1
|
Irena A, Klaudia G, Maria S, Tomasz K, Patrycja R, Dorota R, Agnieszka P. Role of lactate dehydrogenase A in the regulation of podocyte metabolism and glucose uptake under hyperglycemic conditions. Sci Rep 2025; 15:14162. [PMID: 40269097 PMCID: PMC12019540 DOI: 10.1038/s41598-025-98797-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
Lactate is a cellular product of glycolytic metabolism, serving as both an additional oxidative energy substrate and a signaling molecule in metabolic regulation. Plasma lactate levels are elevated in diabetes, and chronic extracellular lactic acidosis is recognized as a negative prognostic marker for the disease. The development of diabetic kidney disease is closely associated with podocyte injury, which forms a crucial layer of the glomerular filtration barrier. Given that high extracellular glucose concentrations also induce lactate production and excretion in podocytes, we hypothesize that an appropriate LDH expression pattern is crucial for maintaining proper podocyte metabolism and function. Our research shows that hyperglycemia significantly decreases lactate dehydrogenase activity in podocytes. Specifically, reduced LDHA expression under hyperglycemic conditions contributes to metabolic disturbances in these cells. Lower LDH activity results in decreased glycolytic activity, altered expression of monocarboxylate transporters, reduced insulin-dependent glucose uptake, and a decrease in the number of podocyte foot processes. These findings underscore the essential role of LDHA in the metabolic adaptation of podocytes to elevated glucose levels typical of diabetes. By elucidating the molecular mechanisms underlying podocyte injury, our study provides new insights into potential therapeutic targets for preventing or mitigating diabetic kidney disease.
Collapse
Affiliation(s)
- Audzeyenka Irena
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdańsk, Poland
| | - Grochowalska Klaudia
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdańsk, Poland
| | - Szrejder Maria
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdańsk, Poland
| | - Kulesza Tomasz
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdańsk, Poland
- Laboratory of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, Gdansk, Poland
| | - Rachubik Patrycja
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdańsk, Poland
| | - Rogacka Dorota
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdańsk, Poland
| | - Piwkowska Agnieszka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdańsk, Poland.
| |
Collapse
|
2
|
Lumpuy-Castillo J, Amador-Martínez I, Díaz-Rojas M, Lorenzo O, Pedraza-Chaverri J, Sánchez-Lozada LG, Aparicio-Trejo OE. Role of mitochondria in reno-cardiac diseases: A study of bioenergetics, biogenesis, and GSH signaling in disease transition. Redox Biol 2024; 76:103340. [PMID: 39250857 PMCID: PMC11407069 DOI: 10.1016/j.redox.2024.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are global health burdens with rising prevalence. Their bidirectional relationship with cardiovascular dysfunction, manifesting as cardio-renal syndromes (CRS) types 3 and 4, underscores the interconnectedness and interdependence of these vital organ systems. Both the kidney and the heart are critically reliant on mitochondrial function. This organelle is currently recognized as a hub in signaling pathways, with emphasis on the redox regulation mediated by glutathione (GSH). Mitochondrial dysfunction, including impaired bioenergetics, redox, and biogenesis pathways, are central to the progression of AKI to CKD and the development of CRS type 3 and 4. This review delves into the metabolic reprogramming and mitochondrial redox signaling and biogenesis alterations in AKI, CKD, and CRS. We examine the pathophysiological mechanisms involving GSH redox signaling and the AMP-activated protein kinase (AMPK)-sirtuin (SIRT)1/3-peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) axis in these conditions. Additionally, we explore the therapeutic potential of GSH synthesis inducers in mitigating these mitochondrial dysfunctions, as well as their effects on inflammation and the progression of CKD and CRS types 3 and 4.
Collapse
Affiliation(s)
- Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - Isabel Amador-Martínez
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico; Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Miriam Díaz-Rojas
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 43210, Columbus, Ohio, USA.
| | - Oscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Laura Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| | - Omar Emiliano Aparicio-Trejo
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| |
Collapse
|
3
|
Zhao L, Hao Y, Tang S, Han X, Li R, Zhou X. Energy metabolic reprogramming regulates programmed cell death of renal tubular epithelial cells and might serve as a new therapeutic target for acute kidney injury. Front Cell Dev Biol 2023; 11:1276217. [PMID: 38054182 PMCID: PMC10694365 DOI: 10.3389/fcell.2023.1276217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
Acute kidney injury (AKI) induces significant energy metabolic reprogramming in renal tubular epithelial cells (TECs), thereby altering lipid, glucose, and amino acid metabolism. The changes in lipid metabolism encompass not only the downregulation of fatty acid oxidation (FAO) but also changes in cell membrane lipids and triglycerides metabolism. Regarding glucose metabolism, AKI leads to increased glycolysis, activation of the pentose phosphate pathway (PPP), inhibition of gluconeogenesis, and upregulation of the polyol pathway. Research indicates that inhibiting glycolysis, promoting the PPP, and blocking the polyol pathway exhibit a protective effect on AKI-affected kidneys. Additionally, changes in amino acid metabolism, including branched-chain amino acids, glutamine, arginine, and tryptophan, play an important role in AKI progression. These metabolic changes are closely related to the programmed cell death of renal TECs, involving autophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis. Notably, abnormal intracellular lipid accumulation can impede autophagic clearance, further exacerbating lipid accumulation and compromising autophagic function, forming a vicious cycle. Recent studies have demonstrated the potential of ameliorating AKI-induced kidney damage through calorie and dietary restriction. Consequently, modifying the energy metabolism of renal TECs and dietary patterns may be an effective strategy for AKI treatment.
Collapse
Affiliation(s)
- Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yajie Hao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shuqin Tang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiutao Han
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
4
|
Wei H, Cao J, Fallert T, Yeo S, Felmlee MA. GHB toxicokinetics and renal monocarboxylate transporter expression are influenced by the estrus cycle in rats. BMC Pharmacol Toxicol 2023; 24:58. [PMID: 37919807 PMCID: PMC10623699 DOI: 10.1186/s40360-023-00700-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 10/30/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND The illicit use and abuse of gamma-hydroxybutyric acid (GHB) occurs due to its sedative/hypnotic and euphoric effects. Currently, there are no clinically available therapies to treat GHB overdose, and care focuses on symptom treatment until the drug is eliminated from the body. Proton- and sodium-dependent monocarboxylate transporters (MCTs (SLC16A) and SMCTs (SLC5A)) transport and mediate the renal clearance and distribution of GHB. Previously, it has been shown that MCT expression is regulated by sex hormones in the liver, skeletal muscle and Sertoli cells. The focus of the current study is to evaluate GHB toxicokinetics and renal monocarboxylate transporter expression over the estrus cycle in females, and in the absence of male and female sex hormones. METHODS GHB toxicokinetics and renal transporter expression of MCT1, SMCT1 and CD147 were evaluated in females over the estrus cycle, and in ovariectomized (OVX) female, male and castrated (CST) male rats. GHB was administered iv bolus (600 and 1000 mg/kg) and plasma and urine samples were collected for six hours post-dose. GHB concentrations were quantified using a validated LC/MS/MS assay. Transporter mRNA and protein expression was quantified by qPCR and Western Blot. RESULTS GHB renal clearance and AUC varied between sexes and over the estrus cycle in females with higher renal clearance and a lower AUC in proestrus females as compared to males (intact and CST), and OVX females. We demonstrated that renal MCT1 membrane expression varies over the estrus cycle, with the lowest expression observed in proestrus females, which is consistent with the observed changes in GHB renal clearance. CONCLUSIONS Our results suggest that females may be less susceptible to GHB-induced toxicity due to decreased exposure resulting from increased renal clearance, as a result of decreased renal MCT1 expression.
Collapse
Affiliation(s)
- Hao Wei
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, 95211, USA
| | - Jieyun Cao
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, 95211, USA
- AstraZeneca, Gaithersburg, Maryland, USA
| | - Tyler Fallert
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, 95211, USA
- Clovis Community Medical Center, Clovis, CA, USA
| | - Su Yeo
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, 95211, USA
- Kaiser Permanente, Santa Clara, CA, USA
| | - Melanie A Felmlee
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, 95211, USA.
| |
Collapse
|
5
|
Raimundo JRS, da Costa Aguiar Alves B, Encinas JFA, Siqueira AM, de Gois KC, Perez MM, Petri G, Dos Santos JFR, Fonseca FLA, da Veiga GL. Expression of TNFR1, VEGFA, CD147 and MCT1 as early biomarkers of diabetes complications and the impact of aging on this profile. Sci Rep 2023; 13:17927. [PMID: 37863950 PMCID: PMC10589356 DOI: 10.1038/s41598-023-41061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/21/2023] [Indexed: 10/22/2023] Open
Abstract
Hyperglycemia leads to microvascular lesions in various tissues. In diabetic nephropathy-DN, alterations in usual markers reflect an already installed disease. The study of new biomarkers for the early detection of diabetic complications can bring new prevention perspectives. Rats were divided into diabetic adult-DMA-or elderly-DME and control sham adult-CSA-or control sham elderly-CSE. Blood and urine samples were collected for biochemical analysis. Bulbar region, cardiac, hepatic and renal tissues were collected for target gene expression studies. As result, DMA showed decreased TNFR1, MCT1 and CD147 expression in the bulbar region, TNFR1 in the heart, VEGFA and CD147 in the kidney and TNFR1 in blood. Positive correlations were found between TNFR1 and MCT1 in the bulbar region and HbA1c and plasma creatinine, respectively. DME showed positive correlation in the bulbar region between TNFR1 and glycemia, in addition to negative correlations between CD147 in the heart versus glycemia and urea. We concluded that the initial hyperglycemic stimulus already promotes changes in the expression of genes involved in the inflammatory and metabolic pathways, and aging alters this profile. These changes prior to the onset of diseases such as DN, show that they have potential for early biomarkers studies.
