1
|
Jin YW, Ma YR, Liu YT, Yang JR, Zhang MK, Ran FL, Chen Y, Wu XA. Identification of a substrate of the renal tubular transporters for detecting drug-induced early acute kidney injury. Toxicol Sci 2024; 201:190-205. [PMID: 39041788 DOI: 10.1093/toxsci/kfae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Early identification of drug-induced acute kidney injury (AKI) is essential to prevent renal damage. The renal tubules are typically the first to exhibit damage, frequently accompanied by changes in renal tubular transporters. With this in mind, we have identified an endogenous substrate of the renal tubular transporters that may serve as a biomarker for early detection of drug-induced AKI. Using gentamicin- and vancomycin-induced AKI models, we found that traumatic acid (TA), an end metabolite, was rapidly increased in both AKI models. TA, a highly albumin-bound compound (96% to 100%), could not be filtered by the glomerulus and was predominantly eliminated by renal tubules via the OAT1, OAT3, OATP4C1, and P-gp transporters. Importantly, there is a correlation between elevated serum TA levels and reduced OAT1 and OAT3 levels. A clinical study showed that serum TA levels rose before an increase in serum creatinine in 13 out of 20 AKI patients in an intensive care unit setting. In addition, there was a notable rise in TA levels in the serum of individuals suffering from nephrotic syndrome, chronic renal failure, and acute renal failure. These results indicate that the decrease in renal tubular transporter expression during drug-induced AKI leads to an increase in the serum TA level, and the change in TA may serve as a monitor for renal tubular injury. Acute kidney injury (AKI) has a high clinical incidence, and if patients do not receive timely treatment and intervention, it can lead to severe consequences. During AKI, tubular damage is often the primary issue. Endogenous biomarkers of tubular damage are critical for the early diagnosis and treatment of AKI. However, there is currently a lack of reliable endogenous biomarkers for diagnosing tubular damage in clinical practice. Tubular secretion is primarily mediated by renal tubular transporters (channels), which are also impaired during tubular damage. Therefore, we aim to identify endogenous biomarkers of tubular damage from the perspective of renal tubular transporters, providing support for the early detection and intervention of AKI. TA is a substrate of multiple channels, including OAT1, OAT3, OATP4C1, and P-gp, and is primarily secreted by the renal tubules. In the early stages of rat AKI induced by GEN and VCA, serum TA levels are significantly elevated, occurring earlier than the rise in serum creatinine (SCr). Thus, TA is expected to become a potential endogenous biomarker for the early diagnosis of tubular damage.
Collapse
Affiliation(s)
- Yong-Wen Jin
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Yan-Rong Ma
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yu-Ting Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Jin-Ru Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Ming-Kang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Feng-Lin Ran
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yang Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China
| | - Xin-An Wu
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Ping X, Wang G, Gao D. Mechanistic Modeling of Empagliflozin: Predicting Pharmacokinetics, Urinary Glucose Excretion, and Investigating Compensatory Role of SGLT1 in Renal Glucose Reabsorption. J Clin Pharmacol 2024; 64:672-684. [PMID: 38363006 DOI: 10.1002/jcph.2413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024]
Abstract
The aim of this study was to use a combination of physiologically based pharmacokinetic (PBPK) modeling and urinary glucose excretion (UGE) modeling to predict the time profiles of pharmacokinetics (PK) and UGE for the sodium-glucose cotransporter 2 (SGLT2) inhibitor empagliflozin (EMP). Additionally, the study aims to explore the compensatory effect of SGLT1 in renal glucose reabsorption (RGR) when SGLT2 is inhibited. The PBPK-UGE model was developed using physicochemical and biochemical properties, renal physiological parameters, binding kinetics, glucose, and Na+ reabsorption kinetics by SGLT1/2. For area under the plasma concentration-time curve, maximum plasma concentration, and cumulative EMP excretion in urine, the predicted values fell within a range of 0.5-2.0 when compared to observed data. Additionally, the simulated UGE data also matched well with the clinical data, further validating the accuracy of the model. According to the simulations, SGLT1 and SGLT2 contributed approximately 13% and 87%, respectively, to RGR in the absence of EMP. However, in the presence of EMP at doses of 2.5 and 10 mg, the contribution of SGLT1 to RGR significantly increased to approximately 76%-82% and 89%-93%, respectively, in patients with type 2 diabetes mellitus. Furthermore, the model supported the understanding that the compensatory effect of SGLT1 is the underlying mechanism behind the moderate inhibition observed in total RGR. The PBPK-UGE model has the capability to accurately predict the PK and UGE time profiles in humans. Furthermore, it provides a comprehensive analysis of the specific contributions of SGLT1 and SGLT2 to RGR in the presence or absence of EMP.
Collapse
Affiliation(s)
- Xian Ping
- Basic Teaching Department, Baoding Technical College of Electric Power, Baoding, Hebei, China
| | - Guopeng Wang
- Zhongcai Health (Beijing) Biological Technology Development Co., Ltd, Beijing, China
| | - Dongmei Gao
- Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Albalawy WN, Youm EB, Shipman KE, Trull KJ, Baty CJ, Long KR, Rbaibi Y, Wang XP, Fagunloye OG, White KA, Jurczak MJ, Kashlan OB, Weisz OA. SGLT2-independent effects of canagliflozin on NHE3 and mitochondrial complex I activity inhibit proximal tubule fluid transport and albumin uptake. Am J Physiol Renal Physiol 2024; 326:F1041-F1053. [PMID: 38660713 PMCID: PMC11381006 DOI: 10.1152/ajprenal.00005.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
Beyond glycemic control, SGLT2 inhibitors (SGLT2is) have protective effects on cardiorenal function. Renoprotection has been suggested to involve inhibition of NHE3 leading to reduced ATP-dependent tubular workload and mitochondrial oxygen consumption. NHE3 activity is also important for regulation of endosomal pH, but the effects of SGLT2i on endocytosis are unknown. We used a highly differentiated cell culture model of proximal tubule (PT) cells to determine the direct effects of SGLT2i on Na+-dependent fluid transport and endocytic uptake in this nephron segment. Strikingly, canagliflozin but not empagliflozin reduced fluid transport across cell monolayers and dramatically inhibited endocytic uptake of albumin. These effects were independent of glucose and occurred at clinically relevant concentrations of drug. Canagliflozin acutely inhibited surface NHE3 activity, consistent with a direct effect, but did not affect endosomal pH or NHE3 phosphorylation. In addition, canagliflozin rapidly and selectively inhibited mitochondrial complex I activity. Inhibition of mitochondrial complex I by metformin recapitulated the effects of canagliflozin on endocytosis and fluid transport, whereas modulation of downstream effectors AMPK and mTOR did not. Mice given a single dose of canagliflozin excreted twice as much urine over 24 h compared with empagliflozin-treated mice despite similar water intake. We conclude that canagliflozin selectively suppresses Na+-dependent fluid transport and albumin uptake in PT cells via direct inhibition of NHE3 and of mitochondrial function upstream of the AMPK/mTOR axis. These additional targets of canagliflozin contribute significantly to reduced PT Na+-dependent fluid transport in vivo.NEW & NOTEWORTHY Reduced NHE3-mediated Na+ transport has been suggested to underlie the cardiorenal protection provided by SGLT2 inhibitors. We found that canagliflozin, but not empagliflozin, reduced NHE3-dependent fluid transport and endocytic uptake in cultured proximal tubule cells. These effects were independent of SGLT2 activity and resulted from inhibition of mitochondrial complex I and NHE3. Studies in mice are consistent with greater effects of canagliflozin versus empagliflozin on fluid transport. Our data suggest that these selective effects of canagliflozin contribute to reduced Na+-dependent transport in proximal tubule cells.
