1
|
Yang M, You H, Ni L, Mao J, Chen J. High-salt diets provoke phosphorus absorption from the small intestine in mice. Clin Exp Hypertens 2025; 47:2472066. [PMID: 39998332 DOI: 10.1080/10641963.2025.2472066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/06/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Recent studies indicate that tenapanor, an inhibitor of sodium/proton exchanger-3 (NHE3), diminishes intestinal phosphorus (Pi) absorption. Given NHE3's pivotal role in sodium (Na+) metabolism, there is a suspected functional link between Na+ and Pi metabolism. High-salt diets (HSD) have been demonstrated to disrupt calcium (Ca2+) metabolism. Since Ca2+ and Pi share analogous metabolic pathways, it is yet to be determined whether HSD also impacts Pi metabolism. METHODS Male C57 mice were randomly assigned to three groups: a standard diet group, HSD groups for 1 week (HSD-1w) and 4 weeks (HSD-4w). Throughout the study, dietary intake and water consumption were monitored using metabolic cages, and urine and feces were collected. Blood pressure was measured using a noninvasive tail vein sphygmomanometer. Upon completion of the intervention, mice were euthanized under anesthesia for blood collection, and intestinal and renal tissues were harvested for molecular analysis. RESULTS Although plasma Pi levels were comparable between HSD groups and the control group, HSD groups exhibited increased urinary Pi excretion and decreased fecal Pi excretion. The HSD-4w group displayed elevated parathyroid hormone levels, reduced fibroblast growth factor 23 levels, and higher renal Cyp27b1 mRNA expression. The expression of sodium-dependent phosphate transporter 2b (Npt2b) and NHE3 was elevated in the intestine of HSD mice. CONCLUSION HSD disrupts Pi metabolism by enhancing urinary Pi excretion and altering hormonal levels. The decrease in fecal Pi excretion, coupled with the upregulation of intestinal Pi transporter expression, suggests that HSD promotes intestinal Pi absorption in mice.
Collapse
Affiliation(s)
- Mingxin Yang
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Huaizhou You
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Ni
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianping Mao
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Chen
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Cornelius RJ, Maeoka Y, Shinde U, McCormick JA. Familial Hyperkalemic Hypertension. Compr Physiol 2024; 14:5839-5874. [PMID: 39699086 DOI: 10.1002/cphy.c240004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The rare disease Familial Hyperkalemic Hypertension (FHHt) is caused by mutations in the genes encoding Cullin 3 (CUL3), Kelch-Like 3 (KLHL3), and two members of the With-No-Lysine [K] (WNK) kinase family, WNK1 and WNK4. In the kidney, these mutations ultimately cause hyperactivation of NCC along the renal distal convoluted tubule. Hypertension results from increased NaCl retention, and hyperkalemia by impaired K + secretion by downstream nephron segments. CUL3 and KLHL3 are now known to form a ubiquitin ligase complex that promotes proteasomal degradation of WNK kinases, which activate downstream kinases that phosphorylate and thus activate NCC. For CUL3, potent effects on the vasculature that contribute to the more severe hypertensive phenotype have also been identified. Here we outline the in vitro and in vivo studies that led to the discovery of the molecular pathways regulating NCC and vascular tone, and how FHHt-causing mutations disrupt these pathways. Potential mechanisms for variability in disease severity related to differential effects of each mutation on the kidney and vasculature are described, and other possible effects of the mutant proteins beyond the kidney and vasculature are explored. © 2024 American Physiological Society. Compr Physiol 14:5839-5874, 2024.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Yujiro Maeoka
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Ujwal Shinde
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
3
|
Castagna A, Mango G, Martinelli N, Marzano L, Moruzzi S, Friso S, Pizzolo F. Sodium Chloride Cotransporter in Hypertension. Biomedicines 2024; 12:2580. [PMID: 39595146 PMCID: PMC11591633 DOI: 10.3390/biomedicines12112580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The sodium chloride cotransporter (NCC) is essential for electrolyte balance, blood pressure regulation, and pathophysiology of hypertension as it mediates the reabsorption of ultrafiltered sodium in the renal distal convoluted tubule. Given its pivotal role in the maintenance of extracellular fluid volume, the NCC is regulated by a complex network of cellular pathways, which eventually results in either its phosphorylation, enhancing sodium and chloride ion absorption from urines, or dephosphorylation and ubiquitination, which conversely decrease NCC activity. Several factors could influence NCC function, including genetic alterations, hormonal stimuli, and pharmacological treatments. The NCC's central role is also highlighted by several abnormalities resulting from genetic mutations in its gene and consequently in its structure, leading to dysregulation of blood pressure control. In the last decade, among other improvements, the acquisition of knowledge on the NCC and other renal ion channels has been favored by studies on extracellular vesicles (EVs). Dietary sodium and potassium intake are also implicated in the tuning of NCC activity. In this narrative review, we present the main cornerstones and recent evidence related to NCC control, focusing on the context of blood pressure pathophysiology, and promising new therapeutical approaches.
