1
|
Mohanty I, Banerjee S, Mahanty A, Mohanty S, Nayak NR, Parija SC, Mohanty BP. Proteomic Profiling and Pathway Analysis of Acid Stress-Induced Vasorelaxation of Mesenteric Arteries In Vitro. Genes (Basel) 2022; 13:801. [PMID: 35627186 PMCID: PMC9140505 DOI: 10.3390/genes13050801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Although metabolic acidosis is associated with numerous pathophysiological conditions and its vasorelaxation effects have been well described in different animal and culture models, the molecular mechanisms of acidosis-induced vasorelaxation are not fully understood. Mesenteric artery models have been used extensively to examine the vascular response to various pathophysiological conditions. Our previous studies and several other reports have suggested the vascular responses of goat mesenteric arteries and human arteries to various stimuli, including acidic stress, are highly similar. In this study, to further identify the signaling molecules responsible for altered vasoreactivity in response to acidic pH, we examined the proteomic profile of acid stress-induced vasorelaxation using a goat mesenteric artery model. The vascular proteomes under acidic pH were compared using 2D-GE with 7 cm IPG strips and mini gels, LC-MS/MS, and MALDI TOF MS. The unique proteins identified by mass spectroscopy were actin, transgelin, WD repeat-containing protein 1, desmin, tropomyosin, ATP synthase β, Hsp27, aldehyde dehydrogenase, pyruvate kinase, and vitamin K epoxide reductase complex subunit 1-like protein. Out of five protein spots identified as actin, three were upregulated > 2-fold. ATP synthase β was also upregulated (2.14-fold) under acid stress. Other actin-associated proteins upregulated were transgelin, desmin, and WD repeat-containing protein 1. Isometric contraction studies revealed that both receptor-mediated (histamine) and non-receptor-mediated (KCl) vasocontraction were attenuated, whereas acetylcholine-induced vasorelaxation was augmented under acidosis. Overall, the altered vasoreactivity under acidosis observed in the functional studies could possibly be attributed to the increase in expression of actin and ATP synthase β.
Collapse
Affiliation(s)
- Ipsita Mohanty
- ICAR-Central Inland Fisheries Research Institute, Biochemistry Laboratory, Proteomics Unit, Barrackpore, Kolkata 700120, India; (I.M.); (S.B.); (A.M.)
- Department of Pharmacology and Toxicology, College of Veterinary Sciences and Animal Husbandry, Orissa University of Agriculture and Technology, Bhubaneswar 751003, India;
- Departments of Pediatrics, Children’s Hospital of Philadelphia Research Institute, The Raymond and Ruth Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sudeshna Banerjee
- ICAR-Central Inland Fisheries Research Institute, Biochemistry Laboratory, Proteomics Unit, Barrackpore, Kolkata 700120, India; (I.M.); (S.B.); (A.M.)
| | - Arabinda Mahanty
- ICAR-Central Inland Fisheries Research Institute, Biochemistry Laboratory, Proteomics Unit, Barrackpore, Kolkata 700120, India; (I.M.); (S.B.); (A.M.)
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Sasmita Mohanty
- Department of Biotechnology, Faculty of Science & Technology, Rama Devi Women’s University, Bhubaneswar 751022, India;
| | - Nihar Ranjan Nayak
- Department of Obstetrics and Gynecology, UMKC School of Medicine, Kansas City, MO 64108, USA
| | - Subas Chandra Parija
- Department of Pharmacology and Toxicology, College of Veterinary Sciences and Animal Husbandry, Orissa University of Agriculture and Technology, Bhubaneswar 751003, India;
| | - Bimal Prasanna Mohanty
- ICAR-Central Inland Fisheries Research Institute, Biochemistry Laboratory, Proteomics Unit, Barrackpore, Kolkata 700120, India; (I.M.); (S.B.); (A.M.)