Collapse
Affiliation(s)
- Joyce Regina Santos Raimundo
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil.
| | - Beatriz da Costa Aguiar Alves
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Jéssica Freitas Araujo Encinas
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Andressa Moreira Siqueira
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Katharyna Cardoso de Gois
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Matheus Moreira Perez
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Giuliana Petri
- Vivarium and Animal Experimentation Laboratory-Faculdade de Medicina Do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - José Francisco Ramos Dos Santos
- Vivarium and Animal Experimentation Laboratory-Faculdade de Medicina Do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Fernando Luiz Affonso Fonseca
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
- Departamento de Ciências Farmacêuticas da Universidade Federal de São Paulo/UNIFESP, Campus Diadema, Rua Prof. Artur Riedel, 275, Diadema, SP, 09972-270, Brazil
| | - Glaucia Luciano da Veiga
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| |
Collapse
|
6
|
Cuenoud B, Croteau E, St-Pierre V, Richard G, Fortier M, Vandenberghe C, Carpentier AC, Cunnane SC. Cardiorenal ketone metabolism: a positron emission tomography study in healthy humans. Front Physiol 2023; 14:1280191. [PMID: 37869718 PMCID: PMC10587428 DOI: 10.3389/fphys.2023.1280191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023] Open
Abstract
Ketones are alternative energy substrates for the heart and kidney but no studies have investigated their metabolism simultaneously in both organs in humans. The present double tracer positron emission tomography (PET) study evaluated the organ distribution and basal kinetic rates of the radiolabeled ketone, 11C-acetoacetate (11C-AcAc), in the heart and kidney compared to 11C-acetate (11C-Ac), which is a well-validated metabolic radiotracer. Both tracers were highly metabolized by the left ventricle and the renal cortex. In the heart, kinetic rates were similar for both tracers. But in the renal cortex, uptake of 11C-Ac was higher compared to 11C-AcAc, while the reverse was observed for the clearance. Interestingly, infusion of 11C-AcAc led to a significantly delayed release of radioactivity in the renal medulla and pelvis, a phenomenon not observed with 11C-Ac. This suggests an equilibrium of 11C-AcAc with the other ketone, 11C-D-beta-hydroxybutyrate, and a different clearance profile. Overall, this suggests that in the kidney, the absorption and metabolism of 11C-AcAc is different compared to 11C-Ac. This dual tracer PET protocol provides the opportunity to explore the relative importance of ketone metabolism in cardiac and renal diseases, and to improve our mechanistic understanding of new metabolic interventions targeting these two organs.
Collapse
Affiliation(s)
- Bernard Cuenoud
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
- Centre D’imagerie Moléculaire de Sherbrooke, Sherbrooke, Canada
- Centre de Recherche Du CHUS, Sherbrooke, Canada
- Nestlé Health Science, Lausanne, Switzerland
| | - Etienne Croteau
- Centre D’imagerie Moléculaire de Sherbrooke, Sherbrooke, Canada
- Centre de Recherche Du CHUS, Sherbrooke, Canada
| | | | - Gabriel Richard
- Centre D’imagerie Moléculaire de Sherbrooke, Sherbrooke, Canada
- Centre de Recherche Du CHUS, Sherbrooke, Canada
| | - Mélanie Fortier
- Centre de Recherche sur le Vieillissement, Sherbrooke, Canada
| | | | - André C. Carpentier
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
- Centre de Recherche Du CHUS, Sherbrooke, Canada
| | - Stephen C. Cunnane
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
- Centre de Recherche sur le Vieillissement, Sherbrooke, Canada
| |
Collapse
|
7
|
Wei H, Lee A, Zhang Q, Felmlee MA. Effect of Sex and Cross-Sex Hormone Treatment on Renal Monocarboxylate-Transporter Expression in Rats. Pharmaceutics 2023; 15:2404. [PMID: 37896164 PMCID: PMC10610497 DOI: 10.3390/pharmaceutics15102404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Proton- and sodium-dependent monocarboxylate transporters (MCTs/SMCTs) are determinants of renal clearance through the renal reabsorption of monocarboxylate substrates. Prior studies with intact females and males, ovariectomized females and castrated males have revealed the hormonal regulation of renal monocarboxylate-transporter expression, prompting investigation into the regulatory role of individual hormones. The aim of the present study is to evaluate the effect of exogenous sex and cross-sex hormones on renal MCT1, MCT4, CD147 and SMCT1 mRNA and membrane-bound protein expression. Ovariectomized (OVX) females and castrated (CST) male Sprague Dawley rats received estrogen and/or progesterone, testosterone, or a corresponding placebo treatment for 21 days prior to kidney collection. The quantitative measurement of mRNA and membrane-protein levels were conducted using qPCR and Western blot. Quantitative analysis revealed the combination estrogen/progesterone treatment reduced membrane MCT1 and 4 expression and increased SMCT1 expression, while testosterone administration increased MCT1 membrane-protein expression. Correlation analysis indicated that plasma 17β-estradiol was negatively correlated with MCT1 and MCT4 membrane expression, while testosterone was positively correlated. In contrast, SMCT1 membrane expression was positively correlated with 17β-estradiol and progesterone concentrations. MCT1, MCT4, CD147 and SMCT1 renal expression are significantly altered in response to female and male sex hormones following sex and cross-sex hormone treatment in OVX and CST rats. Further studies are needed to understand the complex role of sex hormones, sex hormone receptors and the impact of puberty on MCT/SMCT regulation.
Collapse
Affiliation(s)
| | | | | | - Melanie A. Felmlee
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA (Q.Z.)
| |
Collapse
|
8
|
Verissimo T, Dalga D, Arnoux G, Sakhi I, Faivre A, Auwerx H, Bourgeois S, Paolucci D, Gex Q, Rutkowski JM, Legouis D, Wagner CA, Hall AM, de Seigneux S. PCK1 is a key regulator of metabolic and mitochondrial functions in renal tubular cells. Am J Physiol Renal Physiol 2023; 324:F532-F543. [PMID: 37102687 PMCID: PMC10202477 DOI: 10.1152/ajprenal.00038.2023] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Phosphoenolpyruvate carboxykinase 1 (PCK1 or PEPCK-C) is a cytosolic enzyme converting oxaloacetate to phosphoenolpyruvate, with a potential role in gluconeogenesis, ammoniagenesis, and cataplerosis in the liver. Kidney proximal tubule cells display high expression of this enzyme, whose importance is currently not well defined. We generated PCK1 kidney-specific knockout and knockin mice under the tubular cell-specific PAX8 promoter. We studied the effect of PCK1 deletion and overexpression at the renal level on tubular physiology under normal conditions and during metabolic acidosis and proteinuric renal disease. PCK1 deletion led to hyperchloremic metabolic acidosis characterized by reduced but not abolished ammoniagenesis. PCK1 deletion also resulted in glycosuria, lactaturia, and altered systemic glucose and lactate metabolism at baseline and during metabolic acidosis. Metabolic acidosis resulted in kidney injury in PCK1-deficient animals with decreased creatinine clearance and albuminuria. PCK1 further regulated energy production by the proximal tubule, and PCK1 deletion decreased ATP generation. In proteinuric chronic kidney disease, mitigation of PCK1 downregulation led to better renal function preservation. PCK1 is essential for kidney tubular cell acid-base control, mitochondrial function, and glucose/lactate homeostasis. Loss of PCK1 increases tubular injury during acidosis. Mitigating kidney tubular PCK1 downregulation during proteinuric renal disease improves renal function.NEW & NOTEWORTHY Phosphoenolpyruvate carboxykinase 1 (PCK1) is highly expressed in the proximal tubule. We show here that this enzyme is crucial for the maintenance of normal tubular physiology, lactate, and glucose homeostasis. PCK1 is a regulator of acid-base balance and ammoniagenesis. Preventing PCK1 downregulation during renal injury improves renal function, rendering it an important target during renal disease.
Collapse
Affiliation(s)
- Thomas Verissimo
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Department of Medicine, Service of Nephrology, Geneva University Hospitals, Geneva, Switzerland
| | - Delal Dalga
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Department of Medicine, Service of Nephrology, Geneva University Hospitals, Geneva, Switzerland
| | - Grégoire Arnoux
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Imene Sakhi
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Anna Faivre
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Hannah Auwerx
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Soline Bourgeois
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Deborah Paolucci
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Quentin Gex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | | | - David Legouis
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Division of Intensive Care, Department of Acute Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Andrew M Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Sophie de Seigneux
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Department of Medicine, Service of Nephrology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
9
|
Piret SE, Mallipattu SK. Transcriptional regulation of proximal tubular metabolism in acute kidney injury. Pediatr Nephrol 2023; 38:975-986. [PMID: 36181578 DOI: 10.1007/s00467-022-05748-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/07/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
The kidney, and in particular the proximal tubule (PT), has a high demand for ATP, due to its function in bulk reabsorption of solutes. In normal PT, ATP levels are predominantly maintained by fatty acid β-oxidation (FAO), the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation. The normal PT also undertakes gluconeogenesis and metabolism of amino acids. Acute kidney injury (AKI) results in profound PT metabolic alterations, including suppression of FAO, gluconeogenesis, and metabolism of some amino acids, and upregulation of glycolytic enzymes. Recent studies have elucidated new transcriptional mechanisms regulating metabolic pathways in normal PT, as well as the metabolic switch in AKI. A number of transcription factors have been shown to play important roles in FAO, which are themselves downregulated in AKI, while hypoxia-inducible factor 1α, which is upregulated in ischemia-reperfusion injury, is a likely driver of the upregulation of glycolytic enzymes. Transcriptional regulation of amino acid metabolic pathways is less well understood, except for catabolism of branched-chain amino acids, which is likely suppressed in AKI by upregulation of Krüppel-like factor 6. This review will focus on the transcriptional regulation of specific metabolic pathways in normal PT and in AKI, as well as highlighting some of the gaps in knowledge and challenges that remain to be addressed.
Collapse
Affiliation(s)
- Sian E Piret
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA.
| | - Sandeep K Mallipattu
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
- Renal Division, Northport VA Medical Center, Northport, NY, USA
| |
Collapse
|
10
|
Szrejder M, Typiak M, Pikul P, Audzeyenka I, Rachubik P, Rogacka D, Narajczyk M, Piwkowska A. Role of L-lactate as an energy substrate in primary rat podocytes under physiological and glucose deprivation conditions. Eur J Cell Biol 2023; 102:151298. [PMID: 36805821 DOI: 10.1016/j.ejcb.2023.151298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
Lactate has long been acknowledged to be a metabolic waste product, but it has more recently been found as a fuel energy source in mammalian cells. Podocytes are an important component of the glomerular filter, and their role in maintaining the structural integrity of this structure was established. These cells rely on a constant energy supply and reservoir. The utilization of alternative energy substrates to preserve energetic homeostasis is a subject of extensive research, and lactate appears to be one such candidate. Therefore, we investigated the role of lactate as an energy substrate and characterize the lactate transport system in cultured rat podocytes during sufficient and insufficient glucose supplies. The present study, for the first time, demonstrated the presence of lactate transporters in podocytes. Moreover, we observed modified the amount of these transporters in response to limited glucose availability and after l-lactate supplementation. Simultaneously, exposure to l-lactate preserved cell survival during insufficient glucose supply. Interestingly, during glucose deprivation, lactate exposure allowed the steady flow of glycolysis and prevented glycogen reserves depletion. Summarizing, podocytes utilize lactate as an energy substrate and possess a developed system that controls lactate homeostasis, suggesting that it plays an essential role in podocyte metabolism, especially during fluctuations of energy availability.
