [DOI: 10.1089/jop.2022.0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- M.Y. Thanuja
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, Tumakuru, India
| | - Sudhir H. Ranganath
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, Tumakuru, India
| | | | | |
Collapse
|
6
|
Pimpão C, Wragg D, da Silva IV, Casini A, Soveral G. Aquaglyceroporin Modulators as Emergent Pharmacological Molecules for Human Diseases. Front Mol Biosci 2022; 9:845237. [PMID: 35187089 PMCID: PMC8850838 DOI: 10.3389/fmolb.2022.845237] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 12/26/2022] Open
Abstract
Aquaglyceroporins, a sub-class of aquaporins that facilitate the diffusion of water, glycerol and other small uncharged solutes across cell membranes, have been recognized for their important role in human physiology and their involvement in multiple disorders, mostly related to disturbed energy homeostasis. Aquaglyceroporins dysfunction in a variety of pathological conditions highlighted their targeting as novel therapeutic strategies, boosting the search for potent and selective modulators with pharmacological properties. The identification of selective inhibitors with potential clinical applications has been challenging, relying on accurate assays to measure membrane glycerol permeability and validate effective functional blockers. Additionally, biologicals such as hormones and natural compounds have been revealed as alternative strategies to modulate aquaglyceroporins via their gene and protein expression. This review summarizes the current knowledge of aquaglyceroporins’ involvement in several pathologies and the experimental approaches used to evaluate glycerol permeability and aquaglyceroporin modulation. In addition, we provide an update on aquaglyceroporins modulators reported to impact disease, unveiling aquaglyceroporin pharmacological targeting as a promising approach for innovative therapeutics.
Collapse
Affiliation(s)
- Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Darren Wragg
- Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Angela Casini
- Department of Chemistry, Technical University of Munich, Munich, Germany
- *Correspondence: Angela Casini, ; Graça Soveral,
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- *Correspondence: Angela Casini, ; Graça Soveral,
| |
Collapse
|
7
|
Ezrin Regulates Ca 2+ Ionophore-Induced Plasma Membrane Translocation of Aquaporin-5. Int J Mol Sci 2021; 22:ijms222413505. [PMID: 34948308 PMCID: PMC8705411 DOI: 10.3390/ijms222413505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 01/16/2023] Open
Abstract
Aquaporin-5 (AQP5) is selectively expressed in the apical membrane of exocrine glands, such as salivary, sweat, and submucosal airway glands, and plays important roles in maintaining their secretory functions. Because AQP5 is not regulated by gating, localization on the plasma membrane is important for its water-permeable function. Ezrin is an ezrin-radixin-moesin family protein that serves as a crosslinker between the plasma membrane and actin cytoskeleton network. It plays important roles in translocation of various membrane proteins to mediate vesicle trafficking to the plasma membrane. In this study, we examined the effects of ezrin inhibition on membrane trafficking of AQP5. Ezrin inhibition selectively suppressed an ionomycin-induced increase in AQP5 translocation to the plasma membrane of mouse lung epithelial cells (MLE-12) without affecting the steady-state level of plasma membrane AQP5. Taken together, our data suggest that AQP5 translocates to the plasma membrane through at least two pathways and that ezrin is selectively involved in a stimulation-dependent pathway.
Collapse
|
8
|
C-Terminal Domain of Aquaporin-5 Is Required to Pass Its Protein Quality Control and Ensure Its Trafficking to Plasma Membrane. Int J Mol Sci 2021; 22:ijms222413461. [PMID: 34948259 PMCID: PMC8707437 DOI: 10.3390/ijms222413461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 01/25/2023] Open
Abstract
Aquaporin-5 (AQP5) is selectively expressed in the apical membrane of exocrine glands, such as salivary, lacrimal, and submucosal glands. It is important for the secretory function of exocrine glands because mice with the knockout of AQP5 exhibit a significant reduction in secretion from these glands. Previous reports indicated that the AQP5 C-terminal domain is crucial for the localization of AQP5 at the plasma membrane, but it remains unclear which motif or amino acid residues in the C-terminal domain are essential for this. In this study, we examined the effects of various AQP5 C-terminal deletions or mutations on the expression of AQP5 on the cell surface. AQP5 C-terminal domain mutants did not localize on the plasma membrane, and Leu262 was shown to be crucial for AQP5′s plasma membrane localization. The mutants localized in the autophagosome or lysosome and showed decreased protein stability via lysosomal degradation. Taking these findings together, our study suggests that the C-terminal domain is required for AQP5 to pass protein quality control and be trafficked to the plasma membrane.