- Indian Council of Agricultural Research (ICAR), ICAR-Fisheries Science Division, Room No. 308, Krishi Anusandhan Bhawan II, New Delhi 110012, India
| |
Collapse
|
2
|
Bugarski M, Ghazi S, Polesel M, Martins JR, Hall AM. Changes in NAD and Lipid Metabolism Drive Acidosis-Induced Acute Kidney Injury. J Am Soc Nephrol 2021; 32:342-356. [PMID: 33478973 PMCID: PMC8054907 DOI: 10.1681/asn.2020071003] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/30/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The kidney plays an important role in maintaining normal blood pH. Metabolic acidosis (MA) upregulates the pathway that mitochondria in the proximal tubule (PT) use to produce ammonia and bicarbonate from glutamine, and is associated with AKI. However, the extent to which MA causes AKI, and thus whether treating MA would be beneficial, is unclear. METHODS Gavage with ammonium chloride induced acute MA. Multiphoton imaging of mitochondria (NADH/membrane potential) and transport function (dextran/albumin uptake), oxygen consumption rate (OCR) measurements in isolated tubules, histologic analysis, and electron microscopy in fixed tissue, and urinary biomarkers (KIM-1/clara cell 16) assessed tubular cell structure and function in mouse kidney cortex. RESULTS MA induces an acute change in NAD redox state (toward oxidation) in PT mitochondria, without changing the mitochondrial energization state. This change is associated with a switch toward complex I activity and decreased maximal OCR, and a major alteration in normal lipid metabolism, resulting in marked lipid accumulation in PTs and the formation of large multilamellar bodies. These changes, in turn, lead to acute tubular damage and a severe defect in solute uptake. Increasing blood pH with intravenous bicarbonate substantially improves tubular function, whereas preinjection with the NAD precursor nicotinamide (NAM) is highly protective. CONCLUSIONS MA induces AKI via changes in PT NAD and lipid metabolism, which can be reversed or prevented by treatment strategies that are viable in humans. These findings might also help to explain why MA accelerates decline in function in CKD.
Collapse
Affiliation(s)
- Milica Bugarski
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Susan Ghazi
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | - Joana R. Martins
- Institute of Anatomy, University of Zurich, Zurich, Switzerland,Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Andrew M. Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland,Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Aigner C, Cejka D, Sliber C, Fraunschiel M, Sunder-Plassmann G, Gaggl M. Oral Sodium Bicarbonate Supplementation Does Not Affect Serum Calcification Propensity in Patients with Chronic Kidney Disease and Chronic Metabolic Acidosis. Kidney Blood Press Res 2019; 44:188-199. [PMID: 31067546 DOI: 10.1159/000498975] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/23/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cardiovascular disease is the leading cause of death in patients with chronic kidney disease (CKD) and metabolic acidosis might accelerate vascular calcification. The T50 calcification inhibition test (T50-test) is a global functional test analyzing the overall propensity of calcification in serum, and low T50-time is associated with progressive aortic stiffening and with all-cause mortality in non-dialysis CKD, dialysis, and transplant patients. Low serum bicarbonate is associated with a short T50-time and alkali supplementation could be a simple modifier of calcification propensity. The aim of this study was to investigate the short-term effect of oral sodium bicarbonate supplementation on T50-time in CKD patients. MATERIAL AND METHODS The SoBic-study is an ongoing randomized-controlled trial in CKD-G3 and G4 patients with chronic metabolic acidosis (serum HCO3- ≤21 mmol/L), in which patients are randomized to either achieve serum HCO3- levels of 24 ± 1 mmol/L (intervention group) or 20 ± 1 mmol/L (rescue group). The effect of bicarbonate treatment on T50-time was assessed. RESULTS The study cohort consisted of 35 (14 female) patients aged 57 (±15) years, and 18 were randomized to the intervention group. The mean T50-time was 275 (± 64) min. After 4 weeks, the mean change of T50-time was 4 (±69) min in the intervention group and 18 min (±56) in the rescue group (β = -25; 95% CI: -71 to 22; p = 0.298). Moreover, change of serum bicarbonate in individual patients was not associated with change in T50-time, analyzed by regression analysis. Change of serum phosphate had a significant impact on change of T50-time (β = -145; 95% CI: -237 to -52). CONCLUSION Oral sodium bicarbonate supplementation showed no effect on T50-time in acidotic CKD patients.