Collapse
Affiliation(s)
- Maria Szrejder
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland.
| | - Marlena Typiak
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; University of Gdansk, Faculty of Biology, Gdansk, Poland
| | - Piotr Pikul
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland
| | - Irena Audzeyenka
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; University of Gdansk, Faculty of Chemistry, Gdańsk, Poland
| | - Patrycja Rachubik
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland
| | - Dorota Rogacka
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; University of Gdansk, Faculty of Chemistry, Gdańsk, Poland
| | | | - Agnieszka Piwkowska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Laboratory of Molecular and Cellular Nephrology, Gdańsk, Poland; University of Gdansk, Faculty of Chemistry, Gdańsk, Poland
| |
Collapse
|
11
|
Grochowalska K, Pikul P, Piwkowska A. Insights into the regulation of podocyte and glomerular function by lactate and its metabolic sensor G-protein-coupled receptor 81. J Cell Physiol 2022; 237:4097-4111. [PMID: 36084306 DOI: 10.1002/jcp.30874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/04/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022]
Abstract
Podocytes and their foot processes are an important cellular layer of the renal filtration barrier that is involved in regulating glomerular permeability. Disturbances of podocyte function play a central role in the development of proteinuria in diabetic nephropathy. The retraction and effacement of podocyte foot processes that form slit diaphragms are a common feature of proteinuria. Correlations between the retraction of foot processes and the development of proteinuria are not well understood. Unraveling peculiarities of podocyte energy metabolism notably under diabetic conditions will provide insights into the pathogenesis of diabetic nephropathy. Intracellular metabolism in the cortical area of podocytes is regulated by glycolysis, whereas energy balance in the central area is controlled by oxidative phosphorylation and glycolysis. High glucose concentrations were recently reported to force podocytes to switch from mitochondrial oxidative phosphorylation to glycolysis, resulting in lactic acidosis. In this review, we hypothesize that the lactate receptor G-protein-coupled receptor 81 (also known as hydroxycarboxylic acid receptor 81) may contribute to the control of podocyte function in both health and disease.
Collapse
Affiliation(s)
- Klaudia Grochowalska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Piotr Pikul
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Gdansk, Poland.,Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| |
Collapse
|
12
|
Multi-Omics Studies Unveil Extraciliary Functions of BBS10 and Show Metabolic Aberrations Underlying Renal Disease in Bardet-Biedl Syndrome. Int J Mol Sci 2022; 23:ijms23169420. [PMID: 36012682 PMCID: PMC9409368 DOI: 10.3390/ijms23169420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/13/2022] Open
Abstract
Bardet–Biedl syndrome (BBS) is a rare autosomal recessive ciliopathy resulting in multiple organ dysfunctions, including chronic kidney disease (CKD). Despite the recent progress in the ’ciliopathy’ field, there is still little information on the mechanisms underlying renal disease. To elucidate these pathomechanisms, we conducted a translational study, including (i) the characterization of the urine metabolomic pattern of BBS patients and controls in a pilot and confirmation study and (ii) the proteomic analysis of the BBS10 interactome, one of the major mutated BBS genes in patients, in a renal-epithelial-derived cell culture model. The urine metabolomic fingerprinting of BBS patients differed from controls in both pilot and confirmation studies, demonstrating an increased urinary excretion of several monocarboxylates, including lactic acid (LA), at both early and late CKD stages. Increased urine LA was detected in the absence of both increased plasmatic LA levels and generalized proximal tubular dysfunction, suggesting a possible renal-specific defective handling. The inner medulla renal epithelial (IMCD3) cell line, where Bbs10 was stably invalidated, displayed an increased proliferative rate, increased ATP production, and an up-regulation of aerobic glycolysis. A mass spectrometry-based analysis detected several putative BBS10 interactors in vitro, indicating a potential role of BBS10 in several biological processes, including renal metabolism, RNA processing, and cell proliferation. The present study suggests that the urine metabolomic pattern of BBS patients may reflect intra-renal metabolic aberrations. The analysis of BBS10 interactors unveils possible novel functions, including cell metabolism.
Collapse
|
13
|
Functional coupling of organic anion transporter OAT10 (SLC22A13) and monocarboxylate transporter MCT1 (SLC16A1) influencing the transport function of OAT10. J Pharmacol Sci 2022; 150:41-48. [DOI: 10.1016/j.jphs.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
|
14
|
Construction and Functional Evaluation of a Three-Dimensional Blood–Brain Barrier Model Equipped With Human Induced Pluripotent Stem Cell-Derived Brain Microvascular Endothelial Cells. Pharm Res 2022; 39:1535-1547. [PMID: 35411503 PMCID: PMC9246774 DOI: 10.1007/s11095-022-03249-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/29/2022] [Indexed: 12/28/2022]
Abstract
Abstract
Purpose
The purpose of this study was to construct and validate an in vivo three-dimensional blood–brain barrier (3D-BBB) model system equipped with brain microvascular endothelial cells derived from human induced pluripotent stem cells (hiPS-BMECs).
Methods
The 3D-BBB system was constructed by seeding hiPS-BMECs onto the capillary lane of a MIMETAS OrganoPlate® 3-lane coated with fibronectin/collagen IV. hiPS-BMECs were incubated under continuous switchback flow with an OrganoFlow® for 2 days. The 3D capillary structure and expression of tight-junction proteins and transporters were confirmed by immunocytochemistry. The mRNA expression of transporters in the 3D environment was determined using qRT-PCR, and the permeability of endogenous substances and drugs was evaluated under various conditions.
Results and Discussion
The expression of tight-junction proteins, including claudin-5 and ZO-1, was confirmed by immunohistochemistry. The permeability rate constant of lucifer yellow through hiPS-BMECs was undetectably low, indicating that paracellular transport is highly restricted by tight junctions in the 3D-BBB system. The mRNA expression levels of transporters and receptors in the 3D-BBB system differed from those in the 2D-culture system by 0.2- to 5.8-fold. The 3D-cultured hiPS-BMECs showed asymmetric transport of substrates of BCRP, CAT1 and LAT1 between the luminal (blood) and abluminal (brain) sides. Proton-coupled symport function of MCT1 was also confirmed.
Conclusion
The 3D-BBB system constructed in this study mimics several important characteristics of the human BBB, and is expected to be a useful high-throughput evaluation tool in the development of CNS drugs.
Collapse
|
15
|
Kouyoumdzian NM, Kim G, Rudi MJ, Rukavina Mikusic NL, Fernández BE, Choi MR. Clues and new evidences in arterial hypertension: unmasking the role of the chloride anion. Pflugers Arch 2022; 474:155-176. [PMID: 34966955 DOI: 10.1007/s00424-021-02649-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
The present review will focus on the role of chloride anion in cardiovascular disease, with special emphasis in the development of hypertensive disease and vascular inflammation. It is known that acute and chronic overload of sodium chloride increase blood pressure and have pro-inflammatory and pro-fibrotic effects on different target organs, but it is unknown how chloride may influence these processes. Chloride anion is the predominant anion in the extracellular fluid and its intracellular concentration is dynamically regulated. As the queen of the electrolytes, it is of crucial importance to understand the physiological mechanisms that regulate the cellular handling of this anion including the different transporters and cellular chloride channels, which exert a variety of functions, such as regulation of cellular proliferation, differentiation, migration, apoptosis, intracellular pH and cellular redox state. In this article, we will also review the relationship between dietary, serum and intracellular chloride and how these different sources of chloride in the organism are affected in hypertension and their impact on cardiovascular disease. Additionally, we will discuss the approach of potential strategies that affect chloride handling and its potential effect on cardiovascular system, including pharmacological blockade of chloride channels and non-pharmacological interventions by replacing chloride by another anion.
Collapse
Affiliation(s)
- Nicolás Martín Kouyoumdzian
- Universidad de Buenos Aires, CONICET, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina.
| | - Gabriel Kim
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Julieta Rudi
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Lucía Rukavina Mikusic
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Marcelo Roberto Choi
- Universidad de Buenos Aires, CONICET, Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina
- Facultad de Farmacia Y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto Universitario de Ciencias de La Salud, Fundación H.A. Barceló, Buenos Aires, Argentina
| |
Collapse
|
16
|
Osis G, Agarwal A. Reply to Bankir: the ever-expanding role of lactate in the kidney. Am J Physiol Renal Physiol 2021; 321:F354. [PMID: 34460351 PMCID: PMC8530751 DOI: 10.1152/ajprenal.00282.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 01/21/2023] Open
Affiliation(s)
- Gunars Osis
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anupam Agarwal
- Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Veterans Affairs, Birmingham, Alabama
| |
Collapse
|
17
|
Foresto-Neto O, Ghirotto B, Câmara NOS. Renal Sensing of Bacterial Metabolites in the Gut-kidney Axis. KIDNEY360 2021; 2:1501-1509. [PMID: 35373097 PMCID: PMC8786145 DOI: 10.34067/kid.0000292021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/28/2021] [Indexed: 02/04/2023]
Abstract
Seminal works have now revealed the gut microbiota is connected with several diseases, including renal disorders. The balance between optimal and dysregulated host-microbiota interactions has completely changed our understanding of immunity and inflammation. Kidney injury is associated with accumulation of uremic toxins in the intestine, augmented intestinal permeability, and systemic inflammation. Intestinal bacteria can signal through innate receptors and induce immune cell activation in the lamina propria and release of inflammatory mediators into the bloodstream. But the gut microbiota can also modulate immune functions through soluble products as short-chain fatty acids (SCFAs). The three most common SCFAs are propionate, butyrate, and acetate, which can signal through specific G-protein coupled receptors (GPCRs), such as GPR43, GPR41, and GPR109a, expressed on the surface of epithelial, myeloid, endothelial, and immune cells, among others. The triggered signaling can change cell metabolism, immune cell activation, and cell death. In this study, we reviewed the gut-kidney axis, how kidney cells can sense SCFAs, and its implication in kidney diseases.