Collapse
|
9
|
Abstract
Aquaporins (AQPs) are membrane channel proteins that facilitate the movement of water down osmotic gradients across biological membranes. This protocol allows measurements of AQP-mediated water transport across the plasma membrane of live mammalian cells. Calcein is a fluorescent dye that is quenched in a concentration-dependent manner. Therefore, on short timescales, its concentration-dependent fluorescence can be used as a probe of cell volume, and therefore a probe of water transport into or out of cells. For complete details on the use and execution of this protocol, please refer to Kitchen et al. (2020) and Kitchen and Conner (2015). For the underlying methodology development, please refer to Fenton et al. (2010) and Solenov et al. (2004).
Collapse
|
10
|
N-Glycanase 1 Transcriptionally Regulates Aquaporins Independent of Its Enzymatic Activity. Cell Rep 2020; 29:4620-4631.e4. [PMID: 31875565 DOI: 10.1016/j.celrep.2019.11.097] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/22/2019] [Accepted: 11/22/2019] [Indexed: 11/21/2022] Open
Abstract
Patients with pathogenic mutations in NGLY1 cannot make tears and have global developmental delay and liver dysfunction. Traditionally, NGLY1 cleaves intact N-glycans from misfolded, retrotranslocated glycoproteins before proteasomal degradation. We demonstrate that Ngly1-null mouse embryonic fibroblasts, NGLY1 knockout human cells, and patient fibroblasts are resistant to hypotonic lysis. Ngly1-deficient mouse embryonic fibroblasts swell slower and have reduced aquaporin1 mRNA and protein expression. Ngly1 knockdown and overexpression confirms that Ngly1 regulates aquaporin1 and hypotonic cell lysis. Patient fibroblasts and NGLY1 knockout cells show reduced aquaporin11 mRNA, supporting NGLY1 as regulating expression of multiple aquaporins across species. Complementing Ngly1-deficient cells with catalytically inactive NGLY1 (p.Cys309Ala) restores normal hypotonic lysis and aquaporin1 protein. We show that transcription factors Atf1/Creb1 regulate aquaporin1 and that the Atf1/Creb1 signaling pathway is disrupted in Ngly1-deficient mouse embryonic fibroblasts. These results identify a non-enzymatic, regulatory function of NGLY1 in aquaporin transcription, possibly related to alacrima and neurological symptoms.
Collapse
|
11
|
de Bellis M, Cibelli A, Mola MG, Pisani F, Barile B, Mastrodonato M, Banitalebi S, Amiry-Moghaddam M, Abbrescia P, Frigeri A, Svelto M, Nicchia GP. Orthogonal arrays of particle assembly are essential for normal aquaporin-4 expression level in the brain. Glia 2020; 69:473-488. [PMID: 32946135 DOI: 10.1002/glia.23909] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 11/11/2022]
Abstract
Astrocyte endfeet are endowed with aquaporin-4 (AQP4)-based assemblies called orthogonal arrays of particles (OAPs) whose function is still unclear. To investigate the function of OAPs and of AQP4 tetramers, we have generated a novel "OAP-null" mouse model selectively lacking the OAP forming M23-AQP4 isoform. We demonstrated that AQP4 transcript levels were not reduced by using qPCR. Blue native (BN)/SDS-PAGE and Western blot performed on OAP-null brain and primary astrocyte cultures showed the complete depletion of AQP4 assemblies, the selective expression of M1-AQP4-based tetramers, and a substantial reduction in AQP4 total expression level. Fluorescence quenching and super-resolution microscopy experiments showed that AQP4 tetramers were functionally expressed in astrocyte plasma membrane and their dimensions were reduced compared to wild-type assemblies. Finally, as shown by light and electron microscopy, OAP depletion resulted in a massive reduction in AQP4 expression and a loss of perivascular AQP4 staining at astrocyte endfeet, with only sparse labeling throughout the brain areas analyzed. Our study relies on the unique property of AQP4 to form OAPs, using a novel OAP-null mouse model for the first time, to show that (a) AQP4 assembly is essential for normal AQP4 expression level in the brain and (b) most of AQP4 is organized into OAPs under physiological conditions. Therefore, AQP4 tetramers cannot be used by astrocytes as an alternative to OAPs without affecting AQP4 expression levels, which is important in the physiological and pathological conditions in which OAP aggregation/disaggregation dynamics have been implicated.