Collapse
Affiliation(s)
- Annalisa Castagna
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Gabriele Mango
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Nicola Martinelli
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Luigi Marzano
- Unit of Internal Medicine B, Department of Medicine, University of Verona School of Medicine, Azienda Ospedaliera Universitaria Integrata Verona, Policlinico “G.B. Rossi”, 37134 Verona, Italy; (L.M.); (S.M.)
| | - Sara Moruzzi
- Unit of Internal Medicine B, Department of Medicine, University of Verona School of Medicine, Azienda Ospedaliera Universitaria Integrata Verona, Policlinico “G.B. Rossi”, 37134 Verona, Italy; (L.M.); (S.M.)
| | - Simonetta Friso
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Francesca Pizzolo
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| |
Collapse
|
4
|
Dutta P, Layton AT. Paradoxes in magnesium transport in type 1 Bartter's syndrome and Gitelman's syndrome: a modeling analysis. Am J Physiol Renal Physiol 2024; 327:F386-F396. [PMID: 38991009 DOI: 10.1152/ajprenal.00117.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024] Open
Abstract
Type 1 Bartter's syndrome and Gitelman's syndrome are characterized by mutations in two key renal Na+ transporters, Na-K-2Cl cotransporter (NKCC2) and Na-Cl cotransporter (NCC). Since these two transporters play an important role in regulating magnesium (Mg2+) and calcium (Ca2+) transport in the kidney, significant alterations in the transport of these two electrolytes are observed in type 1 Bartter's syndrome and Gitelman's syndrome. In this study, we used our sex-specific computational models of renal electrolyte transport in rats to understand the complex compensatory mechanisms, in terms of alterations in tubular dimensions and ion transporter activities, that lead to Mg2+ and Ca2+ preservation or wasting in these two genetic disorders. Given the sexual dimorphism in renal transporter patterns, we also assessed how the magnitude of these alterations may differ between males and females. Model simulations showed that in type 1 Bartter's syndrome, nephron adaptations prevent salt wasting and favor Mg2+ preservation but not Ca2+, whereas in Gitelman's syndrome, those adaptations favor Ca2+ preservation over Mg2+. In addition, our models predicted that the compensatory alterations in tubular dimensions and ion transporter activities are stronger in females than in males.NEW & NOTEWORTHY Although changes in Ca2+ excretion in type 1 Bartter's syndrome and Gitelman's syndrome are well understood, Mg2+ excretion displays an interesting paradox. This computational modeling study provides insights into how renal adaptations in these two disorders impact Ca2+ and Mg2+ transport along different nephron segments. Model simulations showed that nephron adaptations favor Mg2+ preservation over Ca2+ in Bartter's syndrome and Ca2+ preservation over Mg2+ in Gitelman's syndrome and are stronger in females than in males.