Collapse
Affiliation(s)
- Orestes Foresto-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Brazil,Nephrology Division, Department of Medicine, Federal University of São Paulo, Brazil
| | - Bruno Ghirotto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Brazil,Nephrology Division, Department of Medicine, Federal University of São Paulo, Brazil
| |
Collapse
|
18
|
Sheikh-Hamad D. Hints for a kidney lactate shuttle and lactomone. Am J Physiol Renal Physiol 2021; 320:F1028-F1029. [PMID: 33938240 DOI: 10.1152/ajprenal.00160.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- David Sheikh-Hamad
- Division of Nephrology and Selzman Institute for Kidney Health, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Center for Translational Research on Inflammatory Diseases, Michael E. Debakey Veterans Affairs Medical Center, Houston, Texas
| |
Collapse
|
19
|
Preclinical Evaluation of [ 18F]FACH in Healthy Mice and Piglets: An 18F-Labeled Ligand for Imaging of Monocarboxylate Transporters with PET. Int J Mol Sci 2021; 22:ijms22041645. [PMID: 33562048 PMCID: PMC7915902 DOI: 10.3390/ijms22041645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022] Open
Abstract
The expression of monocarboxylate transporters (MCTs) is linked to pathophysiological changes in diseases, including cancer, such that MCTs could potentially serve as diagnostic markers or therapeutic targets. We recently developed [18F]FACH as a radiotracer for non-invasive molecular imaging of MCTs by positron emission tomography (PET). The aim of this study was to evaluate further the specificity, metabolic stability, and pharmacokinetics of [18F]FACH in healthy mice and piglets. We measured the [18F]FACH plasma protein binding fractions in mice and piglets and the specific binding in cryosections of murine kidney and lung. The biodistribution of [18F]FACH was evaluated by tissue sampling ex vivo and by dynamic PET/MRI in vivo, with and without pre-treatment by the MCT inhibitor α-CCA-Na or the reference compound, FACH-Na. Additionally, we performed compartmental modelling of the PET signal in kidney cortex and liver. Saturation binding studies in kidney cortex cryosections indicated a KD of 118 ± 12 nM and Bmax of 6.0 pmol/mg wet weight. The specificity of [18F]FACH uptake in the kidney cortex was confirmed in vivo by reductions in AUC0–60min after pre-treatment with α-CCA-Na in mice (−47%) and in piglets (−66%). [18F]FACH was metabolically stable in mouse, but polar radio-metabolites were present in plasma and tissues of piglets. The [18F]FACH binding potential (BPND) in the kidney cortex was approximately 1.3 in mice. The MCT1 specificity of [18F]FACH uptake was confirmed by displacement studies in 4T1 cells. [18F]FACH has suitable properties for the detection of the MCTs in kidney, and thus has potential as a molecular imaging tool for MCT-related pathologies, which should next be assessed in relevant disease models.
Collapse
|
20
|
Legouis D, Faivre A, Cippà PE, de Seigneux S. Renal gluconeogenesis: an underestimated role of the kidney in systemic glucose metabolism. Nephrol Dial Transplant 2020; 37:1417-1425. [PMID: 33247734 DOI: 10.1093/ndt/gfaa302] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
Glucose levels are tightly regulated at all times. Gluconeogenesis is the metabolic pathway dedicated to glucose synthesis from non-hexose precursors. Gluconeogenesis is critical for glucose homoeostasis, particularly during fasting or stress conditions. The renal contribution to systemic gluconeogenesis is increasingly recognized. During the post-absorptive phase, the kidney accounts for ∼40% of endogenous gluconeogenesis, occurring mainly in the kidney proximal tubule. The main substrate for renal gluconeogenesis is lactate and the process is regulated by insulin and cellular glucose levels, but also by acidosis and stress hormones. The kidney thus plays an important role in the maintenance of glucose and lactate homoeostasis during stress conditions. The impact of acute and chronic kidney disease and proximal tubular injury on gluconeogenesis is not well studied. Recent evidence shows that in both experimental and clinical acute kidney injury, impaired renal gluconeogenesis could significantly participate in systemic metabolic disturbance and thus alter the prognosis. This review summarizes the biochemistry of gluconeogenesis, the current knowledge of kidney gluconeogenesis, its modifications in kidney disease and the clinical relevance of this fundamental biological process in human biology.
Collapse
Affiliation(s)
- David Legouis
- Department of Acute Medicine, Division of Intensive Care, University Hospitals of Geneva, Geneva, Switzerland.,Department of Medicine, Laboratory of Nephrology, University Hospitals of Geneva, Geneva, Switzerland.,Department of Cell Physiology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anna Faivre
- Department of Medicine, Laboratory of Nephrology, University Hospitals of Geneva, Geneva, Switzerland.,Department of Cell Physiology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pietro E Cippà
- Division of Nephrology, Ente Ospedaliero Cantonale, Lugano, Switzerland
| | - Sophie de Seigneux
- Department of Medicine, Laboratory of Nephrology, University Hospitals of Geneva, Geneva, Switzerland.,Department of Cell Physiology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Medicine, Division of Nephrology, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Zheng T, Jäättelä M, Liu B. pH gradient reversal fuels cancer progression. Int J Biochem Cell Biol 2020; 125:105796. [DOI: 10.1016/j.biocel.2020.105796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022]
|
22
|
Bongarzone S, Barbon E, Ferocino A, Alsulaimani L, Dunn J, Kim J, Sunassee K, Gee A. Imaging niacin trafficking with positron emission tomography reveals in vivo monocarboxylate transporter distribution. Nucl Med Biol 2020; 88-89:24-33. [PMID: 32683248 PMCID: PMC7599079 DOI: 10.1016/j.nucmedbio.2020.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/30/2020] [Accepted: 07/04/2020] [Indexed: 11/29/2022]
Abstract
Introduction A sufficient dietary intake of the vitamin niacin is essential for normal cellular function. Niacin is transported into the cells by the monocarboxylate transporters: sodium-dependent monocarboxylate transporter (SMCT1 and SMCT2) and monocarboxylate transporter (MCT1). Despite the importance of niacin in biological systems, surprisingly, its in vivo biodistribution and trafficking in living organisms has not been reported. The availability of niacin radiolabelled with the short-lived positron emitting radionuclide carbon-11 ([11C]niacin) would enable the quantitative in vivo study of this endogenous micronutrient trafficking using in vivo PET molecular imaging. Methods [11C]Niacin was synthesised via a simple one-step, one-pot reaction in a fully automated system using cyclotron-produced carbon dioxide ([11C]CO2) and 3-pyridineboronic acid ester via a copper-mediated reaction. [11C]Niacin was administered intravenously in healthy anaesthetised mice placed in a high-resolution nanoScan PET/CT scanner. To further characterize in vivo [11C]niacin distribution in vivo, mice were challenged with either niacin or AZD3965, a potent and selective MCT1 inhibitor. To examine niacin gastrointestinal absorption and body distribution in vivo, no-carrier-added (NCA) and carrier-added (CA) [11C]niacin formulations were administered orally. Results Total synthesis time including HPLC purification was 25 ± 1 min from end of [11C]CO2 delivery. [11C]Niacin was obtained with a decay corrected radiochemical yield of 17 ± 2%. We report a rapid radioactivity accumulation in the kidney, heart, eyes and liver of intravenously administered [11C]niacin which is consistent with the known in vivo SMCTs and MCT1 transporter tissue expression. Pre-administration of non-radioactive niacin decreased kidney-, heart-, ocular- and liver-uptake and increased urinary excretion of [11C]niacin. Pre-administration of AZD3965 selectively decreased [11C]niacin uptake in MCT1-expressing organs such as heart and retina. Following oral administration of NCA [11C]niacin, a high level of radioactivity accumulated in the intestines. CA abolished the intestinal accumulation of [11C]niacin resulting in a preferential distribution to all tissues expressing niacin transporters and the excretory organs. Conclusions Here, we describe the efficient preparation of [11C]niacin as PET imaging agent for probing the trafficking of nutrient demand in healthy rodents by intravenous and oral administration, providing a translatable technique to enable the future exploration of niacin trafficking in humans and to assess its application as a research tool for metabolic disorders (dyslipidaemia) and cancer.
Collapse
Affiliation(s)
- Salvatore Bongarzone
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom.
| | - Elisabetta Barbon
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Alessandra Ferocino
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Layla Alsulaimani
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Joel Dunn
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Jana Kim
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Kavitha Sunassee
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Antony Gee
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom.
| |
Collapse
|
23
|
Sadeghzadeh M, Wenzel B, Gündel D, Deuther-Conrad W, Toussaint M, Moldovan RP, Fischer S, Ludwig FA, Teodoro R, Jonnalagadda S, Jonnalagadda SK, Schüürmann G, Mereddy VR, Drewes LR, Brust P. Development of Novel Analogs of the Monocarboxylate Transporter Ligand FACH and Biological Validation of One Potential Radiotracer for Positron Emission Tomography (PET) Imaging. Molecules 2020; 25:molecules25102309. [PMID: 32423056 PMCID: PMC7288138 DOI: 10.3390/molecules25102309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
Monocarboxylate transporters 1-4 (MCT1-4) are involved in several metabolism-related diseases, especially cancer, providing the chance to be considered as relevant targets for diagnosis and therapy. [18F]FACH was recently developed and showed very promising preclinical results as a potential positron emission tomography (PET) radiotracer for imaging of MCTs. Given that [18F]FACH did not show high blood-brain barrier permeability, the current work is aimed to investigate whether more lipophilic analogs of FACH could improve brain uptake for imaging of gliomas, while retaining binding to MCTs. The 2-fluoropyridinyl-substituted analogs 1 and 2 were synthesized and their MCT1 inhibition was estimated by [14C]lactate uptake assay on rat brain endothelial-4 (RBE4) cells. While compounds 1 and 2 showed lower MCT1 inhibitory potencies than FACH (IC50 = 11 nM) by factors of 11 and 25, respectively, 1 (IC50 = 118 nM) could still be a suitable PET candidate. Therefore, 1 was selected for radiosynthesis of [18F]1 and subsequent biological evaluation for imaging of the MCT expression in mouse brain. Regarding lipophilicity, the experimental log D7.4 result for [18F]1 agrees pretty well with its predicted value. In vivo and in vitro studies revealed high uptake of the new radiotracer in kidney and other peripheral MCT-expressing organs together with significant reduction by using specific MCT1 inhibitor α-cyano-4-hydroxycinnamic acid. Despite a higher lipophilicity of [18F]1 compared to [18F]FACH, the in vivo brain uptake of [18F]1 was in a similar range, which is reflected by calculated BBB permeabilities as well through similar transport rates by MCTs on RBE4 cells. Further investigation is needed to clarify the MCT-mediated transport mechanism of these radiotracers in brain.