Collapse
Affiliation(s)
- Wafaa N Albalawy
- Department of Human Genetics, Pitt Public Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Elynna B Youm
- Department of Human Genetics, Pitt Public Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Katherine E Shipman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Keelan J Trull
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana, United States
| | - Catherine J Baty
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Kimberly R Long
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Youssef Rbaibi
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Xue-Ping Wang
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Olayemi G Fagunloye
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Katharine A White
- Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana, United States
| | - Michael J Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Ossama B Kashlan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
4
|
Newsom SA, Robinson MM. Recent advances in understanding the mechanisms in skeletal muscle of interaction between exercise and frontline antihyperglycemic drugs. Physiol Rep 2024; 12:e16093. [PMID: 38845596 PMCID: PMC11157199 DOI: 10.14814/phy2.16093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 06/10/2024] Open
Abstract
Regular exercise and antihyperglycemic drugs are front-line treatments for type-2 diabetes and related metabolic disorders. Leading drugs are metformin, sodium-glucose cotransporter-2 inhibitors, and glucagon-like peptide 1 receptor agonists. Each class has strong individual efficacy to treat hyperglycemia, yet the combination with exercise can yield varied results, some of which include blunting of expected metabolic benefits. Skeletal muscle insulin resistance contributes to the development of type-2 diabetes while improvements in skeletal muscle insulin signaling are among key adaptations to exercise training. The current review identifies recent advances into the mechanisms, with an emphasis on skeletal muscle, of the interaction between exercise and these common antihyperglycemic drugs. The review is written toward researchers and thus highlights specific gaps in knowledge and considerations for future study directions.
Collapse
Affiliation(s)
- Sean A. Newsom
- School of Exercise, Sport, and Health Sciences, College of HealthOregon State UniversityCorvallisOregonUSA
| | - Matthew M. Robinson
- School of Exercise, Sport, and Health Sciences, College of HealthOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
5
|
Martin WP, Reidy N, Low J, Ahern T. Case Report: Diabetic ketoacidosis after co-administration of empagliflozin and probenecid. Wellcome Open Res 2024; 8:268. [PMID: 39114818 PMCID: PMC11303938 DOI: 10.12688/wellcomeopenres.19148.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 08/10/2024] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors are filtered and secreted to their primary site of action in the proximal tubule of the kidney. At this site, SGLT2 inhibitors also reduce renal elimination of ketone bodies, a finding implicated in their propensity to cause ketoacidosis. Many commonly used medications have potential to diminish renal elimination of SGLT2 inhibitors and to compound the effects of SGLT2 inhibitors on renal elimination of ketone bodies by inhibiting tubular secretion of the SGLT2 inhibitor itself and/or ketone bodies. We present a case of severe diabetic ketoacidosis (DKA) in a patient with type 2 diabetes occurring several days after co-prescription of empagliflozin and probenecid. Other than the recent introduction of empagliflozin, no cause for the DKA episode was apparent. A pharmacokinetic interaction between probenecid and empagliflozin, involving organic anion transporter 3 (OAT3), reduces proximal tubular secretion of empagliflozin and increases patient exposure to the drug. Whether or not this phenomenon is sufficient to cause severe DKA is discussed. An alternative explanation as to the DKA aetiology is proposed, wherein probenecid may compound effects of empagliflozin on renal elimination of ketone bodies. We suggest that clinicians exercise caution when prescribing SGLT2 inhibitors alongside pharmacologic inhibitors of, or competitors for, proximal tubular organic anion transporters in patients with diabetes mellitus due to the risk of severe DKA.
Collapse
Affiliation(s)
- William P. Martin
- Department of Endocrinology, Our Lady of Lourdes Hospital, Drogheda, County Louth, A92 VW28, Ireland
| | - Niamh Reidy
- Department of Clinical Microbiology, Our Lady of Lourdes Hospital, Drogheda, County Louth, A92 VW28, Ireland
| | - Justin Low
- Department of Infectious Diseases, Our Lady of Lourdes Hospital, Drogheda, County Louth, A92 VW28, Ireland
| | - Tomás Ahern
- Department of Endocrinology, Our Lady of Lourdes Hospital, Drogheda, County Louth, A92 VW28, Ireland
| |
Collapse
|
6
|
Oe Y, Kim YC, Sidorenko VS, Zhang H, Kanoo S, Lopez N, Goodluck HA, Crespo-Masip M, Vallon V. SGLT2 inhibitor dapagliflozin protects the kidney in a murine model of Balkan nephropathy. Am J Physiol Renal Physiol 2024; 326:F227-F240. [PMID: 38031729 PMCID: PMC11198975 DOI: 10.1152/ajprenal.00228.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/01/2023] Open
Abstract
Proximal tubular uptake of aristolochic acid (AA) forms aristolactam (AL)-DNA adducts, which cause a p53/p21-mediated DNA damage response and acute tubular injury. Recurrent AA exposure causes kidney function loss and fibrosis in humans (Balkan endemic nephropathy) and mice and is a model of (acute kidney injury) AKI to chronic kidney disease (CKD) transition. Inhibitors of the proximal tubule sodium-glucose transporter SGLT2 can protect against CKD progression, but their effect on AA-induced kidney injury remains unknown. C57BL/6J mice (15-wk-old) were administered vehicle or AA every 3 days for 3 wk (10 and 3 mg/kg ip in females and males, respectively). Dapagliflozin (dapa, 0.01 g/kg diet) or vehicle was initiated 7 days prior to AA injections. All dapa effects were sex independent, including a robust glycosuria. Dapa lowered urinary kidney-injury molecule 1 (KIM-1) and albumin (both normalized to creatinine) after the last AA injection and kidney mRNA expression of early DNA damage response markers (p53 and p21) 3 wk later at the study end. Dapa also attenuated AA-induced increases in plasma creatinine as well as AA-induced up-regulation of renal pro-senescence, pro-inflammatory and pro-fibrotic genes, and kidney collagen staining. When assessed 1 day after a single AA injection, dapa pretreatment attenuated AL-DNA adduct formation by 10 and 20% in kidney and liver, respectively, associated with reduced p21 expression. Initiating dapa application after the last AA injection also improved kidney outcome but in a less robust manner. In conclusion, the first evidence is presented that pretreatment with an SGLT2 inhibitor can attenuate the AA-induced DNA damage response and subsequent nephropathy.NEW & NOTEWORTHY Recurrent exposure to aristolochic acid (AA) causes kidney function loss and fibrosis in mice and in humans, e.g., in the form of the endemic Balkan nephropathy. Inhibitors of the proximal tubule sodium-glucose transporter SGLT2 can protect against CKD progression, but their effect on AA-induced kidney injury remains unknown. Here we provide the first evidence in a murine model that pretreatment with an SGLT2 inhibitor can attenuate the AA-induced DNA damage response and subsequent nephropathy.