Collapse
Affiliation(s)
- Pritha Dutta
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
- School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
5
|
Chen C, Zhong W, Zheng H, Dai G, Zhao W, Wang Y, Dong Q, Shen B. The role of uromodulin in cardiovascular disease: a review. Front Cardiovasc Med 2024; 11:1417593. [PMID: 39049957 PMCID: PMC11267628 DOI: 10.3389/fcvm.2024.1417593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Uromodulin, also referred to as Tamm Horsfall protein (THP), is a renal protein exclusively synthesized by the kidneys and represents the predominant urinary protein under normal physiological conditions. It assumes a pivotal role within the renal system, contributing not only to ion transport and immune modulation but also serving as a critical factor in the prevention of urinary tract infections and kidney stone formation. Emerging evidence indicates that uromodulin may serve as a potential biomarker extending beyond renal function. Recent clinical investigations and Mendelian randomization studies have unveiled a discernible association between urinary regulatory protein levels and cardiovascular events and mortality. This review primarily delineates the intricate relationship between uromodulin and cardiovascular disease, elucidates its predictive utility as a novel biomarker for cardiovascular events, and delves into its involvement in various physiological and pathophysiological facets of the cardiovascular system, incorporating recent advancements in corresponding genetics.
Collapse
Affiliation(s)
- Chengqian Chen
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Wentao Zhong
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Hao Zheng
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China
| | - Gaoying Dai
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Zhao
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Yushi Wang
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Qi Dong
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| | - Botao Shen
- Department of Cardiology Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Rioux AV, Nsimba-Batomene TR, Slimani S, Bergeron NAD, Gravel MAM, Schreiber SV, Fiola MJ, Haydock L, Garneau AP, Isenring P. Navigating the multifaceted intricacies of the Na +-Cl - cotransporter, a highly regulated key effector in the control of hydromineral homeostasis. Physiol Rev 2024; 104:1147-1204. [PMID: 38329422 PMCID: PMC11381001 DOI: 10.1152/physrev.00027.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/01/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC; SLC12A3) is a highly regulated integral membrane protein that is known to exist as three splice variants in primates. Its primary role in the kidney is to mediate the cosymport of Na+ and Cl- across the apical membrane of the distal convoluted tubule. Through this role and the involvement of other ion transport systems, NCC allows the systemic circulation to reclaim a fraction of the ultrafiltered Na+, K+, Cl-, and Mg+ loads in exchange for Ca2+ and [Formula: see text]. The physiological relevance of the Na+-Cl- cotransport mechanism in humans is illustrated by several abnormalities that result from NCC inactivation through the administration of thiazides or in the setting of hereditary disorders. The purpose of the present review is to discuss the molecular mechanisms and overall roles of Na+-Cl- cotransport as the main topics of interest. On reading the narrative proposed, one will realize that the knowledge gained in regard to these themes will continue to progress unrelentingly no matter how refined it has now become.
Collapse
Affiliation(s)
- A V Rioux
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - T R Nsimba-Batomene
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S Slimani
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - N A D Bergeron
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M A M Gravel
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - S V Schreiber
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - M J Fiola
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| | - L Haydock
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - A P Garneau
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
- Service de Néphrologie-Transplantation Rénale Adultes, Hôpital Necker-Enfants Malades, AP-HP, INSERM U1151, Université Paris Cité, Paris, France
| | - P Isenring
- Department of Medicine, Nephrology Research Group, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
7
|
Touyz RM, de Baaij JHF, Hoenderop JGJ. Magnesium Disorders. N Engl J Med 2024; 390:1998-2009. [PMID: 38838313 DOI: 10.1056/nejmra1510603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Affiliation(s)
- Rhian M Touyz
- From the Research Institute of McGill University Health Centre, Departments of Medicine and Family Medicine, McGill University, Montreal (R.M.T.); and the Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands (J.H.F.B., J.G.J.H.)
| | - Jeroen H F de Baaij
- From the Research Institute of McGill University Health Centre, Departments of Medicine and Family Medicine, McGill University, Montreal (R.M.T.); and the Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands (J.H.F.B., J.G.J.H.)