Collapse
Affiliation(s)
- Christof Aigner
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Daniel Cejka
- Department of Medicine III, Nephrology, Hypertension, Transplantation and Rheumatology, Ordensklinikum Linz at Krankenhaus der Elisabethinen, Linz, Austria
| | - Christopher Sliber
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria.,Department of Medicine, Sana Klinikum Offenbach, Offenbach, Germany
| | - Melanie Fraunschiel
- ITSC - IT Systems & Communications, Section IT4Science, Medical University of Vienna, Vienna, Austria
| | - Gere Sunder-Plassmann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria
| | - Martina Gaggl
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University Vienna, Vienna, Austria,
| |
Collapse
|
4
|
Rinschen MM, Limbutara K, Knepper MA, Payne DM, Pisitkun T. From Molecules to Mechanisms: Functional Proteomics and Its Application to Renal Tubule Physiology. Physiol Rev 2019; 98:2571-2606. [PMID: 30182799 DOI: 10.1152/physrev.00057.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Classical physiological studies using electrophysiological, biophysical, biochemical, and molecular techniques have created a detailed picture of molecular transport, bioenergetics, contractility and movement, and growth, as well as the regulation of these processes by external stimuli in cells and organisms. Newer systems biology approaches are beginning to provide deeper and broader understanding of these complex biological processes and their dynamic responses to a variety of environmental cues. In the past decade, advances in mass spectrometry-based proteomic technologies have provided invaluable tools to further elucidate these complex cellular processes, thereby confirming, complementing, and advancing common views of physiology. As one notable example, the application of proteomics to study the regulation of kidney function has yielded novel insights into the chemical and physical processes that tightly control body fluids, electrolytes, and metabolites to provide optimal microenvironments for various cellular and organ functions. Here, we systematically review, summarize, and discuss the most significant key findings from functional proteomic studies in renal epithelial physiology. We also identify further improvements in technological and bioinformatics methods that will be essential to advance precision medicine in nephrology.
Collapse
Affiliation(s)
- Markus M Rinschen
- Department II of Internal Medicine, University Hospital Cologne , Cologne , Germany ; Center for Molecular Medicine Cologne, University of Cologne , Cologne , Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany ; Division of Nephrology, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand ; Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland ; and Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand
| | - Kavee Limbutara
- Department II of Internal Medicine, University Hospital Cologne , Cologne , Germany ; Center for Molecular Medicine Cologne, University of Cologne , Cologne , Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany ; Division of Nephrology, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand ; Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland ; and Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand
| | - Mark A Knepper
- Department II of Internal Medicine, University Hospital Cologne , Cologne , Germany ; Center for Molecular Medicine Cologne, University of Cologne , Cologne , Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany ; Division of Nephrology, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand ; Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland ; and Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand
| | - D Michael Payne
- Department II of Internal Medicine, University Hospital Cologne , Cologne , Germany ; Center for Molecular Medicine Cologne, University of Cologne , Cologne , Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany ; Division of Nephrology, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand ; Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland ; and Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand
| | - Trairak Pisitkun
- Department II of Internal Medicine, University Hospital Cologne , Cologne , Germany ; Center for Molecular Medicine Cologne, University of Cologne , Cologne , Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne , Cologne , Germany ; Division of Nephrology, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand ; Epithelial Systems Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland ; and Center of Excellence in Systems Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University , Bangkok , Thailand
| |
Collapse
|
5
|
Early Administration of Glutamine Protects Cardiomyocytes from Post-Cardiac Arrest Acidosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2106342. [PMID: 28058255 PMCID: PMC5183754 DOI: 10.1155/2016/2106342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/14/2016] [Indexed: 12/31/2022]
Abstract
Postcardiac arrest acidosis can decrease survival. Effective medications without adverse side effects are still not well characterized. We aimed to analyze whether early administration of glutamine could improve survival and protect cardiomyocytes from postcardiac arrest acidosis using animal and cell models. Forty Wistar rats with postcardiac arrest acidosis (blood pH < 7.2) were included. They were divided into study (500 mg/kg L-alanyl-L-glutamine, n = 20) and control (normal saline, n = 20) groups. Each of the rats received resuscitation. The outcomes were compared between the two groups. In addition, cardiomyocytes derived from human induced pluripotent stem cells were exposed to HBSS with different pH levels (7.3 or 6.5) or to culture medium (control). Apoptosis-related markers and beating function were analyzed. We found that the duration of survival was significantly longer in the study group (p < 0.05). In addition, in pH 6.5 or pH 7.3 HBSS buffer, the expression levels of cell stress (p53) and apoptosis (caspase-3, Bcl-xL) markers were significantly lower in cardiomyocytes treated with 50 mM L-glutamine than those without L-glutamine (RT-PCR). L-glutamine also increased the beating function of cardiomyocytes, especially at the lower pH level (6.5). More importantly, glutamine decreased cardiomyocyte apoptosis and increased these cells' beating function at a low pH level.