Collapse
Affiliation(s)
- Yuji Oe
- Department of Medicine, University of California-San Diego, La Jolla, California, United States
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Young Chul Kim
- Department of Medicine, University of California-San Diego, La Jolla, California, United States
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Viktoriya S Sidorenko
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York, United States
| | - Haiyan Zhang
- Department of Pathology, University of California-San Diego, San Diego, California, United States
| | - Sadhana Kanoo
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Natalia Lopez
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Helen A Goodluck
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Maria Crespo-Masip
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| | - Volker Vallon
- Department of Medicine, University of California-San Diego, La Jolla, California, United States
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States
| |
Collapse
|
7
|
Jaikumkao K, Thongnak L, Htun KT, Pengrattanachot N, Phengpol N, Sutthasupha P, Promsan S, Montha N, Sriburee S, Kothan S, Lungkaphin A. Dapagliflozin and metformin in combination ameliorates diabetic nephropathy by suppressing oxidative stress, inflammation, and apoptosis and activating autophagy in diabetic rats. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166912. [PMID: 37816397 DOI: 10.1016/j.bbadis.2023.166912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/04/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
Considering the effects of sodium-glucose cotransporter inhibitors and metformin on the kidneys, a combination of both agents is postulated to provide protection against diabetic nephropathy (DN). We examined the potential protective effects of dapagliflozin, metformin, and their combination on kidney injury in rats with type 2 diabetes. Diabetic (DM) rats were administered dapagliflozin (1.0 mg/kg/day), metformin (100 mg/kg/day), or a combination (dapagliflozin 0.5 mg/kg/day plus metformin 50 mg/kg/day) by oral gavage for 4 weeks. Dapagliflozin monotherapy or in combination with metformin was more effective than metformin monotherapy in attenuating renal dysfunction, improving renal organic anion transporter 3 expression, and activating renal autophagy by modulating the AMPK/mTOR/SIRT1 axis in DM rats. Interestingly, dapagliflozin monotherapy exhibited greater efficacy in suppressing renal oxidative stress in DM rats than metformin or the combination treatment. Renal and pancreatic injury scores decreased in all treatment groups. Apoptotic markers were predominantly reduced in dapagliflozin monotherapy and combination treatment groups. The low-dose combination treatment, through synergistic coordination, appeared to modulate oxidative, autophagic, and apoptotic signaling and confer significant renoprotective effects against DM-induced complications. In addition, a low dose of the combination might be beneficial to patients by avoiding the risk of side effects of the medication. Future clinical trials are necessary to study the nephroprotective effects of the combined treatment at a low dosage in patients with diabetes.
Collapse
Affiliation(s)
- Krit Jaikumkao
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Laongdao Thongnak
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Khin Thandar Htun
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nattavadee Pengrattanachot
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nichakorn Phengpol
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prempree Sutthasupha
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Napatsorn Montha
- Department of Animal and Aquatic Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Sompong Sriburee
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Suchart Kothan
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Functional Foods for Health and Disease, Department of Physiology, Chiang Mai University, Chiang Mai, Thailand; Functional Food Research Center for Well-Being, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
8
|
Dou T, Lian T, Shu S, He Y, Jiang J. The substrate and inhibitor binding mechanism of polyspecific transporter OAT1 revealed by high-resolution cryo-EM. Nat Struct Mol Biol 2023; 30:1794-1805. [PMID: 37845412 PMCID: PMC11406556 DOI: 10.1038/s41594-023-01123-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/12/2023] [Indexed: 10/18/2023]
Abstract
Organic anion transporters (OATs) of the SLC22 family have crucial roles in the transport of organic anions, including metabolites and therapeutic drugs, and in transporter-mediated drug-drug interactions. In the kidneys, OATs facilitate the elimination of metabolic waste products and xenobiotics. However, their transport activities can lead to the accumulation of certain toxic compounds within cells, causing kidney damage. Moreover, OATs are important drug targets, because their inhibition modulates the elimination or retention of substrates linked to diseases. Despite extensive research on OATs, the molecular basis of their substrate and inhibitor binding remains poorly understood. Here we report the cryo-EM structures of rat OAT1 (also known as SLC22A6) and its complexes with para-aminohippuric acid and probenecid at 2.1, 2.8 and 2.9 Å resolution, respectively. Our findings reveal a highly conserved substrate binding mechanism for SLC22 transporters, wherein four aromatic residues form a cage to accommodate the polyspecific binding of diverse compounds.
Collapse
Affiliation(s)
- Tongyi Dou
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Tengfei Lian
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Shi Shu
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Yi He
- Fermentation Facility, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Jiansen Jiang
- Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
9
|
Hsiao HY, Yen TH, Wu FY, Cheng CM, Liu JW, Fan YT, Huang JJ, Nien CY. Delivery and Transcriptome Assessment of an In Vitro Three-Dimensional Proximal Tubule Model Established by Human Kidney 2 Cells in Clinical Gelatin Sponges. Int J Mol Sci 2023; 24:15547. [PMID: 37958530 PMCID: PMC10650118 DOI: 10.3390/ijms242115547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 11/15/2023] Open
Abstract
The high prevalence of kidney diseases and the low identification rate of drug nephrotoxicity in preclinical studies reinforce the need for representative yet feasible renal models. Although in vitro cell-based models utilizing renal proximal tubules are widely used for kidney research, many proximal tubule cell (PTC) lines have been indicated to be less sensitive to nephrotoxins, mainly due to altered expression of transporters under a two-dimensional culture (2D) environment. Here, we selected HK-2 cells to establish a simplified three-dimensional (3D) model using gelatin sponges as scaffolds. In addition to cell viability and morphology, we conducted a comprehensive transcriptome comparison and correlation analysis of 2D and 3D cultured HK-2 cells to native human PTCs. Our 3D model displayed stable and long-term growth with a tubule-like morphology and demonstrated a more comparable gene expression profile to native human PTCs compared to the 2D model. Many missing or low expressions of major genes involved in PTC transport and metabolic processes were restored, which is crucial for successful nephrotoxicity prediction. Consequently, we established a cost-effective yet more representative model for in vivo PTC studies and presented a comprehensive transcriptome analysis for the systematic characterization of PTC lines.
Collapse
Affiliation(s)
- Hui-Yi Hsiao
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Center for Tissue Engineering, Linkuo Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Tzung-Hai Yen
- Department of Nephrology, Clinical Poison Center, Linkuo Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Department of Nephrology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Fang-Yu Wu
- Department of Life Science, National Central University, Taoyuan 32001, Taiwan; (F.-Y.W.); (Y.-T.F.)