| | - Joost G J Hoenderop
- From the Research Institute of McGill University Health Centre, Departments of Medicine and Family Medicine, McGill University, Montreal (R.M.T.); and the Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands (J.H.F.B., J.G.J.H.)
| |
Collapse
|
8
|
Shah CV, Sparks MA, Lee CT. Sodium/Glucose Cotransporter 2 Inhibitors and Magnesium Homeostasis: A Review. Am J Kidney Dis 2024; 83:648-658. [PMID: 38372686 DOI: 10.1053/j.ajkd.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/21/2023] [Accepted: 11/11/2023] [Indexed: 02/20/2024]
Abstract
Magnesium (Mg2+), also known as "the forgotten ion," is the second most abundant intracellular cation and is essential in a broad range of intracellular physiological and biochemical reactions. Its deficiency, hypomagnesemia (Mg2+<1.8mg/dL), is a prevalent condition and routinely poses challenges in its management in clinical practice. Sodium/glucose cotransporter 2 (SGLT2) inhibitors have emerged as a new class of drugs with treating hypomagnesemia as their unique extraglycemic benefit. The beneficial effect of SGLT2 inhibitors on magnesium balance in patients with diabetes with or without hypomagnesemia has been noted as a class effect in recent meta-analysis data from randomized clinical trials. Some reports have demonstrated their role in treating refractory hypomagnesemia in patients with or without diabetes. Moreover, studies on animal models have attempted to illustrate the effect of SGLT2 inhibitors on Mg2+homeostasis. In this review, we discuss the current evidence and possible pathophysiological mechanisms, and we provide directions for further research. We conclude by suggesting the effect of SGLT2 inhibitors on Mg2+homeostasis is a class effect, with certain patients gaining significant benefits. Further studies are needed to examine whether SGLT2 inhibitors can become a desperately needed novel class of medicines in treating hypomagnesemia.
Collapse
Affiliation(s)
- Chintan V Shah
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida, Gainesville, Florida.
| | - Matthew A Sparks
- Division of Nephrology and Department of Medicine, Duke University, and Durham VA Health Care System, Durham, North Carolina
| | - Chien-Te Lee
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Kaohsiung Municipal Feng-Shan Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Kriuchkova N, Breiderhoff T, Müller D, Yilmaz DE, Demirci H, Drewell H, Günzel D, Himmerkus N, Bleich M, Persson PB, Mutig K. Furosemide rescues hypercalciuria in familial hypomagnesaemia with hypercalciuria and nephrocalcinosis model. Acta Physiol (Oxf) 2023; 237:e13927. [PMID: 36606514 DOI: 10.1111/apha.13927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/10/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
AIM Perturbed calcium homeostasis limits life expectancy in familial hypomagnesaemia with hypercalciuria and nephrocalcinosis (FHHNC). This rare disease occurs by loss-of-function mutations in CLDN16 or CLDN19 genes, causing impaired paracellular reabsorption of divalent cations along the cortical thick ascending limb (cTAL). Only partial compensation takes place in the ensuing late distal convoluted tubule, connecting tubule, and collecting duct, where the luminal transient receptor potential channel V5 (TRPV5), as well as basolateral plasma membrane calcium ATPase (PMCA) and sodium-potassium exchanger (NCX1) mediate transcellular Ca2+ reabsorption. The loop diuretic furosemide induces compensatory activation in these distal segments. Normally, furosemide enhances urinary calcium excretion via inhibition of the aforementioned cTAL. As Ca2+ reabsorption in the cTAL is already severely impaired in FHHNC patients, furosemide may alleviate hypercalciuria in this disease by activation of the distal transcellular Ca2+ transport proteins. METHODS Cldn16-deficient mice (Cldn16-/- ) served as a FHHNC model. Wild-type (WT) and Cldn16-/- mice were treated with furosemide (7 days of 40 mg/kg bw) or vehicle. We assessed renal electrolyte handling (metabolic cages) and key divalent transport proteins. RESULTS Cldn16-/- mice show higher Ca2+ excretion than WT and compensatory stimulation of Cldn2, TRPV5, and NCX1 at baseline. Furosemide reduced hypercalciuria in Cldn16-/- mice and enhanced TRPV5 and PMCA levels in Cldn16-/- but not in WT mice. CONCLUSIONS Furosemide significantly reduces hypercalciuria, likely via upregulation of luminal and basolateral Ca2+ transport systems in the distal nephron and collecting duct in this model for FHHNC.