Collapse
Affiliation(s)
- Manuela de Bellis
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Cibelli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grazia Mola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Pisani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Barbara Barile
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | | | - Shervin Banitalebi
- Department of Molecular Medicine, Division of Anatomy, University of Oslo, Oslo, Norway
| | | | - Pasqua Abbrescia
- School of Medicine, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Frigeri
- School of Medicine, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
12
|
Kitchen P, Salman MM, Pickel SU, Jennings J, Törnroth-Horsefield S, Conner MT, Bill RM, Conner AC. Water channel pore size determines exclusion properties but not solute selectivity. Sci Rep 2019; 9:20369. [PMID: 31889130 PMCID: PMC6937295 DOI: 10.1038/s41598-019-56814-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 12/12/2019] [Indexed: 11/24/2022] Open
Abstract
Aquaporins (AQPs) are a ubiquitous family of transmembrane water channel proteins. A subgroup of AQP water channels also facilitates transmembrane diffusion of small, polar solutes. A constriction within the pore, the aromatic/arginine (ar/R) selectivity filter, is thought to control solute permeability: previous studies on single representative water channel proteins suggest narrow channels conduct water, whilst wider channels permit passage of solutes. To assess this model of selectivity, we used mutagenesis, permeability measurements and in silico comparisons of water-specific as well as glycerol-permeable human AQPs. Our studies show that single amino acid substitutions in the selectivity filters of AQP1, AQP4 and AQP3 differentially affect glycerol and urea permeability in an AQP-specific manner. Comparison between in silico-calculated channel cross-sectional areas and in vitro permeability measurements suggests that selectivity filter cross-sectional area predicts urea but not glycerol permeability. Our data show that substrate discrimination in water channels depends on a complex interplay between the solute, pore size, and polarity, and that using single water channel proteins as representative models has led to an underestimation of this complexity.
Collapse
Affiliation(s)
- Philip Kitchen
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Mootaz M Salman
- Department of Cell Biology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Simone U Pickel
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Jordan Jennings
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Matthew T Conner
- School of Biology, Chemistry and Forensic Science, University of Wolverhampton, Wulfruna St, Wolverhampton, UK
| | - Roslyn M Bill
- School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Alex C Conner
- Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
13
|
Sonntag Y, Gena P, Maggio A, Singh T, Artner I, Oklinski MK, Johanson U, Kjellbom P, Nieland JD, Nielsen S, Calamita G, Rützler M. Identification and characterization of potent and selective aquaporin-3 and aquaporin-7 inhibitors. J Biol Chem 2019; 294:7377-7387. [PMID: 30862673 DOI: 10.1074/jbc.ra118.006083] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/04/2019] [Indexed: 01/21/2023] Open
Abstract
The aquaglyceroporins are a subfamily of aquaporins that conduct both water and glycerol. Aquaporin-3 (AQP3) has an important physiological function in renal water reabsorption, and AQP3-mediated hydrogen peroxide (H2O2) permeability can enhance cytokine signaling in several cell types. The related aquaglyceroporin AQP7 is required for dendritic cell chemokine responses and antigen uptake. Selective small-molecule inhibitors are desirable tools for investigating the biological and pathological roles of these and other AQP isoforms. Here, using a calcein fluorescence quenching assay, we screened a library of 7360 drug-like small molecules for inhibition of mouse AQP3 water permeability. Hit confirmation and expansion with commercially available substances identified the ortho-chloride-containing compound DFP00173, which inhibited mouse and human AQP3 with an IC50 of ∼0.1-0.4 μm but had low efficacy toward mouse AQP7 and AQP9. Surprisingly, inhibitor specificity testing revealed that the methylurea-linked compound Z433927330, a partial AQP3 inhibitor (IC50, ∼0.7-0.9 μm), is a potent and efficacious inhibitor of mouse AQP7 water permeability (IC50, ∼0.2 μm). Stopped-flow light scattering measurements confirmed that DFP00173 and Z433927330 inhibit AQP3 glycerol permeability in human erythrocytes. Moreover, DFP00173, Z433927330, and the previously identified AQP9 inhibitor RF03176 blocked aquaglyceroporin H2O2 permeability. Molecular docking to AQP3, AQP7, and AQP9 homology models suggested interactions between these inhibitors and aquaglyceroporins at similar binding sites. DFP00173 and Z433927330 constitute selective and potent AQP3 and AQP7 inhibitors, respectively, and contribute to a set of isoform-specific aquaglyceroporin inhibitors that will facilitate the evaluation of these AQP isoforms as drug targets.