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300193, Taiwan;
| | - Jia-Wei Liu
- Center for Tissue Engineering, Linkuo Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Yu-Ting Fan
- Department of Life Science, National Central University, Taoyuan 32001, Taiwan; (F.-Y.W.); (Y.-T.F.)
| | - Jung-Ju Huang
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
| | - Chung-Yi Nien
- Department of Life Science, National Central University, Taoyuan 32001, Taiwan; (F.-Y.W.); (Y.-T.F.)
| |
Collapse
|
10
|
Patel R, Fu Y, Khang S, Benardeau AM, Thomson SC, Vallon V. Responses in Blood Pressure and Kidney Function to Soluble Guanylyl Cyclase Stimulation or Activation in Normal and Diabetic Rats. Nephron Clin Pract 2022; 147:281-300. [PMID: 36265461 PMCID: PMC10115913 DOI: 10.1159/000526934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/22/2022] [Indexed: 01/09/2023] Open
Abstract
Introduction: Agonists of soluble guanylate cyclase (sGC) are being developed as treatment for cardiovascular disease. Most effects of nitric oxide (NO) on glomerular and tubular function are mediated through sGC but whether sGC agonists mimic these effects is unknown. Methods: Renal clearance and micropuncture studies were performed in Wistar-Froemter rats (WF), with or without streptozotocin diabetes (STZ-WF), and in Goto-Kakizaki rats (GK) with mild type-2 diabetes to test for acute effects of the sGC “stimulator” BAY 41-2272, which synergizes with endogenous NO, and the “activator” runcaciguat, which generates cGMP independent of NO. Results: Both sGC agonists reduced arterial blood pressure (MAP). For MAP reductions <10% the drugs increased GFR in WF and STZ-WF but not in GK. Larger MAP reductions outweighed this effect and GFR declined, with better preserved GFR in STZ-WF. Changes in GFR could not be accounted for by changes in RBF, suggesting parallel changes in ultrafiltration pressure and/or ultrafiltration coefficient. The doses chosen for micropuncture in WF and GK reduced MAP by 2–10% and the net effect on single nephron GFR and ultrafiltration pressure was neutral. Effects of the drugs on tubular reabsorption were dominated by declining MAP and no natriuretic effect observed at any dose. Discussion/Conclusion: sGC agonists impact kidney function directly and because they reduce MAP. The direct tendency to increase GFR is most apparent for MAP reductions <10%. The direct effect is otherwise subtle and overridden when MAP declines more. Effects of sGC agonists on tubular reabsorption are dominated by effects on MAP.
Collapse
Affiliation(s)
- Rohit Patel
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | - Yiling Fu
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | - Ser Khang
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | | | - Scott C. Thomson
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
| | - Volker Vallon
- Department of Medicine, University of California San Diego, La Jolla, USA & VA San Diego Healthcare System, San Diego, USA
- Department of Pharmacology, University of California San Diego, La Jolla, USA
| |
Collapse
|
11
|
Sharaf El Din UAA, Salem MM, Abdulazim DO. Sodium-glucose cotransporter 2 inhibitors as the first universal treatment of chronic kidney disease. Nefrologia 2022; 42:390-403. [PMID: 36460429 DOI: 10.1016/j.nefroe.2022.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/16/2021] [Indexed: 06/17/2023] Open
Abstract
In the last five years, the medical community was astonishingly surprised by the sequential large outcome trials that displayed the renal effects of sodium glucose co-transporter inhibitors (SGLT2Is) in type 2 diabetes mellitus (T2DM) patients with or without chronic kidney disease (CKD). This favorable effect was later disclosed in non-diabetic CKD patients. The EMPA-REG OUTCOME trial was the first trial that showed a reduction for the need for dialysis in patients suffering diabetic kidney disease (DKD) by 55%. This figure is double the score achieved by the angiotensin receptor blocker, Losartan, in RENAAL trial. The need for dialysis in DAPA-CKD trial was reduced in diabetic and non-diabetic CKD patients by 33%. The renal-specific composite outcome was reduced by 39% in EMPA-REG trial, 40% in CANVAS study, 47% in DECLARE-TIMI 58 study, 34% in CREDENCE trial, and 44% in DAPA-CKD trial. The greater surprise is the significant favorable effect of SGLT2Is on overall mortality in CKD patients with or without T2DM. Similar survival benefit was not previously encountered with any of the medications used in CKD patients with or without diabetes. In this review, we disclose the results of the DAPA-CKD trial, the CREDENCE trial and those of several cardiovascular outcome trials (CVOT) that used different SGLT2Is and showed that patients with lower eGFR levels may have greater benefit with respect to cardiovascular morbidity than patients with normal kidney function. In addition, we discuss the different mechanisms of action that explain the renal beneficial effects of SGLT2Is.
Collapse
Affiliation(s)
| | - Mona Mansour Salem
- Department of Endocrinology, School of Medicine, Cairo University, Manial, Cairo 11759, Egypt
| | - Dina Ossama Abdulazim
- Department of Rheumatology and Rehabilitation, School of Medicine, Cairo University, Manial, Cairo 11759, Egypt
| |
Collapse
|
12
|
Evenepoel P, Meijers B, Masereeuw R, Lowenstein J. Effects of an SGLT Inhibitor on the Production, Toxicity, and Elimination of Gut-Derived Uremic Toxins: A Call for Additional Evidence. Toxins (Basel) 2022; 14:toxins14030210. [PMID: 35324707 PMCID: PMC8954461 DOI: 10.3390/toxins14030210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 01/10/2023] Open
Abstract
Sodium–glucose cotransporter (SGLT) inhibitors are a class of oral hypoglycemic agents, which, in recent years, have been shown to improve renal and cardiovascular outcomes in patients with diabetic and non-diabetic chronic kidney disease. There remains considerable debate regarding the potential glucose-independent mechanisms by which these benefits are conferred. SGLT inhibitors, to a variable extent, impair small intestinal glucose absorption, facilitating the delivery of glucose into the colon. This suppresses protein fermentation, and thus the generation of uremic toxins such as phenols and indoles. It is acknowledged that such a shift in gut microbial metabolism yields health benefits for the host. SGLT inhibition, in addition, may be hypothesized to foster the renal clearance of protein-bound uremic toxins. Altered generation and elimination of uremic toxins may be in the causal pathway between SGLT inhibition and improved cardiometabolic health. Present review calls for additional research.