Collapse
Affiliation(s)
- Natalia Kriuchkova
- Department of Translational Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tilman Breiderhoff
- Division of Gastroenterology, Nephrology and Metabolic Diseases, Department of Pediatrics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dominik Müller
- Division of Gastroenterology, Nephrology and Metabolic Diseases, Department of Pediatrics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Duygu Elif Yilmaz
- Department of Functional Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hasan Demirci
- Department of Functional Anatomy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hoora Drewell
- Department of Translational Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Dorothee Günzel
- Clinical Physiology/Division of Nutritional Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Markus Bleich
- Institute of Physiology, Kiel University, Kiel, Germany
| | - Pontus B Persson
- Department of Translational Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Kerim Mutig
- Department of Translational Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Takata T, Hamada S, Mae Y, Iyama T, Ogihara R, Seno M, Nakamura K, Takata M, Sugihara T, Isomoto H. Uromodulin Regulates Murine Aquaporin-2 Activity via Thick Ascending Limb-Collecting Duct Cross-Talk during Water Deprivation. Int J Mol Sci 2022; 23:ijms23169410. [PMID: 36012675 PMCID: PMC9408883 DOI: 10.3390/ijms23169410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
Uromodulin, a urinary protein synthesized and secreted from the thick ascending limb (TAL) of the loop of Henle, is associated with hypertension through the activation of sodium reabsorption in the TAL. Uromodulin is a potential target for hypertension treatment via natriuresis. However, its biological function in epithelial cells of the distal nephron segment, particularly the collecting duct, remains unknown. Herein, we examined the regulation of uromodulin production during water deprivation in vivo as well as the effect of uromodulin on the activity of the water channel aquaporin−2 (AQP2) in vitro and in vivo using transgenic mice. Water deprivation upregulated uromodulin production; immunofluorescence experiments revealed uromodulin adhesion on the apical surface of the collecting duct. Furthermore, the activation of AQP2 was attenuated in mice lacking uromodulin. Uromodulin enhanced the phosphorylation and apical trafficking of AQP2 in mouse collecting duct cells treated with the vasopressin analog dDAVP. The uromodulin-induced apical trafficking of AQP2 was attenuated via endocytosis inhibitor treatment, suggesting that uromodulin activates AQP2 through the suppression of endocytosis. This study provides novel insights into the cross−talk between TAL and the collecting duct, and indicates that the modulation of uromodulin is a promising approach for diuresis and hypertension treatment.