Collapse
Affiliation(s)
- Yonathan Sonntag
- From the Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Patrizia Gena
- the Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari "Aldo Moro," 70125 Bari, Italy
| | - Anna Maggio
- the Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari "Aldo Moro," 70125 Bari, Italy
| | - Tania Singh
- the Stem Cell Center, Lund University, 22184 Lund, Sweden, and
| | - Isabella Artner
- the Stem Cell Center, Lund University, 22184 Lund, Sweden, and
| | - Michal K Oklinski
- the Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Urban Johanson
- From the Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - Per Kjellbom
- From the Division of Biochemistry and Structural Biology, Department of Chemistry, Lund University, 22100 Lund, Sweden
| | - John Dirk Nieland
- the Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Søren Nielsen
- the Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - Giuseppe Calamita
- the Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari "Aldo Moro," 70125 Bari, Italy
| | - Michael Rützler
- the Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
14
|
Zhang H, Liu T, Zhou Z, Zhang A, Zhu Y, Zhang J, Pan L, Ma J. miR-137 Affects Vaginal Lubrication in Female Sexual Dysfunction by Targeting Aquaporin-2. Sex Med 2018; 6:339-347. [PMID: 30454615 PMCID: PMC6302129 DOI: 10.1016/j.esxm.2018.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 11/30/2022] Open
Abstract
Introduction Female sexual dysfunction (FSD) is a common disease with serious potential hazards, but it has not received much attention. The pathogenesis of FSD is urgently needed for the diagnosis and treatment of FSD. Aim To investigate the role of microribonucleic acid (mRNA, miR)-137 in FSD. Methods Vaginal epithelium tissues from 15 women with lubrication disorder and 15 women with normal function were collected for this study. The expression level of miR-137 in lubrication disorder and normal function women were measured by microarray analysis and Real-time Quantitative Polymerase Chain Reaction (PCR, qPCR). miR-137 was overexpressed in vaginal epithelial cells VK2/E6E7 by lentivirus infection. The cell water permeability was measured using the calcein-quenching method. Cell apoptosis was analyzed by flow cytometry. The potential target of miR-137 was predicted by bioinformatic analysis, then verified by luciferase reporter assays. Main Outcome Measure The expression level of miR-137 and aquaporin-2 (AQP2), cell water permeability, cell apoptosis, and luciferase reporter assays were examined. Results miR-137 was found to be highly expressed in vaginal epithelial tissues of women with lubrication disorder. Additionally, functional in vitro studies suggested that overexpression of miR-137 leads to a decrease in cell permeability. By combining target prediction and examination, we identified AQP2 as the direct mechanistic target of miR-137 that affected the water permeability of vaginal epithelial cells. Conclusion Our results point to a novel role for miR-137 and its downstream effector AQP2 in vaginal lubrication, which can be manipulated as therapeutic targets against lubrication disorder and its related disorders. Zhang H, Liu T, Zhou Z. miR-137 affects vaginal lubrication in female sexual dysfunction by targeting Aquaporin-2. Sex Med 2018;6:339–347.
Collapse
Affiliation(s)
- Hepeng Zhang
- Department of Urology, The People's Hospital of Yuyao, Zhejiang, China
| | - Tianjiao Liu
- Department of Women Health Care, Nanjing Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Ziyun Zhou
- Department of Children Health Care, Wuxi Children's Hospital, Wuxi, China
| | - Aixia Zhang
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yuan Zhu
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Jing Zhang
- Jiangsu Health Vocational College, Nanjing, China
| | - Lianjun Pan
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Jiehua Ma
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China.