Collapse
Affiliation(s)
- Pieter Evenepoel
- Laboratory of Nephrology, KU Leuven Department of Microbiology and Immunology, University Hospitals Leuven, 3000 Leuven, Belgium;
- European Uremic Toxin Work Group-EUTox, Danube University Krems, 3500 Krems, Austria;
- Correspondence:
| | - Bjorn Meijers
- Laboratory of Nephrology, KU Leuven Department of Microbiology and Immunology, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Rosalinde Masereeuw
- European Uremic Toxin Work Group-EUTox, Danube University Krems, 3500 Krems, Austria;
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Jerome Lowenstein
- Nephrology Division, NYU Langone Medical Center, New York, NY 10016, USA;
| |
Collapse
|
13
|
Vallon V, Nakagawa T. Renal Tubular Handling of Glucose and Fructose in Health and Disease. Compr Physiol 2021; 12:2995-3044. [PMID: 34964123 PMCID: PMC9832976 DOI: 10.1002/cphy.c210030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The proximal tubule of the kidney is programmed to reabsorb all filtered glucose and fructose. Glucose is taken up by apical sodium-glucose cotransporters SGLT2 and SGLT1 whereas SGLT5 and potentially SGLT4 and GLUT5 have been implicated in apical fructose uptake. The glucose taken up by the proximal tubule is typically not metabolized but leaves via the basolateral facilitative glucose transporter GLUT2 and is returned to the systemic circulation or used as an energy source by distal tubular segments after basolateral uptake via GLUT1. The proximal tubule generates new glucose in metabolic acidosis and the postabsorptive phase, and fructose serves as an important substrate. In fact, under physiological conditions and intake, fructose taken up by proximal tubules is primarily utilized for gluconeogenesis. In the diabetic kidney, glucose is retained and gluconeogenesis enhanced, the latter in part driven by fructose. This is maladaptive as it sustains hyperglycemia. Moreover, renal glucose retention is coupled to sodium retention through SGLT2 and SGLT1, which induces secondary deleterious effects. SGLT2 inhibitors are new anti-hyperglycemic drugs that can protect the kidneys and heart from failing independent of kidney function and diabetes. Dietary excess of fructose also induces tubular injury. This can be magnified by kidney formation of fructose under pathological conditions. Fructose metabolism is linked to urate formation, which partially accounts for fructose-induced tubular injury, inflammation, and hemodynamic alterations. Fructose metabolism favors glycolysis over mitochondrial respiration as urate suppresses aconitase in the tricarboxylic acid cycle, and has been linked to potentially detrimental aerobic glycolysis (Warburg effect). © 2022 American Physiological Society. Compr Physiol 12:2995-3044, 2022.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, California, USA,Department of Pharmacology, University of California San Diego, La Jolla, California, USA,VA San Diego Healthcare System, San Diego, California, USA,Correspondence to and
| | - Takahiko Nakagawa
- Division of Nephrology, Rakuwakai-Otowa Hospital, Kyoto, Japan,Correspondence to and
| |
Collapse
|
14
|
Abstract
Circulation of urate levels is determined by the balance between urate production and excretion, homeostasis regulated by the function of urate transporters in key epithelial tissues and cell types. Our understanding of these physiological processes and identification of the genes encoding the urate transporters has advanced significantly, leading to a greater ability to predict risk for urate-associated diseases and identify new therapeutics that directly target urate transport. Here, we review the identified urate transporters and their organization and function in the renal tubule, the intestinal enterocytes, and other important cell types to provide a fuller understanding of the complicated process of urate homeostasis and its role in human diseases. Furthermore, we review the genetic tools that provide an unbiased catalyst for transporter identification as well as discuss the role of transporters in determining the observed significant gender differences in urate-associated disease risk.
Collapse
Affiliation(s)
| | - Owen M Woodward
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
15
|
Faria J, Gerritsen KGF, Nguyen TQ, Mihaila SM, Masereeuw R. Diabetic proximal tubulopathy: Can we mimic the disease for in vitro screening of SGLT inhibitors? Eur J Pharmacol 2021; 908:174378. [PMID: 34303664 DOI: 10.1016/j.ejphar.2021.174378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/27/2022]
Abstract
Diabetic kidney disease (DKD) is the foremost cause of renal failure. While the glomeruli are severely affected in the course of the disease, the main determinant for disease progression is the tubulointerstitial compartment. DKD does not develop in the absence of hyperglycemia. Since the proximal tubule is the major player in glucose reabsorption, it has been widely studied as a therapeutic target for the development of new therapies. Currently, there are several proximal tubule cell lines available, being the human kidney-2 (HK-2) and human kidney clone-8 (HKC-8) cell lines the ones widely used for studying mechanisms of DKD. Studies in these models have pushed forward the understanding on how DKD unravels, however, these cell culture models possess limitations that hamper research, including lack of transporters and dedifferentiation. The sodium-glucose cotransporters (SGLT) are identified as key players in glucose reabsorption and pharmacological inhibitors have shown to be beneficial for the long-term clinical outcome in DKD. However, their mechanism of action has, as of yet, not been fully elucidated. To comprehend the protective effects of SGLT inhibitors, it is essential to understand the complete functional, structural, and molecular features of the disease, which until now have been difficult to recapitulate. This review addresses the molecular events of diabetic proximal tubulopathy. In addition, we evaluate the protective role of SGLT inhibitors in cardiovascular and renal outcomes, and provide an overview of various in vitro models mimicking diabetic proximal tubulopathy used so far. Finally, new insights on advanced in vitro systems to surpass past limitations are postulated.
Collapse
Affiliation(s)
- João Faria
- Div. Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Karin G F Gerritsen
- Dept. Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Tri Q Nguyen
- Dept. Pathology, University Medical Center Utrecht, the Netherlands
| | - Silvia M Mihaila
- Div. Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands; Dept. Nephrology and Hypertension, University Medical Center Utrecht, the Netherlands
| | - Rosalinde Masereeuw
- Div. Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands.
| |
Collapse
|
16
|
Sharaf El Din UAA, Salem MM, Abdulazim DO. Sodium-glucose cotransporter 2 inhibitors as the first universal treatment of chronic kidney disease. Nefrologia 2021; 42:S0211-6995(21)00143-0. [PMID: 34452776 DOI: 10.1016/j.nefro.2021.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/29/2021] [Accepted: 03/16/2021] [Indexed: 02/09/2023] Open
Abstract
In the last five years, the medical community was astonishingly surprised by the sequential large outcome trials that displayed the renal effects of sodium glucose co-transporter inhibitors (SGLT2Is) in type 2 diabetes mellitus (T2DM) patients with or without chronic kidney disease (CKD). This favorable effect was later disclosed in non-diabetic CKD patients. The EMPA-REG OUTCOME trial was the first trial that showed a reduction for the need for dialysis in patients suffering diabetic kidney disease (DKD) by 55%. This figure is double the score achieved by the angiotensin receptor blocker, Losartan, in RENAAL trial. The need for dialysis in DAPA-CKD trial was reduced in diabetic and non-diabetic CKD patients by 33%. The renal-specific composite outcome was reduced by 39% in EMPA-REG trial, 40% in CANVAS study, 47% in DECLARE-TIMI 58 study, 34% in CREDENCE trial, and 44% in DAPA-CKD trial. The greater surprise is the significant favorable effect of SGLT2Is on overall mortality in CKD patients with or without T2DM. Similar survival benefit was not previously encountered with any of the medications used in CKD patients with or without diabetes. In this review, we disclose the results of the DAPA-CKD trial, the CREDENCE trial and those of several cardiovascular outcome trials (CVOT) that used different SGLT2Is and showed that patients with lower eGFR levels may have greater benefit with respect to cardiovascular morbidity than patients with normal kidney function. In addition, we discuss the different mechanisms of action that explain the renal beneficial effects of SGLT2Is.