Collapse
Affiliation(s)
- Tomoaki Takata
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
- Correspondence: ; Tel.: +81-859-38-6527
| | - Shintaro Hamada
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Yukari Mae
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Takuji Iyama
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Ryohei Ogihara
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Misako Seno
- Advanced Medicine & Translational Research Center, Organization for Research Initiative and Promotion, Tottori University, Yonago 683-8504, Japan
| | - Kazuomi Nakamura
- Advanced Medicine, Innovation and Clinical Research Center, Tottori University Hospital, Yonago 683-8504, Japan
| | - Miki Takata
- Division of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Takaaki Sugihara
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Faculty of Medicine, Tottori University, Yonago 683-8504, Japan
| |
Collapse
|
11
|
Hansen J, Sealfon R, Menon R, Eadon MT, Lake BB, Steck B, Anjani K, Parikh S, Sigdel TK, Zhang G, Velickovic D, Barwinska D, Alexandrov T, Dobi D, Rashmi P, Otto EA, Rivera M, Rose MP, Anderton CR, Shapiro JP, Pamreddy A, Winfree S, Xiong Y, He Y, de Boer IH, Hodgin JB, Barisoni L, Naik AS, Sharma K, Sarwal MM, Zhang K, Himmelfarb J, Rovin B, El-Achkar TM, Laszik Z, He JC, Dagher PC, Valerius MT, Jain S, Satlin LM, Troyanskaya OG, Kretzler M, Iyengar R, Azeloglu EU. A reference tissue atlas for the human kidney. SCIENCE ADVANCES 2022; 8:eabn4965. [PMID: 35675394 PMCID: PMC9176741 DOI: 10.1126/sciadv.abn4965] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/20/2022] [Indexed: 05/08/2023]
Abstract
Kidney Precision Medicine Project (KPMP) is building a spatially specified human kidney tissue atlas in health and disease with single-cell resolution. Here, we describe the construction of an integrated reference map of cells, pathways, and genes using unaffected regions of nephrectomy tissues and undiseased human biopsies from 56 adult subjects. We use single-cell/nucleus transcriptomics, subsegmental laser microdissection transcriptomics and proteomics, near-single-cell proteomics, 3D and CODEX imaging, and spatial metabolomics to hierarchically identify genes, pathways, and cells. Integrated data from these different technologies coherently identify cell types/subtypes within different nephron segments and the interstitium. These profiles describe cell-level functional organization of the kidney following its physiological functions and link cell subtypes to genes, proteins, metabolites, and pathways. They further show that messenger RNA levels along the nephron are congruent with the subsegmental physiological activity. This reference atlas provides a framework for the classification of kidney disease when multiple molecular mechanisms underlie convergent clinical phenotypes.
Collapse
Affiliation(s)
- Jens Hansen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Sealfon
- Princeton University, Princeton, NJ, USA
- Flatiron Institute, New York, NY, USA
| | - Rajasree Menon
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | | | - Blue B. Lake
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Becky Steck
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Kavya Anjani
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Samir Parikh
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Tara K. Sigdel
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Guanshi Zhang
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
| | | | - Daria Barwinska
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Dejan Dobi
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Priyanka Rashmi
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Edgar A. Otto
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Miguel Rivera
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Michael P. Rose
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Christopher R. Anderton
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - John P. Shapiro
- Ohio State University College of Medicine, Columbus, OH, USA
| | - Annapurna Pamreddy
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
| | - Seth Winfree
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yuguang Xiong
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yongqun He
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Ian H. de Boer
- Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
| | | | | | - Abhijit S. Naik
- University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Kumar Sharma
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
| | - Minnie M. Sarwal
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Kun Zhang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jonathan Himmelfarb
- Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
| | - Brad Rovin
- Ohio State University College of Medicine, Columbus, OH, USA
| | | | - Zoltan Laszik
- University of California San Francisco School of Medicine, San Francisco, CA, USA
| | | | | | - M. Todd Valerius
- Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Sanjay Jain
- Washington University in Saint Louis School of Medicine, St. Louis, MS, USA
| | - Lisa M. Satlin
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olga G. Troyanskaya
- Princeton University, Princeton, NJ, USA
- Flatiron Institute, New York, NY, USA
| | | | - Ravi Iyengar
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Kidney Precision Medicine Project
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Princeton University, Princeton, NJ, USA
- Flatiron Institute, New York, NY, USA
- University of Michigan School of Medicine, Ann Arbor, MI, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- University of California San Francisco School of Medicine, San Francisco, CA, USA
- Ohio State University College of Medicine, Columbus, OH, USA
- University of Texas–Health San Antonio School of Medicine, San Antonio, TX, USA
- Pacific Northwest National Laboratory, Richland, WA, USA
- European Molecular Biology Laboratory, Heidelberg, Germany
- Schools of Medicine and Public Health, University of Washington, Seattle, WA, USA
- Duke University School of Medicine, Durham, NC, USA
- Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
- Washington University in Saint Louis School of Medicine, St. Louis, MS, USA
| |
Collapse
|
12
|
Lo J, Forst AL, Warth R, Zdebik AA. EAST/SeSAME Syndrome and Beyond: The Spectrum of Kir4.1- and Kir5.1-Associated Channelopathies. Front Physiol 2022; 13:852674. [PMID: 35370765 PMCID: PMC8965613 DOI: 10.3389/fphys.2022.852674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
In 2009, two groups independently linked human mutations in the inwardly rectifying K+ channel Kir4.1 (gene name KCNJ10) to a syndrome affecting the central nervous system (CNS), hearing, and renal tubular salt reabsorption. The autosomal recessive syndrome has been named EAST (epilepsy, ataxia, sensorineural deafness, and renal tubulopathy) or SeSAME syndrome (seizures, sensorineural deafness, ataxia, intellectual disability, and electrolyte imbalance), accordingly. Renal dysfunction in EAST/SeSAME patients results in loss of Na+, K+, and Mg2+ with urine, activation of the renin-angiotensin-aldosterone system, and hypokalemic metabolic alkalosis. Kir4.1 is highly expressed in affected organs: the CNS, inner ear, and kidney. In the kidney, it mostly forms heteromeric channels with Kir5.1 (KCNJ16). Biallelic loss-of-function mutations of Kir5.1 can also have disease significance, but the clinical symptoms differ substantially from those of EAST/SeSAME syndrome: although sensorineural hearing loss and hypokalemia are replicated, there is no alkalosis, but rather acidosis of variable severity; in contrast to EAST/SeSAME syndrome, the CNS is unaffected. This review provides a framework for understanding some of these differences and will guide the reader through the growing literature on Kir4.1 and Kir5.1, discussing the complex disease mechanisms and the variable expression of disease symptoms from a molecular and systems physiology perspective. Knowledge of the pathophysiology of these diseases and their multifaceted clinical spectrum is an important prerequisite for making the correct diagnosis and forms the basis for personalized therapies.
Collapse
Affiliation(s)
- Jacky Lo
- Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Anna-Lena Forst
- Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Richard Warth
- Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Anselm A. Zdebik
- Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
- Centre for Nephrology, University College London, London, United Kingdom
| |
Collapse
|
13
|
Reyes JV, Medina PMB. Renal calcium and magnesium handling in Gitelman syndrome. Am J Transl Res 2022; 14:1-19. [PMID: 35173827 PMCID: PMC8829599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Gitelman syndrome (GS) is an autosomal recessive salt-losing tubulopathy caused by biallelic inactivating mutations in the SLC12A3 gene. This gene encodes the thiazide-sensitive sodium-chloride cotransporter (NCC) which is exclusively expressed in the distal convoluted tubules (DCT). GS patients classically present with hypokalemic metabolic alkalosis with hypocalciuria and hypomagnesemia. While hypokalemia and metabolic alkalosis are easily explained by effects of the genotypic defect in GS, the mechanisms by which hypomagnesemia and hypocalciuria develop in GS are poorly understood. In this review, we aim to achieve three major objectives. First, present a concise discussion about current understanding on physiologic calcium and magnesium handling in the DCT. Second, integrate expression data from studies on calciotropic and magnesiotropic proteins relevant to the GS disease state. Lastly, provide insights into the possible mechanisms of calcium-magnesium crosstalk relating to the co-occurrence of hypocalciuria and hypomagnesemia in GS models. Our analyses highlight specific areas of study that are valuable in elucidating possible molecular pathways of hypocalciuria and hypomagnesemia in GS.