| |
Collapse
|
15
|
Arif M, Kitchen P, Conner MT, Hill EJ, Nagel D, Bill RM, Dunmore SJ, Armesilla AL, Gross S, Carmichael AR, Conner AC, Brown JE. Downregulation of aquaporin 3 inhibits cellular proliferation, migration and invasion in the MDA-MB-231 breast cancer cell line. Oncol Lett 2018; 16:713-720. [PMID: 29963136 PMCID: PMC6019904 DOI: 10.3892/ol.2018.8759] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023] Open
Abstract
Aquaporins are membrane proteins that regulate cellular water flow. Recently, aquaporins have been proposed as mediators of cancer cell biology. A subset of aquaporins, referred to as aquaglyceroporins are known to facilitate the transport of glycerol. The present study describes the effect of gene knockdown of the aquaglyceroporin AQP3 on MDA-MB-231 breast cancer cell proliferation, migration, invasion, adherence and response to the chemotherapeutic agent 5-fluorouracil. shRNA mediated AQP3 gene knockdown induced a 28% reduction in cellular proliferation (P<0.01), a 39% decrease in migration (P<0.0001), a 24% reduction in invasion (P<0.05) and a 25% increase in cell death at 100 µM 5-FU (P<0.01). Analysis of cell permeability to water and glycerol revealed that MDA-MB-231 cells with knocked down AQP3 demonstrated a modest decrease in water permeability (17%; P<0.05) but a more marked decrease in glycerol permeability (77%; P<0.001). These results suggest that AQP3 has a role in multiple aspects of breast cancer cell pathophysiology and therefore represents a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Muhammad Arif
- School of Life and Health Science, Aston University, Birmingham B4 7ET, UK
| | - Philip Kitchen
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - Matthew T Conner
- Research Institute for Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1SB, UK
| | - Eric J Hill
- Research Institute for Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1SB, UK
| | - David Nagel
- School of Life and Health Science, Aston University, Birmingham B4 7ET, UK
| | - Roslyn M Bill
- School of Life and Health Science, Aston University, Birmingham B4 7ET, UK
| | - Simon J Dunmore
- Research Institute for Healthcare Science, University of Wolverhampton, Wolverhampton WV1 1SB, UK
| | - Angel L Armesilla
- Cardiovascular Molecular Pharmacology Group, Research Institute in Healthcare Science, School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1SB, UK
| | - Stephane Gross
- School of Life and Health Science, Aston University, Birmingham B4 7ET, UK
| | - Amtul R Carmichael
- School of Life and Health Science, Aston University, Birmingham B4 7ET, UK
| | - Alex C Conner
- School of Clinical and Experimental Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | - James E Brown
- Aston Research Centre for Healthy Ageing and Aston Medical Research Institute, School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
16
|
Marchbank T, Playford RJ. Trefoil factor family peptides enhance cell migration by increasing cellular osmotic permeability and aquaporin 3 levels. FASEB J 2018; 32:1017-1024. [DOI: 10.1096/fj.201700799r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Tania Marchbank
- Plymouth UniversityPeninsula Schools of Medicine and DentistryPlymouthDevonUnited Kingdom
| | - Raymond J. Playford
- Plymouth UniversityPeninsula Schools of Medicine and DentistryPlymouthDevonUnited Kingdom
| |
Collapse
|
17
|
Abstract
Volume is an essential characteristic of a cell, and this review describes the main methods of its measurement that have been used in the past several decades. The discussed methods include various implementations of light scattering, estimates based on one or two cell dimensions, surface scanning, fluorescence confocal and transmission slice-by-slice imaging, intracellular volume markers, displacement of extracellular solution, quantitative phase imaging, radioactive methods, and some others. Suitability of these methods to some typical samples and applications is discussed. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Michael A Model
- Department of Biological Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
18
|
Madeira A, Moura TF, Soveral G. Detecting Aquaporin Function and Regulation. Front Chem 2016; 4:3. [PMID: 26870725 PMCID: PMC4734071 DOI: 10.3389/fchem.2016.00003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/12/2016] [Indexed: 12/14/2022] Open
Abstract
Water is the major component of cells and tissues throughout all forms of life. Fluxes of water and solutes through cell membranes and epithelia are essential for osmoregulation and energy homeostasis. Aquaporins are membrane channels expressed in almost every organism and involved in the bidirectional transfer of water and small solutes across cell membranes. Aquaporins have important biological roles and have been implicated in several pathophysiological conditions suggesting a great translational potential in aquaporin-based diagnostics and therapeutics. Detecting aquaporin function is critical for assessing regulation and screening for new activity modulators that can prompt the development of efficient medicines. Appropriate methods for functional analysis comprising suitable cell models and techniques to accurately evaluate water and solute membrane permeability are essential to validate aquaporin function and assess short-term regulation. The present review describes established assays commonly used to assess aquaporin function in cells and tissues, as well as the experimental biophysical strategies required to reveal functional regulation and identify modulators, the first step for aquaporin drug discovery.