Collapse
Affiliation(s)
- Masoud Sadeghzadeh
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
- Correspondence: ; Tel.: +49-341-2341794630; Fax: +49-341-2341794699
| | - Barbara Wenzel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| | - Daniel Gündel
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| | - Winnie Deuther-Conrad
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| | - Magali Toussaint
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| | - Rareş-Petru Moldovan
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| | - Steffen Fischer
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| | - Friedrich-Alexander Ludwig
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| | - Rodrigo Teodoro
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| | - Shirisha Jonnalagadda
- Department of Chemistry and Biochemistry, Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, Duluth, MN 55812, USA; (S.J.); (S.K.J.); (V.R.M.)
| | - Sravan K. Jonnalagadda
- Department of Chemistry and Biochemistry, Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, Duluth, MN 55812, USA; (S.J.); (S.K.J.); (V.R.M.)
| | - Gerrit Schüürmann
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany;
- Institute of Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany
| | - Venkatram R. Mereddy
- Department of Chemistry and Biochemistry, Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, Duluth, MN 55812, USA; (S.J.); (S.K.J.); (V.R.M.)
| | - Lester R. Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, 251 SMed, 1035 University Drive, Duluth, MN 55812, USA;
| | - Peter Brust
- Department of Neuroradiopharmaceuticals, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany; (B.W.); (D.G.); (W.D.-C.); (M.T.); (R.-P.M.); (S.F.); (F.-A.L.); (R.T.); (P.B.)
| |
Collapse
|
24
|
Ghazi S, Bourgeois S, Gomariz A, Bugarski M, Haenni D, Martins JR, Nombela-Arrieta C, Unwin RJ, Wagner CA, Hall AM, Craigie E. Multiparametric imaging reveals that mitochondria-rich intercalated cells in the kidney collecting duct have a very high glycolytic capacity. FASEB J 2020; 34:8510-8525. [PMID: 32367531 DOI: 10.1096/fj.202000273r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/30/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
Alpha intercalated cells (αICs) in the kidney collecting duct (CD) belong to a family of mitochondria rich cells (MRCs) and have a crucial role in acidifying the urine via apical V-ATPase pumps. The nature of metabolism in αICs and its relationship to transport was not well-understood. Here, using multiphoton live cell imaging in mouse kidney tissue, FIB-SEM, and other complementary techniques, we provide new insights into mitochondrial structure and function in αICs. We show that αIC mitochondria have a rounded structure and are not located in close proximity to V-ATPase containing vesicles. They display a bright NAD(P)H fluorescence signal and low uptake of voltage-dependent dyes, but are energized by a pH gradient. However, expression of complex V (ATP synthase) is relatively low in αICs, even when stimulated by metabolic acidosis. In contrast, anaerobic glycolytic capacity is surprisingly high, and sufficient to maintain intracellular calcium homeostasis in the presence of complete aerobic inhibition. Moreover, glycolysis is essential for V-ATPase-mediated proton pumping. Key findings were replicated in narrow/clear cells in the epididymis, also part of the MRC family. In summary, using a range of cutting-edge techniques to investigate αIC metabolism in situ, we have discovered that these mitochondria dense cells have a high glycolytic capacity.
Collapse
Affiliation(s)
- Susan Ghazi
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Soline Bourgeois
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Alvaro Gomariz
- Department of Medical Oncology and Hematology, University of Zurich, Zurich, Switzerland.,Computer Vision Laboratory, ETH Zurich, Zurich, Switzerland
| | - Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Dominik Haenni
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Joana R Martins
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - César Nombela-Arrieta
- Department of Medical Oncology and Hematology, University of Zurich, Zurich, Switzerland
| | - Robert J Unwin
- Department of Renal Medicine, University College London, UK.,AstraZeneca Biopharmaceuticals R&D, Gothenburg, Sweden
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Andrew M Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Department of Nephrology, University Hospital Zurich, Switzerland
| | - Eilidh Craigie
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Seifter JL. Body Fluid Compartments, Cell Membrane Ion Transport, Electrolyte Concentrations, and Acid-Base Balance. Semin Nephrol 2020; 39:368-379. [PMID: 31300092 DOI: 10.1016/j.semnephrol.2019.04.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Measurements made in the blood, part of the extracellular compartment, are used in the clinical assessment of acid-base disorders; however, intracellular events determine much of the metabolic importance of these disorders. Intracellular and interstitial compartment acid-base balance is complex and varies in different tissues. This review considers the determination of extracellular pH in the context of ion transport processes at the interface of cells and the interstitial fluid, and between epithelial cells lining the transcellular contents of the gastrointestinal and urinary tracts that open to the external environment. A further consideration is the role of these membrane transporters in the generation of acid-base disorders and the associated disruption of electrolyte balance. This review suggests a process of internal and external balance for pH regulation similar to that of potassium, and considers the role of secretory gastrointestinal epithelia and renal epithelia with respect to normal pH homeostasis and clinical disorders. Electroneutrality of electrolytes in the extracellular fluid is a fundamental feature of reciprocal changes in Cl- or non-Cl- anions and HCO3-. Normal mechanisms for protecting cell pH and producing normal gastrointestinal and renal secretions in healthy states also may result in disease when abnormal. In a similar manner, organic anions such as ketoacid anions and lactate, normally transported as fuels between organs, result in acid-base disturbances in disease. Understanding the genomic basis of these transporters may contribute to specific treatments.
Collapse
|
26
|
Sattler B, Kranz M, Wenzel B, Jain NT, Moldovan RP, Toussaint M, Deuther-Conrad W, Ludwig FA, Teodoro R, Sattler T, Sadeghzadeh M, Sabri O, Brust P. Preclinical Incorporation Dosimetry of [ 18F]FACH-A Novel 18F-Labeled MCT1/MCT4 Lactate Transporter Inhibitor for Imaging Cancer Metabolism with PET. Molecules 2020; 25:E2024. [PMID: 32357571 PMCID: PMC7248880 DOI: 10.3390/molecules25092024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 02/08/2023] Open
Abstract
Overexpression of monocarboxylate transporters (MCTs) has been shown for a variety of human cancers (e.g., colon, brain, breast, and kidney) and inhibition resulted in intracellular lactate accumulation, acidosis, and cell death. Thus, MCTs are promising targets to investigate tumor cancer metabolism with positron emission tomography (PET). Here, the organ doses (ODs) and the effective dose (ED) of the first 18F-labeled MCT1/MCT4 inhibitor were estimated in juvenile pigs. Whole-body dosimetry was performed in three piglets (age: ~6 weeks, weight: ~13-15 kg). The animals were anesthetized and subjected to sequential hybrid Positron Emission Tomography and Computed Tomography (PET/CT) up to 5 h after an intravenous (iv) injection of 156 ± 54 MBq [18F]FACH. All relevant organs were defined by volumes of interest. Exponential curves were fitted to the time-activity data. Time and mass scales were adapted to the human order of magnitude and the ODs calculated using the ICRP 89 adult male phantom with OLINDA 2.1. The ED was calculated using tissue weighting factors as published in Publication 103 of the International Commission of Radiation Protection (ICRP103). The highest organ dose was received by the urinary bladder (62.6 ± 28.9 µSv/MBq), followed by the gall bladder (50.4 ± 37.5 µSv/MBq) and the pancreas (30.5 ± 27.3 µSv/MBq). The highest contribution to the ED was by the urinary bladder (2.5 ± 1.1 µSv/MBq), followed by the red marrow (1.7 ± 0.3 µSv/MBq) and the stomach (1.3 ± 0.4 µSv/MBq). According to this preclinical analysis, the ED to humans is 12.4 µSv/MBq when applying the ICRP103 tissue weighting factors. Taking into account that preclinical dosimetry underestimates the dose to humans by up to 40%, the conversion factor applied for estimation of the ED to humans would rise to 20.6 µSv/MBq. In this case, the ED to humans upon an iv application of ~300 MBq [18F]FACH would be about 6.2 mSv. This risk assessment encourages the translation of [18F]FACH into clinical study phases and the further investigation of its potential as a clinical tool for cancer imaging with PET.
Collapse
Affiliation(s)
- Bernhard Sattler
- Department of Nuclear Medicine, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Mathias Kranz
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
- Tromsø PET Center, University Hospital of North Norway, 9009 Tromsø, Norway
- Nuclear Medicine and Radiation Biology Research Group, The Arctic University of Norway, 9009 Tromsø, Norway
| | - Barbara Wenzel
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Nalin T. Jain
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Rareş-Petru Moldovan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Magali Toussaint
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Friedrich-Alexander Ludwig
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Rodrigo Teodoro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Tatjana Sattler
- Department of Claw Animals, University of Leipzig, 04103 Leipzig, Germany
| | - Masoud Sadeghzadeh
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| |
Collapse
|
27
|
Felmlee MA, Jones RS, Rodriguez-Cruz V, Follman KE, Morris ME. Monocarboxylate Transporters (SLC16): Function, Regulation, and Role in Health and Disease. Pharmacol Rev 2020; 72:466-485. [PMID: 32144120 PMCID: PMC7062045 DOI: 10.1124/pr.119.018762] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The solute carrier family 16 (SLC16) is comprised of 14 members of the monocarboxylate transporter (MCT) family that play an essential role in the transport of important cell nutrients and for cellular metabolism and pH regulation. MCTs 1-4 have been extensively studied and are involved in the proton-dependent transport of L-lactate, pyruvate, short-chain fatty acids, and monocarboxylate drugs in a wide variety of tissues. MCTs 1 and 4 are overexpressed in a number of cancers, and current investigations have focused on transporter inhibition as a novel therapeutic strategy in cancers. MCT1 has also been used in strategies aimed at enhancing drug absorption due to its high expression in the intestine. Other MCT isoforms are less well characterized, but ongoing studies indicate that MCT6 transports xenobiotics such as bumetanide, nateglinide, and probenecid, whereas MCT7 has been characterized as a transporter of ketone bodies. MCT8 and MCT10 transport thyroid hormones, and recently, MCT9 has been characterized as a carnitine efflux transporter and MCT12 as a creatine transporter. Expressed at the blood brain barrier, MCT8 mutations have been associated with an X-linked intellectual disability, known as Allan-Herndon-Dudley syndrome. Many MCT isoforms are associated with hormone, lipid, and glucose homeostasis, and recent research has focused on their potential roles in disease, with MCTs representing promising novel therapeutic targets. This review will provide a summary of the current literature focusing on the characterization, function, and regulation of the MCT family isoforms and on their roles in drug disposition and in health and disease. SIGNIFICANCE STATEMENT: The 14-member solute carrier family 16 of monocarboxylate transporters (MCTs) plays a fundamental role in maintaining intracellular concentrations of a broad range of important endogenous molecules in health and disease. MCTs 1, 2, and 4 (L-lactate transporters) are overexpressed in cancers and represent a novel therapeutic target in cancer. Recent studies have highlighted the importance of MCTs in glucose, lipid, and hormone homeostasis, including MCT8 in thyroid hormone brain uptake, MCT12 in carnitine transport, and MCT11 in type 2 diabetes.