Collapse
Affiliation(s)
| | - Mona Mansour Salem
- Department of Endocrinology, School of Medicine, Cairo University, Manial, Cairo 11759, Egypt
| | - Dina Ossama Abdulazim
- Department of Rheumatology and Rehabilitation, School of Medicine, Cairo University, Manial, Cairo 11759, Egypt
| |
Collapse
|
17
|
Abstract
SGLT2 inhibitors are antihyperglycemic drugs that protect kidneys and the heart of patients with or without type 2 diabetes and preserved or reduced kidney function from failing. The involved protective mechanisms include blood glucose-dependent and -independent mechanisms: SGLT2 inhibitors prevent both hyper- and hypoglycemia, with expectedly little net effect on HbA1C. Metabolic adaptations to induced urinary glucose loss include reduced fat mass and more ketone bodies as additional fuel. SGLT2 inhibitors lower glomerular capillary hypertension and hyperfiltration, thereby reducing the physical stress on the filtration barrier, albuminuria, and the oxygen demand for tubular reabsorption. This improves cortical oxygenation, which, together with lesser tubular gluco-toxicity, may preserve tubular function and glomerular filtration rate in the long term. SGLT2 inhibitors may mimic systemic hypoxia and stimulate erythropoiesis, which improves organ oxygen delivery. SGLT2 inhibitors are proximal tubule and osmotic diuretics that reduce volume retention and blood pressure and preserve heart function, potentially in part by overcoming the resistance to diuretics and atrial-natriuretic-peptide and inhibiting Na-H exchangers and sympathetic tone.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California, San Diego, La Jolla, California 92093, USA;
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093, USA
- VA San Diego Healthcare System, San Diego, California 92161, USA
| | - Subodh Verma
- Division of Cardiac Surgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario M5B 1W8, Canada;
- Departments of Surgery and Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
18
|
Onishi A, Fu Y, Patel R, Darshi M, Crespo-Masip M, Huang W, Song P, Freeman B, Kim YC, Soleimani M, Sharma K, Thomson SC, Vallon V. A role for tubular Na +/H + exchanger NHE3 in the natriuretic effect of the SGLT2 inhibitor empagliflozin. Am J Physiol Renal Physiol 2020; 319:F712-F728. [PMID: 32893663 DOI: 10.1152/ajprenal.00264.2020] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inhibitors of proximal tubular Na+-glucose cotransporter 2 (SGLT2) are natriuretic, and they lower blood pressure. There are reports that the activities of SGLT2 and Na+-H+ exchanger 3 (NHE3) are coordinated. If so, then part of the natriuretic response to an SGLT2 inhibitor is mediated by suppressing NHE3. To examine this further, we compared the effects of an SGLT2 inhibitor, empagliflozin, on urine composition and systolic blood pressure (SBP) in nondiabetic mice with tubule-specific NHE3 knockdown (NHE3-ko) and wild-type (WT) littermates. A single dose of empagliflozin, titrated to cause minimal glucosuria, increased urinary excretion of Na+ and bicarbonate and raised urine pH in WT mice but not in NHE3-ko mice. Chronic empagliflozin treatment tended to lower SBP despite higher renal renin mRNA expression and lowered the ratio of SBP to renin mRNA, indicating volume loss. This effect of empagliflozin depended on tubular NHE3. In diabetic Akita mice, chronic empagliflozin enhanced phosphorylation of NHE3 (S552/S605), changes previously linked to lesser NHE3-mediated reabsorption. Chronic empagliflozin also increased expression of genes involved with renal gluconeogenesis, bicarbonate regeneration, and ammonium formation. While this could reflect compensatory responses to acidification of proximal tubular cells resulting from reduced NHE3 activity, these effects were at least in part independent of tubular NHE3 and potentially indicated metabolic adaptations to urinary glucose loss. Moreover, empagliflozin increased luminal α-ketoglutarate, which may serve to stimulate compensatory distal NaCl reabsorption, while cogenerated and excreted ammonium balances urine losses of this "potential bicarbonate." The data implicate NHE3 as a determinant of the natriuretic effect of empagliflozin.
Collapse
Affiliation(s)
- Akira Onishi
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Yiling Fu
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Rohit Patel
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Manjula Darshi
- Center for Renal Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Maria Crespo-Masip
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California.,Biomedical Research Institute, University of Lleida, Lleida, Spain
| | - Winnie Huang
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Panai Song
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Brent Freeman
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Young Chul Kim
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | | | - Kumar Sharma
- Center for Renal Precision Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Scott Culver Thomson
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Volker Vallon
- Department of Medicine, University of California-San Diego and Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
19
|
Vallon V. Glucose transporters in the kidney in health and disease. Pflugers Arch 2020; 472:1345-1370. [PMID: 32144488 PMCID: PMC7483786 DOI: 10.1007/s00424-020-02361-w] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
The kidneys filter large amounts of glucose. To prevent the loss of this valuable fuel, the tubular system of the kidney, particularly the proximal tubule, has been programmed to reabsorb all filtered glucose. The machinery involves the sodium-glucose cotransporters SGLT2 and SGLT1 on the apical membrane and the facilitative glucose transporter GLUT2 on the basolateral membrane. The proximal tubule also generates new glucose, particularly in the post-absorptive phase but also to enhance bicarbonate formation and maintain acid-base balance. The glucose reabsorbed or formed by the proximal tubule is primarily taken up into peritubular capillaries and returned to the systemic circulation or provided as an energy source to further distal tubular segments that take up glucose by basolateral GLUT1. Recent studies provided insights on the coordination of renal glucose reabsorption, formation, and usage. Moreover, a better understanding of renal glucose transport in disease states is emerging. This includes the kidney in diabetes mellitus, when renal glucose retention becomes maladaptive and contributes to hyperglycemia. Furthermore, enhanced glucose reabsorption is coupled to sodium retention through the sodium-glucose cotransporter SGLT2, which induces secondary deleterious effects. As a consequence, SGLT2 inhibitors are new anti-hyperglycemic drugs that can protect the kidneys and heart from failing. Recent studies discovered unique roles for SGLT1 with implications in acute kidney injury and glucose sensing at the macula densa. This review discusses established and emerging concepts of renal glucose transport, and outlines the need for a better understanding of renal glucose handling in health and disease.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW SGLT2 inhibitors are a new class of antihyperglycemic drugs that protect kidneys and hearts of type 2 diabetic (T2DM) patients with preserved kidney function from failing. Here we discuss new insights on renal protection. RECENT FINDINGS Also in T2DM patients with CKD, SGLT2 inhibition causes an immediate functional reduction in glomerular filtration rate (GFR) and reduces blood pressure and preserves kidney and heart function in the long-term, despite a lesser antihyperglycemic effect. According to modeling studies, the GFR reduction reduces the tubular transport work and metabolic demand, thereby improving renal cortical oxygenation. In humans, the latter is linked to protection from CKD. Urine metabolomics in T2DM patients suggested improved renal mitochondrial function in response to SGLT2 inhibition, and experimental studies indicated improved tubular autophagy. Modeling studies predicted that also in diabetic CKD, SGLT2 inhibition is natriuretic and potentially stimulates erythropoiesis by mimicking systemic hypoxia in the kidney. Meta-analyses indicated that SGLT2 inhibition also reduces risk and severity of acute kidney injury in T2DM patients. Studies in nondiabetic mice implied inhibition of the renal urate transporter URAT1 in the uricosuric effect of SGLT2 inhibition. SUMMARY Renoprotection of SGLT2 inhibition involves blood glucose-dependent and independent effects and extends to CKD.