Collapse
Affiliation(s)
- Ana Madeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Lisboa, Portugal
| | - Teresa F Moura
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisboa, Portugal; Faculdade de Ciências e Tecnologia, Universidade Nova de LisboaCaparica, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisboa, Portugal; Departamento Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de LisboaLisboa, Portugal
| |
Collapse
|
19
|
Kitchen P, Conner MT, Bill RM, Conner AC. Structural Determinants of Oligomerization of the Aquaporin-4 Channel. J Biol Chem 2016; 291:6858-71. [PMID: 26786101 PMCID: PMC4807272 DOI: 10.1074/jbc.m115.694729] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Indexed: 11/09/2022] Open
Abstract
The aquaporin (AQP) family of integral membrane protein channels mediate cellular water and solute flow. Although qualitative and quantitative differences in channel permeability, selectivity, subcellular localization, and trafficking responses have been observed for different members of the AQP family, the signature homotetrameric quaternary structure is conserved. Using a variety of biophysical techniques, we show that mutations to an intracellular loop (loop D) of human AQP4 reduce oligomerization. Non-tetrameric AQP4 mutants are unable to relocalize to the plasma membrane in response to changes in extracellular tonicity, despite equivalent constitutive surface expression levels and water permeability to wild-type AQP4. A network of AQP4 loop D hydrogen bonding interactions, identified using molecular dynamics simulations and based on a comparative mutagenic analysis of AQPs 1, 3, and 4, suggest that loop D interactions may provide a general structural framework for tetrameric assembly within the AQP family.
Collapse
Affiliation(s)
- Philip Kitchen
- From the Molecular Assembly and Organisation in Cells Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, the School of Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham, B4 7ET, and the Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Matthew T Conner
- the School of Biology, Chemistry and Forensic Science, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY
| | - Roslyn M Bill
- the School of Life & Health Sciences and Aston Research Centre for Healthy Ageing, Aston University, Aston Triangle, Birmingham, B4 7ET, and
| | - Alex C Conner
- the Institute of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
20
|
Kitchen P, Conner AC. Control of the Aquaporin-4 Channel Water Permeability by Structural Dynamics of Aromatic/Arginine Selectivity Filter Residues. Biochemistry 2015; 54:6753-5. [DOI: 10.1021/acs.biochem.5b01053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Philip Kitchen
- Molecular
Organisation and Assembly in Cells Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, U.K
| | - Alex C. Conner
- Institute
of Clinical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
21
|
High glucose-induced hyperosmolarity impacts proliferation, cytoskeleton remodeling and migration of human induced pluripotent stem cells via aquaporin-1. Biochim Biophys Acta Mol Basis Dis 2014; 1842:2266-75. [PMID: 25108283 DOI: 10.1016/j.bbadis.2014.07.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/09/2014] [Accepted: 07/30/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Hyperglycemia leads to adaptive cell responses in part due to hyperosmolarity. In endothelial and epithelial cells, hyperosmolarity induces aquaporin-1 (AQP1) which plays a role in cytoskeletal remodeling, cell proliferation and migration. Whether such impairments also occur in human induced pluripotent stem cells (iPS) is not known. We therefore investigated whether high glucose-induced hyperosmolarity impacts proliferation, migration, expression of pluripotency markers and actin skeleton remodeling in iPS cells in an AQP1-dependent manner. METHODS AND RESULTS Human iPS cells were generated from skin fibroblasts by lentiviral transduction of four reprogramming factors (Oct4, Sox2, Klf4, c-Myc). After reprogramming, iPS cells were characterized by their adaptive responses to high glucose-induced hyperosmolarity by incubation with 5.5mmol/L glucose, high glucose (HG) at 30.5mM, or with the hyperosmolar control mannitol (HM). Exposure to either HG or HM increased the expression of AQP1. AQP1 co-immunoprecipitated with β-catenin. HG and HM induced the expression of β-catenin. Under these conditions, iPS cells showed increased ratios of F-actin to G-actin and formed increased tubing networks. Inhibition of AQP1 with small interfering RNA (siRNA) reverted the inducing effects of HG and HM. CONCLUSIONS High glucose enhances human iPS cell proliferation and cytoskeletal remodeling due to hyperosmolarity-induced upregulation of AQP1.