Collapse
Affiliation(s)
- Melanie A Felmlee
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, California (M.A.F.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., V.R.-C., M.E.M.); and Certara Strategic Consulting, Certara USA, Princeton, New Jersey (K.E.F.)
| | - Robert S Jones
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, California (M.A.F.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., V.R.-C., M.E.M.); and Certara Strategic Consulting, Certara USA, Princeton, New Jersey (K.E.F.)
| | - Vivian Rodriguez-Cruz
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, California (M.A.F.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., V.R.-C., M.E.M.); and Certara Strategic Consulting, Certara USA, Princeton, New Jersey (K.E.F.)
| | - Kristin E Follman
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, California (M.A.F.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., V.R.-C., M.E.M.); and Certara Strategic Consulting, Certara USA, Princeton, New Jersey (K.E.F.)
| | - Marilyn E Morris
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, California (M.A.F.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., V.R.-C., M.E.M.); and Certara Strategic Consulting, Certara USA, Princeton, New Jersey (K.E.F.)
| |
Collapse
|
28
|
Groeneweg S, van Geest FS, Peeters RP, Heuer H, Visser WE. Thyroid Hormone Transporters. Endocr Rev 2020; 41:5637505. [PMID: 31754699 DOI: 10.1210/endrev/bnz008] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 02/08/2023]
Abstract
Thyroid hormone transporters at the plasma membrane govern intracellular bioavailability of thyroid hormone. Monocarboxylate transporter (MCT) 8 and MCT10, organic anion transporting polypeptide (OATP) 1C1, and SLC17A4 are currently known as transporters displaying the highest specificity toward thyroid hormones. Structure-function studies using homology modeling and mutational screens have led to better understanding of the molecular basis of thyroid hormone transport. Mutations in MCT8 and in OATP1C1 have been associated with clinical disorders. Different animal models have provided insight into the functional role of thyroid hormone transporters, in particular MCT8. Different treatment strategies for MCT8 deficiency have been explored, of which thyroid hormone analogue therapy is currently applied in patients. Future studies may reveal the identity of as-yet-undiscovered thyroid hormone transporters. Complementary studies employing animal and human models will provide further insight into the role of transporters in health and disease. (Endocrine Reviews 41: 1 - 55, 2020).
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ferdy S van Geest
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Heike Heuer
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - W Edward Visser
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands Academic Center for Thyroid Diseases, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
29
|
Gottier Nwafor J, Nowik M, Anzai N, Endou H, Wagner CA. Metabolic Acidosis Alters Expression of Slc22 Transporters in Mouse Kidney. Kidney Blood Press Res 2020; 45:263-274. [PMID: 32062662 DOI: 10.1159/000506052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/20/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The kidneys play a central role in eliminating metabolic waste products and drugs through transporter-mediated excretion along the proximal tubule. This task is mostly achieved through a variety of transporters from the solute carrier family 22 (SLC22) family of organic cation and anion transporters. Metabolic acidosis modulates metabolic and renal functions and also affects the clearance of metabolites and drugs from the body. We had previously shown that induction of metabolic acidosis in mice alters a large set of transcripts, among them also many transporters including transporters from the Slc22 family. OBJECTIVE Here we further investigated the impact of acidosis on Slc22 family members. METHODS Metabolic acidosis was induced for 2 or 7 days with NH4Cl, some animals also received the uricase inhibitor oxonic acid for comparison. Expression of transporters was studied by qPCR and immunoblotting. RESULTS NH4Cl induced no significant changes in plasma or urine uric acid levels but caused downregulation of Slc22a1 (Oct1), Slc22a6 (Oat1), Slc22a19 (Oat5), and -Slc22a12 (Urat1) at mRNA level. In contrast, Slc22a4 mRNA (Octn1) was upregulated. On protein level, NH4Cl increased Octn1 (after 7 days) and Urat1 (after 2 days) abundance and decreased Oat1 (after 2 days) and Urat1 (after 7 days). Oxonic acid had no impact on protein abundance of any of the transporters tested. CONCLUSION In summary, metabolic acidosis alters expression of several transporters involved in renal excretion of metabolic waste products and drugs. This may have implications for drug kinetics and clearance of waste metabolites.
Collapse
Affiliation(s)
- Janine Gottier Nwafor
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Marta Nowik
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hitoshi Endou
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Tokyo, Japan
| | - Carsten A Wagner
- Institute of Physiology and Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland,
| |
Collapse
|
30
|
Elingaard-Larsen LO, Rolver MG, Sørensen EE, Pedersen SF. How Reciprocal Interactions Between the Tumor Microenvironment and Ion Transport Proteins Drive Cancer Progression. Rev Physiol Biochem Pharmacol 2020; 182:1-38. [PMID: 32737753 DOI: 10.1007/112_2020_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Solid tumors comprise two major components: the cancer cells and the tumor stroma. The stroma is a mixture of cellular and acellular components including fibroblasts, mesenchymal and cancer stem cells, endothelial cells, immune cells, extracellular matrix, and tumor interstitial fluid. The insufficient tumor perfusion and the highly proliferative state and dysregulated metabolism of the cancer cells collectively create a physicochemical microenvironment characterized by altered nutrient concentrations and varying degrees of hypoxia and acidosis. Furthermore, both cancer and stromal cells secrete numerous growth factors, cytokines, and extracellular matrix proteins which further shape the tumor microenvironment (TME), favoring cancer progression.Transport proteins expressed by cancer and stromal cells localize at the interface between the cells and the TME and are in a reciprocal relationship with it, as both sensors and modulators of TME properties. It has been amply demonstrated how acid-base and nutrient transporters of cancer cells enable their growth, presumably by contributing both to the extracellular acidosis and the exchange of metabolic substrates and waste products between cells and TME. However, the TME also impacts other transport proteins important for cancer progression, such as multidrug resistance proteins. In this review, we summarize current knowledge of the cellular and acellular components of solid tumors and their interrelationship with key ion transport proteins. We focus in particular on acid-base transport proteins with known or proposed roles in cancer development, and we discuss their relevance for novel therapeutic strategies.
Collapse
Affiliation(s)
- Line O Elingaard-Larsen
- Translational Type 2 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Michala G Rolver
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Ester E Sørensen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stine F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
31
|
Payen VL, Mina E, Van Hée VF, Porporato PE, Sonveaux P. Monocarboxylate transporters in cancer. Mol Metab 2019; 33:48-66. [PMID: 31395464 PMCID: PMC7056923 DOI: 10.1016/j.molmet.2019.07.006] [Citation(s) in RCA: 371] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023] Open
Abstract
Background Tumors are highly plastic metabolic entities composed of cancer and host cells that can adopt different metabolic phenotypes. For energy production, cancer cells may use 4 main fuels that are shuttled in 5 different metabolic pathways. Glucose fuels glycolysis that can be coupled to the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) in oxidative cancer cells or to lactic fermentation in proliferating and in hypoxic cancer cells. Lipids fuel lipolysis, glutamine fuels glutaminolysis, and lactate fuels the oxidative pathway of lactate, all of which are coupled to the TCA cycle and OXPHOS for energy production. This review focuses on the latter metabolic pathway. Scope of review Lactate, which is prominently produced by glycolytic cells in tumors, was only recently recognized as a major fuel for oxidative cancer cells and as a signaling agent. Its exchanges across membranes are gated by monocarboxylate transporters MCT1-4. This review summarizes the current knowledge about MCT structure, regulation and functions in cancer, with a specific focus on lactate metabolism, lactate-induced angiogenesis and MCT-dependent cancer metastasis. It also describes lactate signaling via cell surface lactate receptor GPR81. Major conclusions Lactate and MCTs, especially MCT1 and MCT4, are important contributors to tumor aggressiveness. Analyses of MCT-deficient (MCT+/- and MCT−/-) animals and (MCT-mutated) humans indicate that they are druggable, with MCT1 inhibitors being in advanced development phase and MCT4 inhibitors still in the discovery phase. Imaging lactate fluxes non-invasively using a lactate tracer for positron emission tomography would further help to identify responders to the treatments. In cancer, hypoxia and cell proliferation are associated to lactic acid production. Lactate exchanges are at the core of tumor metabolism. Transmembrane lactate trafficking depends on monocarboxylate transporters (MCTs). MCTs are implicated in tumor development and aggressiveness. Targeting MCTs is a therapeutic option for cancer treatment.
Collapse
Affiliation(s)
- Valéry L Payen
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium; Pole of Pediatrics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium; Louvain Drug Research Institute (LDRI), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Erica Mina
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Vincent F Van Hée
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Paolo E Porporato
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium; Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
32
|
AMP-Activated Protein Kinase (AMPK)-Dependent Regulation of Renal Transport. Int J Mol Sci 2018; 19:ijms19113481. [PMID: 30404151 PMCID: PMC6274953 DOI: 10.3390/ijms19113481] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
AMP-activated kinase (AMPK) is a serine/threonine kinase that is expressed in most cells and activated by a high cellular AMP/ATP ratio (indicating energy deficiency) or by Ca2+. In general, AMPK turns on energy-generating pathways (e.g., glucose uptake, glycolysis, fatty acid oxidation) and stops energy-consuming processes (e.g., lipogenesis, glycogenesis), thereby helping cells survive low energy states. The functional element of the kidney, the nephron, consists of the glomerulus, where the primary urine is filtered, and the proximal tubule, Henle's loop, the distal tubule, and the collecting duct. In the tubular system of the kidney, the composition of primary urine is modified by the reabsorption and secretion of ions and molecules to yield final excreted urine. The underlying membrane transport processes are mainly energy-consuming (active transport) and in some cases passive. Since active transport accounts for a large part of the cell's ATP demands, it is an important target for AMPK. Here, we review the AMPK-dependent regulation of membrane transport along nephron segments and discuss physiological and pathophysiological implications.