Collapse
|
21
|
Yang Y, Liu X. Imbalance of Drug Transporter-CYP450s Interplay by Diabetes and Its Clinical Significance. Pharmaceutics 2020; 12:E348. [PMID: 32290519 PMCID: PMC7238081 DOI: 10.3390/pharmaceutics12040348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/28/2020] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
The pharmacokinetics of a drug is dependent upon the coordinate work of influx transporters, enzymes and efflux transporters (i.e., transporter-enzyme interplay). The transporter-enzyme interplay may occur in liver, kidney and intestine. The influx transporters involving drug transport are organic anion transporting polypeptides (OATPs), peptide transporters (PepTs), organic anion transporters (OATs), monocarboxylate transporters (MCTs) and organic cation transporters (OCTs). The efflux transporters are P-glycoprotein (P-gp), multidrug/toxin extrusions (MATEs), multidrug resistance-associated proteins (MRPs) and breast cancer resistance protein (BCRP). The enzymes related to drug metabolism are mainly cytochrome P450 enzymes (CYP450s) and UDP-glucuronosyltransferases (UGTs). Accumulating evidence has demonstrated that diabetes alters the expression and functions of CYP450s and transporters in a different manner, disordering the transporter-enzyme interplay, in turn affecting the pharmacokinetics of some drugs. We aimed to focus on (1) the imbalance of transporter-CYP450 interplay in the liver, intestine and kidney due to altered expressions of influx transporters (OATPs, OCTs, OATs, PepTs and MCT6), efflux transporters (P-gp, BCRP and MRP2) and CYP450s (CYP3As, CYP1A2, CYP2E1 and CYP2Cs) under diabetic status; (2) the net contributions of these alterations in the expression and functions of transporters and CYP450s to drug disposition, therapeutic efficacy and drug toxicity; (3) application of a physiologically-based pharmacokinetic model in transporter-enzyme interplay.
Collapse
Affiliation(s)
| | - Xiaodong Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China;
| |
Collapse
|
22
|
Gu N, Park SI, Chung H, Jin X, Lee S, Kim TE. Possibility of pharmacokinetic drug interaction between a DPP-4 inhibitor and a SGLT2 inhibitor. Transl Clin Pharmacol 2020; 28:17-33. [PMID: 32274378 PMCID: PMC7136081 DOI: 10.12793/tcp.2020.28.e4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/23/2022] Open
Abstract
Type 2 diabetes mellitus is a multifactorial condition characterized by high level of sugar in the blood. To control hyperglycemia, combination therapy is recommended if monotherapy fails to achieve glycemic control. The combination of a dipeptidyl peptidase-4 (DPP-4) inhibitor and a sodium-glucose cotransporter type 2 (SGLT2) inhibitor is a promising option of the combination therapies in terms of safety as well as efficacy. Despite of the value of combination therapy of these two agents, the pharmacokinetic drug interactions between these two classes of agents have been evaluated in a few drugs. Thus, we reviewed the potential pharmacokinetic drug interaction based on the in vitro metabolism- and transporter-mediated drug interaction information as well as drug interaction studies in human, between a DPP-4 inhibitor and a SGLT2 inhibitor which are marketed in South Korea.
Collapse
Affiliation(s)
- Namyi Gu
- Department of Clinical Pharmacology and Therapeutics, Clinical Trial Center, Dongguk University College of Medicine and Ilsan Hospital, Goyang, Korea
| | - Sang-In Park
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon, Korea
| | - Hyewon Chung
- Department of Clinical Pharmacology and Toxicology, Korea University Guro Hospital, Seoul, Korea
| | - Xuanyou Jin
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Tae-Eun Kim
- Department of Clinical Pharmacology, Konkuk University Medical Center, Seoul, Korea
| |
Collapse
|
23
|
Vallon V, Thomson SC. The tubular hypothesis of nephron filtration and diabetic kidney disease. Nat Rev Nephrol 2020; 16:317-336. [PMID: 32152499 DOI: 10.1038/s41581-020-0256-y] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 02/08/2023]
Abstract
Kidney size and glomerular filtration rate (GFR) often increase with the onset of diabetes, and elevated GFR is a risk factor for the development of diabetic kidney disease. Hyperfiltration mainly occurs in response to signals passed from the tubule to the glomerulus: high levels of glucose in the glomerular filtrate drive increased reabsorption of glucose and sodium by the sodium-glucose cotransporters SGLT2 and SGLT1 in the proximal tubule. Passive reabsorption of chloride and water also increases. The overall capacity for proximal reabsorption is augmented by growth of the proximal tubule, which (alongside sodium-glucose cotransport) further limits urinary glucose loss. Hyperreabsorption of sodium and chloride induces tubuloglomerular feedback from the macula densa to increase GFR. In addition, sodium-glucose cotransport by SGLT1 on macula densa cells triggers the production of nitric oxide, which also contributes to glomerular hyperfiltration. Although hyperfiltration restores sodium and chloride excretion it imposes added physical stress on the filtration barrier and increases the oxygen demand to drive reabsorption. Tubular growth is associated with the development of a senescence-like molecular signature that sets the stage for inflammation and fibrosis. SGLT2 inhibitors attenuate the proximal reabsorption of sodium and glucose, normalize tubuloglomerular feedback signals and mitigate hyperfiltration. This tubule-centred model of diabetic kidney physiology predicts the salutary effect of SGLT2 inhibitors on hard renal outcomes, as shown in large-scale clinical trials.