Collapse
|
22
|
Wacker SJ, Aponte-Santamaría C, Kjellbom P, Nielsen S, de Groot BL, Rützler M. The identification of novel, high affinity AQP9 inhibitors in an intracellular binding site. Mol Membr Biol 2013; 30:246-60. [PMID: 23448163 DOI: 10.3109/09687688.2013.773095] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The involvement of aquaporin (AQP) water and small solute channels in the etiology of several diseases, including cancer, neuromyelitis optica and body fluid imbalance disorders, has been suggested previously. Furthermore, results obtained in a mouse model suggested that AQP9 function contributes to hyperglycemia in type-2 diabetes. In addition, the physiological role of several AQP family members remains poorly understood. Small molecule inhibitors of AQPs are therefore desirable to further study AQP physiological and pathophysiological functions. METHODS The binding of recently established AQP9 inhibitors to a homology model of AQP9 was investigated by molecular dynamics simulations and molecular docking. Putative inhibitor binding sites identified with this procedure were modified by site-directed mutagenesis. Active compounds were measured in a mammalian cell water permeability assay of mutated AQP9 isoforms and tested for changes in inhibitory effects. CONTROLS Three independent cell lines were established for each mutated AQP9 isoform and functionality of mutant isoforms was established. PRINCIPAL FINDINGS We have identified putative binding sites of recently established AQP9 inhibitors. This information facilitated successful identification of novel AQP9 inhibitors with low micromolar IC50 values in a cell based assay by in silico screening of a compound library targeting specifically this binding site. SIGNIFICANCE We have established a successful strategy for AQP small molecule inhibitor identification. AQP inhibitors may be relevant as experimental tools, to enhance our understanding of AQP function, and in the treatment of various diseases.
Collapse
Affiliation(s)
- Sören J Wacker
- The Max Planck Institute for Biophysical Chemistry, Computational Biomolecular Dynamics Group, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Jelen S, Wacker S, Aponte-Santamaría C, Skott M, Rojek A, Johanson U, Kjellbom P, Nielsen S, de Groot BL, Rützler M. Aquaporin-9 protein is the primary route of hepatocyte glycerol uptake for glycerol gluconeogenesis in mice. J Biol Chem 2011; 286:44319-25. [PMID: 22081610 DOI: 10.1074/jbc.m111.297002] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been hypothesized that aquaporin-9 (AQP9) is part of the unknown route of hepatocyte glycerol uptake. In a previous study, leptin receptor-deficient wild-type mice became diabetic and suffered from fasting hyperglycemia whereas isogenic AQP9(-/-) knock-out mice remained normoglycemic. The reason for this improvement in AQP9(-/-) mice was not established before. Here, we show increased glucose output (by 123% ± 36% S.E.) in primary hepatocyte culture when 0.5 mM extracellular glycerol was added. This increase depended on AQP9 because it was absent in AQP9(-/-) cells. Likewise, the increase was abolished by 25 μM HTS13286 (IC(50) ~ 2 μM), a novel AQP9 inhibitor, which we identified in a small molecule library screen. Similarly, AQP9 deletion or chemical inhibition eliminated glycerol-enhanced glucose output in perfused liver preparations. The following control experiments suggested inhibitor specificity to AQP9: (i) HTS13286 affected solute permeability in cell lines expressing AQP9, but not in cell lines expressing AQPs 3, 7, or 8. (ii) HTS13286 did not influence lactate- and pyruvate-dependent hepatocyte glucose output. (iii) HTS13286 did not affect glycerol kinase activity. Our experiments establish AQP9 as the primary route of hepatocyte glycerol uptake for gluconeogenesis and thereby explain the previously observed, alleviated diabetes in leptin receptor-deficient AQP9(-/-) mice.
Collapse
Affiliation(s)
- Sabina Jelen
- From the Water and Salt Research Center, Department of Biomedicine, Aarhus University, Wilhelm Meyers Allè, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|