Collapse
|
33
|
Seifter JL, Chang HY. Extracellular Acid-Base Balance and Ion Transport Between Body Fluid Compartments. Physiology (Bethesda) 2018; 32:367-379. [PMID: 28814497 DOI: 10.1152/physiol.00007.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 01/18/2023] Open
Abstract
Clinical assessment of acid-base disorders depends on measurements made in the blood, part of the extracellular compartment. Yet much of the metabolic importance of these disorders concerns intracellular events. Intracellular and interstitial compartment acid-base balance is complex and heterogeneous. This review considers the determinants of the extracellular fluid pH related to the ion transport processes at the interface of cells and the interstitial fluid, and between epithelial cells lining the transcellular contents of the gastrointestinal and urinary tracts that open to the external environment. The generation of acid-base disorders and the associated disruption of electrolyte balance are considered in the context of these membrane transporters. This review suggests a process of internal and external balance for pH regulation, similar to that of potassium. The role of secretory gastrointestinal epithelia and renal epithelia with respect to normal pH homeostasis and clinical disorders are considered. Electroneutrality of electrolytes in the ECF is discussed in the context of reciprocal changes in Cl- or non Cl- anions and [Formula: see text].
Collapse
|
34
|
Gallon L, Mathew JM, Bontha SV, Dumur CI, Dalal P, Nadimpalli L, Maluf DG, Shetty AA, Ildstad ST, Leventhal JR, Mas VR. Intragraft Molecular Pathways Associated with Tolerance Induction in Renal Transplantation. J Am Soc Nephrol 2017; 29:423-433. [PMID: 29191961 DOI: 10.1681/asn.2017030348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/07/2017] [Indexed: 11/03/2022] Open
Abstract
The modern immunosuppression regimen has greatly improved short-term allograft outcomes but not long-term allograft survival. Complications associated with immunosuppression, specifically nephrotoxicity and infection risk, significantly affect graft and patient survival. Inducing and understanding pathways underlying clinical tolerance after transplantation are, therefore, necessary. We previously showed full donor chimerism and immunosuppression withdrawal in highly mismatched allograft recipients using a bioengineered stem cell product (FCRx). Here, we evaluated the gene expression and microRNA expression profiles in renal biopsy samples from tolerance-induced FCRx recipients, paired donor organs before implant, and subjects under standard immunosuppression (SIS) without rejection and with acute rejection. Unlike allograft samples showing acute rejection, samples from FCRx recipients did not show upregulation of T cell- and B cell-mediated rejection pathways. Gene expression pathways differed slightly between FCRx samples and the paired preimplantation donor organ samples, but most of the functional gene networks overlapped. Notably, compared with SIS samples, FCRx samples showed upregulation of genes involved in pathways, like B cell receptor signaling. Additionally, prediction analysis showed inhibition of proinflammatory regulators and activation of anti-inflammatory pathways in FCRx samples. Furthermore, integrative analyses (microRNA and gene expression profiling from the same biopsy sample) identified the induction of regulators with demonstrated roles in the downregulation of inflammatory pathways and maintenance of tissue homeostasis in tolerance-induced FCRx samples compared with SIS samples. This pilot study highlights the utility of molecular intragraft evaluation of pathways related to FCRx-induced tolerance and the use of integrative analyses for identifying upstream regulators of the affected downstream molecular pathways.
Collapse
Affiliation(s)
- Lorenzo Gallon
- Departments of Medicine-Nephrology, .,Comprehensive Transplant Center, Northwestern University, Chicago, Illinois
| | - James M Mathew
- Comprehensive Transplant Center, Northwestern University, Chicago, Illinois.,Surgery.,Microbiology-Immunology and
| | - Sai Vineela Bontha
- Translational Genomics Transplant Laboratory, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Catherine I Dumur
- Molecular Diagnostics Laboratory, Department of Pathology, Virginia Commonwealth University, Richmond, Virginia; and
| | - Pranav Dalal
- Comprehensive Transplant Center, Northwestern University, Chicago, Illinois.,Surgery
| | - Lakshmi Nadimpalli
- Comprehensive Transplant Center, Northwestern University, Chicago, Illinois.,Surgery
| | - Daniel G Maluf
- Translational Genomics Transplant Laboratory, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Aneesha A Shetty
- Departments of Medicine-Nephrology.,Comprehensive Transplant Center, Northwestern University, Chicago, Illinois
| | - Suzanne T Ildstad
- Departments of Surgery.,Physiology, and.,Immunology, Institute for Cellular Therapeutics, University of Louisville, Louisville, Kentucky
| | - Joseph R Leventhal
- Comprehensive Transplant Center, Northwestern University, Chicago, Illinois.,Surgery
| | - Valeria R Mas
- Translational Genomics Transplant Laboratory, Department of Surgery, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
35
|
Knöpfel T, Atanassoff A, Hernando N, Biber J, Wagner CA. Renal localization and regulation by dietary phosphate of the MCT14 orphan transporter. PLoS One 2017; 12:e0177942. [PMID: 28662032 PMCID: PMC5490967 DOI: 10.1371/journal.pone.0177942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/05/2017] [Indexed: 01/15/2023] Open
Abstract
MCT14 is an orphan transporter belonging to the SLC16 transporter family mediating the transport of monocarboxylates, aromatic amino acids, creatine, and thyroid hormones. The expression, tissue localization, regulation, and function of MCT14 are unknown. In mouse MCT14 mRNA abundance is highest in kidney. Using a newly developed and validated antibody, MCT14 was localized to the luminal membrane of the thick ascending limb of the loop of Henle colocalizing in the same cells with uromodulin and NKCC2. MCT14 mRNA and protein was found to be highly regulated by dietary phosphate intake in mice being increased by high dietary phosphate intake at both mRNA and protein level. In order to identify the transport substrate(s), we expressed MCT14 in Xenopus laevis oocytes where MCT14 was integrated into the plasma membrane. However, no transport was discovered for the classic substrates of the SLC16 family nor for phosphate. In summary, MCT14 is an orphan transporter regulated by phosphate and highly enriched in kidney localizing to the luminal membrane of one specific nephron segment.
Collapse
Affiliation(s)
- Thomas Knöpfel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- NCCR Kidney.CH, Switzerland
| | - Alexander Atanassoff
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- NCCR Kidney.CH, Switzerland
| | - Nati Hernando
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- NCCR Kidney.CH, Switzerland
| | - Jürg Biber
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- NCCR Kidney.CH, Switzerland
| | - Carsten A. Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- NCCR Kidney.CH, Switzerland
- * E-mail:
| |
Collapse
|
36
|
Abstract
Transport of thyroid hormone (TH) across the plasma membrane is essential for intracellular TH metabolism and action, and this is mediated by specific transporter proteins. During the last two decades several transporters capable of transporting TH have been identified, including monocarboxylate transporter 8 (MCT8), MCT10 and organic anion transporting polypeptide 1C1 (OATP1C1). In particular MCT8 and OATP1C1 are important for the regulation of local TH activity in the brain and thus for brain development. MCT8 is a protein containing 12 transmembrane domains, and is encoded by the SLC16A2 gene located on the X chromosome. It facilitates both TH uptake and efflux across the cell membrane. Male subjects with hemizygous mutations in MCT8 are afflicted with severe intellectual and motor disability, also known as the Allan-Herndon-Dudley syndrome (AHDS), which goes together with low serum T4 and high T3 levels. This review concerns molecular and clinical aspects of MCT8 function.
Collapse
Affiliation(s)
- Stefan Groeneweg
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - W Edward Visser
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Theo J Visser
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
37
|
González-Haro C, Soria M, Vicente J, Fanlo AJ, Sinués B, Escanero JF. Variants of the Solute Carrier SLC16A1 Gene (MCT1) Associated With Metabolic Responses During a Long-Graded Test in Road Cyclists. J Strength Cond Res 2016; 29:3494-505. [PMID: 26595136 DOI: 10.1519/jsc.0000000000000994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Variants of the solute carrier SLC16A1 gene have been associated with alterations in MCT1 expression, because of a lactate (La) transport deficiency across the cell membrane and a blood La accumulation. The aim of this study was to associate the allelic and genotypic frequencies of 1470T>A, 2917(1414) C>T, and IVS3-17A>C variants relative to the blood La kinetics and metabolic responses to a progressive effort until exhaustion. Twenty-five well-trained road cyclists performed a long-graded laboratory test: 10 minutes at 2.0 W·kg, first step at 2.5 W·kg with increments of 0.5 W·kg every 10 minutes until exhaustion. Blood La, nonesterified fatty acids (NEFAS), and glucose levels were measured; fat and carbohydrate oxidation rates were estimated through stoichiometric equations. Three variants of SLC16A1 gene were determined for each subject, which were divided in two groups: wt (wild type)/mt (mutated type) and mt/mt genotype group versus wt/wt genotype group. Metabolic responses were compared between both groups with an unpaired Student's t-test; Friedman and Wilcoxon tests were performed for nonparametric data. The statistical significance was set at p ≤ 0.05. For 1470TA polymorphism, no significant blood La differences were found between groups. 2197(1414)C>T allele carriers and IVS3-17A>C carriers showed significantly higher blood La levels, lower blood NEFAS, and glucose levels at submaximal intensities. These findings open a new perspective to investigate SLC16A1 variants (1470TA and IVS3-17A>C) on La deficiency transport and its regulation/interaction with other metabolic pathways. Future studies would be needed to clarify whether 1470T>A, 2917(1414)C>T, and IVS3-17A>C allelic/genotypic distribution benefit performance in endurance athletes.
Collapse
Affiliation(s)
- Carlos González-Haro
- Department Pharmacology and Physiology, School of Medicine, University of Zaragoza, Zaragoza, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Liu Z, Sneve M, Haroldson TA, Smith JP, Drewes LR. Regulation of Monocarboxylic Acid Transporter 1 Trafficking by the Canonical Wnt/β-Catenin Pathway in Rat Brain Endothelial Cells Requires Cross-talk with Notch Signaling. J Biol Chem 2016; 291:8059-69. [PMID: 26872974 DOI: 10.1074/jbc.m115.710277] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 12/20/2022] Open
Abstract
The transport of monocarboxylate fuels such as lactate, pyruvate, and ketone bodies across brain endothelial cells is mediated by monocarboxylic acid transporter 1 (MCT1). Although the canonical Wnt/β-catenin pathway is required for rodent blood-brain barrier development and for the expression of associated nutrient transporters, the role of this pathway in the regulation of brain endothelial MCT1 is unknown. Here we report expression of nine members of the frizzled receptor family by the RBE4 rat brain endothelial cell line. Furthermore, activation of the canonical Wnt/β-catenin pathway in RBE4 cells via nuclear β-catenin signaling with LiCl does not alter brain endothelialMct1mRNA but increases the amount of MCT1 transporter protein. Plasma membrane biotinylation studies and confocal microscopic examination of mCherry-tagged MCT1 indicate that increased transporter results from reduced MCT1 trafficking from the plasma membrane via the endosomal/lysosomal pathway and is facilitated by decreased MCT1 ubiquitination following LiCl treatment. Inhibition of the Notch pathway by the γ-secretase inhibitorN-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycinet-butyl ester negated the up-regulation of MCT1 by LiCl, demonstrating a cross-talk between the canonical Wnt/β-catenin and Notch pathways. Our results are important because they show, for the first time, the regulation of MCT1 in cerebrovascular endothelial cells by the multifunctional canonical Wnt/β-catenin and Notch signaling pathways.