Collapse
Affiliation(s)
- Jeremiah V Reyes
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila Ermita, Manila 1000, Philippines
| | - Paul Mark B Medina
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila Ermita, Manila 1000, Philippines
| |
Collapse
|
14
|
Nuñez-Gonzalez L, Carrera N, Garcia-Gonzalez MA. Molecular Basis, Diagnostic Challenges and Therapeutic Approaches of Bartter and Gitelman Syndromes: A Primer for Clinicians. Int J Mol Sci 2021; 22:11414. [PMID: 34768847 PMCID: PMC8584233 DOI: 10.3390/ijms222111414] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022] Open
Abstract
Gitelman and Bartter syndromes are rare inherited diseases that belong to the category of renal tubulopathies. The genes associated with these pathologies encode electrolyte transport proteins located in the nephron, particularly in the Distal Convoluted Tubule and Ascending Loop of Henle. Therefore, both syndromes are characterized by alterations in the secretion and reabsorption processes that occur in these regions. Patients suffer from deficiencies in the concentration of electrolytes in the blood and urine, which leads to different systemic consequences related to these salt-wasting processes. The main clinical features of both syndromes are hypokalemia, hypochloremia, metabolic alkalosis, hyperreninemia and hyperaldosteronism. Despite having a different molecular etiology, Gitelman and Bartter syndromes share a relevant number of clinical symptoms, and they have similar therapeutic approaches. The main basis of their treatment consists of electrolytes supplements accompanied by dietary changes. Specifically for Bartter syndrome, the use of non-steroidal anti-inflammatory drugs is also strongly supported. This review aims to address the latest diagnostic challenges and therapeutic approaches, as well as relevant recent research on the biology of the proteins involved in disease. Finally, we highlight several objectives to continue advancing in the characterization of both etiologies.
Collapse
Affiliation(s)
- Laura Nuñez-Gonzalez
- Grupo de Xenetica e Bioloxia do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxia (No. 11), Instituto de Investigacion Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain;
- Grupo de Medicina Xenomica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Noa Carrera
- Grupo de Xenetica e Bioloxia do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxia (No. 11), Instituto de Investigacion Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain;
- Grupo de Medicina Xenomica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- RedInRen (Red en Investigación Renal) RETIC (Redes Temáticas de Investigación Cooperativa en Salud), ISCIII (Instituto de Salud Carlos III), 28029 Madrid, Spain
| | - Miguel A. Garcia-Gonzalez
- Grupo de Xenetica e Bioloxia do Desenvolvemento das Enfermidades Renais, Laboratorio de Nefroloxia (No. 11), Instituto de Investigacion Sanitaria de Santiago (IDIS), Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain;
- Grupo de Medicina Xenomica, Complexo Hospitalario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
- RedInRen (Red en Investigación Renal) RETIC (Redes Temáticas de Investigación Cooperativa en Salud), ISCIII (Instituto de Salud Carlos III), 28029 Madrid, Spain
- Fundación Pública Galega de Medicina Xenomica—SERGAS, Complexo Hospitalario de Santiago de Compotela (CHUS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
15
|
Ellison DH, Maeoka Y, McCormick JA. Molecular Mechanisms of Renal Magnesium Reabsorption. J Am Soc Nephrol 2021; 32:2125-2136. [PMID: 34045316 PMCID: PMC8729834 DOI: 10.1681/asn.2021010042] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 02/04/2023] Open
Abstract
Magnesium is an essential cofactor in many cellular processes, and aberrations in magnesium homeostasis can have life-threatening consequences. The kidney plays a central role in maintaining serum magnesium within a narrow range (0.70-1.10 mmol/L). Along the proximal tubule and thick ascending limb, magnesium reabsorption occurs via paracellular pathways. Members of the claudin family form the magnesium pores in these segments, and also regulate magnesium reabsorption by adjusting the transepithelial voltage that drives it. Along the distal convoluted tubule transcellular reabsorption via heteromeric TRPM6/7 channels predominates, although paracellular reabsorption may also occur. In this segment, the NaCl cotransporter plays a critical role in determining transcellular magnesium reabsorption. Although the general machinery involved in renal magnesium reabsorption has been identified by studying genetic forms of magnesium imbalance, the mechanisms regulating it are poorly understood. This review discusses pathways of renal magnesium reabsorption by different segments of the nephron, emphasizing newer findings that provide insight into regulatory process, and outlining critical unanswered questions.
Collapse
Affiliation(s)
- David H. Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon,Veterans Affairs Portland Healthcare System, Portland, Oregon
| | - Yujiro Maeoka
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - James A. McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|