Collapse
Affiliation(s)
- Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA. .,Department of Pharmacology, University of California San Diego, La Jolla, CA, USA. .,VA San Diego Healthcare System, San Diego, CA, USA.
| | - Scott C Thomson
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA.,VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
24
|
Pereira-Moreira R, Muscelli E. Effect of Insulin on Proximal Tubules Handling of Glucose: A Systematic Review. J Diabetes Res 2020; 2020:8492467. [PMID: 32377524 PMCID: PMC7180501 DOI: 10.1155/2020/8492467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
Renal proximal tubules reabsorb glucose from the glomerular filtrate and release it back into the circulation. Modulation of glomerular filtration and renal glucose disposal are some of the insulin actions, but little is known about a possible insulin effect on tubular glucose reabsorption. This review is aimed at synthesizing the current knowledge about insulin action on glucose handling by proximal tubules. Method. A systematic article selection from Medline (PubMed) and Embase between 2008 and 2019. 180 selected articles were clustered into topics (renal insulin handling, proximal tubule glucose transport, renal gluconeogenesis, and renal insulin resistance). Summary of Results. Insulin upregulates its renal uptake and degradation, and there is probably a renal site-specific insulin action and resistance; studies in diabetic animal models suggest that insulin increases renal SGLT2 protein content; in vivo human studies on glucose transport are few, and results of glucose transporter protein and mRNA contents are conflicting in human kidney biopsies; maximum renal glucose reabsorptive capacity is higher in diabetic patients than in healthy subjects; glucose stimulates SGLT1, SGLT2, and GLUT2 in renal cell cultures while insulin raises SGLT2 protein availability and activity and seems to directly inhibit the SGLT1 activity despite it activating this transporter indirectly. Besides, insulin regulates SGLT2 inhibitor bioavailability, inhibits renal gluconeogenesis, and interferes with Na+K+ATPase activity impacting on glucose transport. Conclusion. Available data points to an important insulin participation in renal glucose handling, including tubular glucose transport, but human studies with reproducible and comparable method are still needed.
Collapse
Affiliation(s)
- Ricardo Pereira-Moreira
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Zip Code: 13083-887, Brazil
| | - Elza Muscelli
- Department of Internal Medicine, School of Medical Sciences, University of Campinas, Zip Code: 13083-887, Brazil
| |
Collapse
|
25
|
Allegretti AS, Zhang W, Zhou W, Thurber TK, Rigby SP, Bowman-Stroud C, Trescoli C, Serusclat P, Freeman MW, Halvorsen YDC. Safety and Effectiveness of Bexagliflozin in Patients With Type 2 Diabetes Mellitus and Stage 3a/3b CKD. Am J Kidney Dis 2019; 74:328-337. [PMID: 31101403 PMCID: PMC10077840 DOI: 10.1053/j.ajkd.2019.03.417] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/07/2019] [Indexed: 01/15/2023]
Abstract
RATIONALE & OBJECTIVE Hyperglycemia exacerbates the progression of chronic kidney disease (CKD), but most glucose-lowering therapies do not address morbidities associated with CKD. Sodium/glucose cotransporter 2 (SGLT2) inhibitors offer potential benefits to patients with diabetes and CKD, but their effectiveness may be diminished with decreased kidney function. We aimed to evaluate the safety and effectiveness of bexagliflozin, a novel SGLT2 inhibitor, in patients with type 2 diabetes and CKD. STUDY DESIGN Phase 3, double-blind, placebo-controlled, multicenter, multinational, randomized trial. SETTING & PARTICIPANTS 54 sites across 4 countries. Patients with CKD stage 3a or 3b, type 2 diabetes mellitus, and hemoglobin A1c level of 7.0% to 10.5% and estimated glomerular filtration rate (eGFR) of 30 to 59mL/min/1.73m2 who were taking oral hypoglycemic agents for 8 weeks. INTERVENTIONS Bexagliflozin, 20mg, daily versus placebo for 24 weeks. OUTCOMES Primary outcome was change in percent hemoglobin A1c from baseline to week 24. Secondary end points included changes in body weight, systolic blood pressure, albuminuria, and hemoglobin A1c level stratified by CKD stage. RESULTS 312 patients across 54 sites were analyzed. Bexagliflozin lowered hemoglobin A1c levels by 0.37% (95% CI, 0.20%-0.54%); P<0.001 compared to placebo. Patients with CKD stages 3a (eGFR, 45-<60mL/min/1.73m2) and 3b (eGFR, 30-<45mL/min/1.73m2) experienced reductions in hemoglobin A1c levels of 0.31% (P=0.007) and 0.43% (P=0.002), respectively. Bexagliflozin decreased body weight (1.61kg; P<0.001), systolic blood pressure (3.8mm Hg; P=0.02), fasting plasma glucose level (0.76mmol/L; P=0.003), and albuminuria (geometric mean ratio reduction of 20.1%; P=0.03). Urinary tract infection and genital mycotic infections were more common in the bexagliflozin group; otherwise, frequencies of adverse events were comparable between groups. LIMITATIONS Not designed to evaluate the impact of treatment on long-term kidney disease and cardiovascular outcomes. CONCLUSIONS Bexagliflozin reduces hemoglobin A1c levels in patients with diabetes and stage 3a/3b CKD and appears to be well tolerated. Additional observed benefits included reductions in body weight, systolic blood pressure, and albuminuria. FUNDING Trial was sponsored by Theracos Sub, LLC.
Collapse
Affiliation(s)
- Andrew S Allegretti
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA.
| | - Wenbin Zhang
- Translational Medicine Group, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA; Shanghai JiaYue PharmaTech, Shanghai, China
| | | | - Tara K Thurber
- Translational Medicine Group, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA
| | - Scott P Rigby
- Summit Research Group/Unity Health Network, Munroe Falls, OH
| | | | | | | | - Mason W Freeman
- Translational Medicine Group, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA
| | - Yuan-Di C Halvorsen
- Translational Medicine Group, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
26
|
Current Progress in Pharmacogenetics of Second-Line Antidiabetic Medications: Towards Precision Medicine for Type 2 Diabetes. J Clin Med 2019; 8:jcm8030393. [PMID: 30901912 PMCID: PMC6463061 DOI: 10.3390/jcm8030393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022] Open
Abstract
Precision medicine is a scientific and medical practice for personalized therapy based on patients’ individual genetic, environmental, and lifestyle characteristics. Pharmacogenetics and pharmacogenomics are also rapidly developing and expanding as a key element of precision medicine, in which the association between individual genetic variabilities and drug disposition and therapeutic responses are investigated. Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by hyperglycemia mainly associated with insulin resistance, with the risk of clinically important cardiovascular, neurological, and renal complications. The latest consensus report from the American Diabetes Association and European Association for the Study of Diabetes (ADA-EASD) on the management of T2D recommends preferential use of glucagon-like peptide-1 (GLP-1) receptor agonists, sodium-glucose cotransporter-2 (SGLT2) inhibitors, and some dipeptidyl peptidase-4 (DPP-4) inhibitors after initial metformin monotherapy for diabetic patients with established atherosclerotic cardiovascular or chronic kidney disease, and with risk of hypoglycemia or body weight-related problems. In this review article, we summarized current progress on pharmacogenetics of newer second-line antidiabetic medications in clinical practices and discussed their therapeutic implications for precision medicine in T2D management. Several biomarkers associated with drug responses have been identified from extensive clinical pharmacogenetic studies, and functional variations in these genes have been shown to significantly affect drug-related glycemic control, adverse reactions, and risk of diabetic complications. More comprehensive pharmacogenetic research in various clinical settings will clarify the therapeutic implications of these genes, which may be useful tools for precision medicine in the treatment and prevention of T2D and its complications.
Collapse
|
27
|
Affiliation(s)
- Anita T. Layton
- Department of Applied Mathematics and School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada; and Departments of Mathematics, Biomedical Engineering, and Medicine, Duke University, Durham, North Carolina
| |
Collapse
|