Collapse
Affiliation(s)
- Zejian Liu
- From the Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, Minnesota 55812 and
| | - Mary Sneve
- From the Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, Minnesota 55812 and
| | - Thomas A Haroldson
- From the Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, Minnesota 55812 and
| | - Jeffrey P Smith
- the Department of Biology, Colorado State University, Pueblo, Colorado 81001
| | - Lester R Drewes
- From the Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, Minnesota 55812 and
| |
Collapse
|
39
|
Su LM, Kuo J, Allan RW, Liao JC, Ritari KL, Tomeny PE, Carter CM. Fiber-Optic Confocal Laser Endomicroscopy of Small Renal Masses: Toward Real-Time Optical Diagnostic Biopsy. J Urol 2015; 195:486-92. [PMID: 26321408 DOI: 10.1016/j.juro.2015.07.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE The incidental detection of small renal masses is increasing. However, not all require aggressive treatments as up to 20% are benign and the majority of malignant tumors harbor indolent features. Improved preoperative diagnostics are needed to differentiate tumors requiring aggressive treatment from those more suitable for surveillance. We evaluated and compared confocal laser endomicroscopy with standard histopathology in ex vivo human kidney tumors as proof of principle towards diagnostic optical biopsy. MATERIALS AND METHODS Patients with a solitary small renal mass scheduled for partial or radical nephrectomy were enrolled in study. Two kidneys were infused with fluorescein via intraoperative intravenous injection and 18 tumors were bathed ex vivo in dilute fluorescein prior to confocal imaging. A 2.6 mm confocal laser endomicroscopy probe was used to image tumors and surrounding parenchyma from external and en face surfaces after specimen bisection. Confocal laser endomicroscopy images were compared to standard hematoxylin and eosin analysis of corresponding areas. RESULTS Ex vivo confocal laser endomicroscopy imaging revealed normal renal structures that correlated well with histology findings. Tumor tissue was readily distinguishable from normal parenchyma, demonstrating features unique to benign and malignant tumor subtypes. Topical fluorescein administration provided more consistent confocal laser endomicroscopy imaging than the intravenous route. Additionally, en face tumor imaging was superior to external imaging. CONCLUSIONS We report what is to our knowledge the first feasibility study using confocal laser endomicroscopy to evaluate small renal masses ex vivo and provide a preliminary atlas of images from various renal neoplasms with corresponding histology. These findings serve as an initial and promising step toward real-time diagnostic optical biopsy of small renal masses.
Collapse
Affiliation(s)
- Li-Ming Su
- Department of Urology, University of Florida College of Medicine, Gainesville, Florida.
| | - Jennifer Kuo
- Department of Urology, University of Florida College of Medicine, Gainesville, Florida
| | - Robert W Allan
- Department of Surgical Pathology, University of Florida College of Medicine, Gainesville, Florida
| | - Joseph C Liao
- Department of Urology, Stanford University School of Medicine, Stanford, California
| | - Kellie L Ritari
- Department of Urology, University of Florida College of Medicine, Gainesville, Florida
| | - Patrick E Tomeny
- Department of Urology, University of Florida College of Medicine, Gainesville, Florida
| | - Christopher M Carter
- Department of Surgical Pathology, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
40
|
IWANAGA T, KISHIMOTO A. Cellular distributions of monocarboxylate transporters: a review . Biomed Res 2015; 36:279-301. [DOI: 10.2220/biomedres.36.279] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Toshihiko IWANAGA
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University
| | - Ayuko KISHIMOTO
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University
| |
Collapse
|
41
|
Tissue-specific expression of monocarboxylate transporters during fasting in mice. PLoS One 2014; 9:e112118. [PMID: 25390336 PMCID: PMC4229183 DOI: 10.1371/journal.pone.0112118] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/12/2014] [Indexed: 01/01/2023] Open
Abstract
Monocarboxylates such as pyruvate, lactate and ketone bodies are crucial for energy supply of all tissues, especially during energy restriction. The transport of monocarboxylates across the plasma membrane of cells is mediated by monocarboxylate transporters (MCTs). Out of 14 known mammalian MCTs, six isoforms have been functionally characterized to transport monocarboxylates and short chain fatty acids (MCT1-4), thyroid hormones (MCT8, -10) and aromatic amino acids (MCT10). Knowledge on the regulation of the different MCT isoforms is rare. In an attempt to get more insights in regulation of MCT expression upon energy deprivation, we carried out a comprehensive analysis of tissue specific expression of five MCT isoforms upon 48 h of fasting in mice. Due to the crucial role of peroxisome proliferator-activated receptor (PPAR)-α as a central regulator of energy metabolism and as known regulator of MCT1 expression, we included both wildtype (WT) and PPARα knockout (KO) mice in our study. Liver, kidney, heart, small intestine, hypothalamus, pituitary gland and thyroid gland of the mice were analyzed. Here we show that the expression of all examined MCT isoforms was markedly altered by fasting compared to feeding. Expression of MCT1, MCT2 and MCT10 was either increased or decreased by fasting dependent on the analyzed tissue. MCT4 and MCT8 were down-regulated by fasting in all examined tissues. However, PPARα appeared to have a minor impact on MCT isoform regulation. Due to the fundamental role of MCTs in transport of energy providing metabolites and hormones involved in the regulation of energy homeostasis, we assumed that the observed fasting-induced adaptations of MCT expression seem to ensure an adequate energy supply of tissues during the fasting state. Since, MCT isoforms 1–4 are also necessary for the cellular uptake of drugs, the fasting-induced modifications of MCT expression have to be considered in future clinical care algorithms.
Collapse
|
42
|
Durrbach A, Francois H. Intracellular lactate flux: a new regulator of the allogenic immune response. Transpl Int 2012; 26:20-1. [PMID: 23237578 DOI: 10.1111/tri.12035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 11/15/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Antoine Durrbach
- Nephrology Department, IFRNT, INSERM UMR1014, Le Kremlin Bicetre, France.
| | | |
Collapse
|
43
|
Sakurai H. Transporter-centric view of urate metabolism: From genome-wide association study to pathophysiology. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2012. [DOI: 10.7600/jpfsm.1.413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Adijanto J, Philp NJ. The SLC16A family of monocarboxylate transporters (MCTs)--physiology and function in cellular metabolism, pH homeostasis, and fluid transport. CURRENT TOPICS IN MEMBRANES 2012. [PMID: 23177990 DOI: 10.1016/b978-0-12-394316-3.00009-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The SLC16A family of monocarboxylate transporters (MCTs) is composed of 14 members. MCT1 through MCT4 (MCTs 1-4) are H(+)-coupled monocarboxylate transporters, MCT8 and MCT10 transport thyroid hormone and aromatic amino acids, while the substrate specificity and function of other MCTs have yet to be determined. The focus of this review is on MCTs 1-4 because their role in lactate transport is intrinsically linked to cellular metabolism in various biological systems, including skeletal muscle, brain, retina, and testis. Although MCTs 1-4 all transport lactate, they differ in their transport kinetics and vary in tissue and subcellular distribution, where they facilitate "lactate-shuttling" between glycolytic and oxidative cells within tissues and across blood-tissue barriers. However, the role of MCTs 1-4 is not confined to cellular metabolism. By interacting with bicarbonate transport proteins and carbonic anhydrases, MCTs participate in the regulation of pH homeostasis and fluid transport in renal proximal tubule and corneal endothelium, respectively. Here, we provide a comprehensive review of MCTs 1-4, linking their cellular distribution to their functions in various parts of the human body, so that we can better understand the physiological roles of MCTs at the systemic level.
Collapse
Affiliation(s)
- Jeffrey Adijanto
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| | | |
Collapse
|
45
|
Zung A, Visser TJ, Uitterlinden AG, Rivadeneira F, Friesema ECH. A child with a deletion in the monocarboxylate transporter 8 gene: 7-year follow-up and effects of thyroid hormone treatment. Eur J Endocrinol 2011; 165:823-30. [PMID: 21896621 DOI: 10.1530/eje-11-0358] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE The monocarboxylate transporter 8 (MCT8; SLC16A2) has a pivotal role in neuronal triiodothyronine (T(3)) uptake. Mutations of this transporter determine a distinct X-linked psychomotor retardation syndrome (Allan-Herndon-Dudley syndrome (AHDS)) that is attributed to disturbed thyroid hormone levels, especially elevated T(3) levels. We describe the genetic analysis of the MCT8 gene in a patient suspected for AHDS and the clinical and endocrine effects of L-thyroxine (LT(4)) or liothyronine (LT(3)) treatment intending to overcome the T(3) uptake resistance through alternative transporters. METHODS The six exons of the MCT8 gene were amplified individually by PCR. As multiple exons were missing, the length of the X-chromosomal deletion was determined by a dense SNP array, followed by PCR-based fine mapping to define the exact borders of the deleted segment. The clinical and endocrine data of the patient during 6.5 years of LT(4) treatment and two periods (3 months each) of low- and high-dose LT(3) were evaluated. RESULTS A partial deletion of the MCT8 gene (comprising five of six exons) was detected, confirming the suspected AHDS. MCT8 dysfunction was associated with partial resistance to T(3) at the hypothalamus and pituitary level, with normal responsiveness at the peripheral organs (liver and cardiovascular system). Thyroid hormone administration had no beneficial effect on the neurological status of the patient. CONCLUSION We identified a 70 kb deletion encompassing exons 2-6 of the MCT8 gene in our AHDS patient. Both LT(4) and LT(3) administration had no therapeutic effect. Alternatively, treatment of AHDS patients with thyroid hormone analogs should be considered.
Collapse
Affiliation(s)
- Amnon Zung
- Pediatric Endocrinology Unit, Kaplan Medical Center, Affiliated with the Hebrew University of Jerusalem, Rehovot 76100, Israel Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|