Collapse
|
6
|
Tuma Z, Kuncova J, Mares J, Grundmanova M, Matejovic M. Proteomic approaches to the study of renal mitochondria. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:173-82. [DOI: 10.5507/bp.2016.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 03/03/2016] [Indexed: 12/14/2022] Open
|
7
|
Lee HW, Osis G, Handlogten ME, Lamers WH, Chaudhry FA, Verlander JW, Weiner ID. Proximal tubule-specific glutamine synthetase deletion alters basal and acidosis-stimulated ammonia metabolism. Am J Physiol Renal Physiol 2016; 310:F1229-42. [PMID: 27009341 PMCID: PMC4935770 DOI: 10.1152/ajprenal.00547.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/13/2016] [Indexed: 02/07/2023] Open
Abstract
Glutamine synthetase (GS) catalyzes the recycling of NH4 (+) with glutamate to form glutamine. GS is highly expressed in the renal proximal tubule (PT), suggesting ammonia recycling via GS could decrease net ammoniagenesis and thereby limit ammonia available for net acid excretion. The purpose of the present study was to determine the role of PT GS in ammonia metabolism under basal conditions and during metabolic acidosis. We generated mice with PT-specific GS deletion (PT-GS-KO) using Cre-loxP techniques. Under basal conditions, PT-GS-KO increased urinary ammonia excretion significantly. Increased ammonia excretion occurred despite decreased expression of key proteins involved in renal ammonia generation. After the induction of metabolic acidosis, the ability to increase ammonia excretion was impaired significantly by PT-GS-KO. The blunted increase in ammonia excretion occurred despite greater expression of multiple components of ammonia generation, including SN1 (Slc38a3), phosphate-dependent glutaminase, phosphoenolpyruvate carboxykinase, and Na(+)-coupled electrogenic bicarbonate cotransporter. We conclude that 1) GS-mediated ammonia recycling in the PT contributes to both basal and acidosis-stimulated ammonia metabolism and 2) adaptive changes in other proteins involved in ammonia metabolism occur in response to PT-GS-KO and cause an underestimation of the role of PT GS expression.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Gunars Osis
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Mary E Handlogten
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Wouter H Lamers
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Farrukh A Chaudhry
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; and
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida; Nephrology and Hypertension Section, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| |
Collapse
|
8
|
Mitochondrial proteomes of porcine kidney cortex and medulla: foundation for translational proteomics. Clin Exp Nephrol 2015; 20:39-49. [PMID: 26072732 DOI: 10.1007/s10157-015-1135-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 06/02/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND Emerging evidence has linked mitochondrial dysfunction to the pathogenesis of many renal disorders, including acute kidney injury, sepsis and even chronic kidney disease. Proteomics is a powerful tool in elucidating the role of mitochondria in renal pathologies. Since the pig is increasingly recognized as a major mammalian model for translational research, the lack of physiological proteome data of large mammals prompted us to examine renal mitochondrial proteome in porcine kidney cortex and medulla METHODS Kidneys were obtained from six healthy pigs. Mitochondria from cortex and medulla were isolated using differential centrifugation and proteome maps of cortical and medullar mitochondria were constructed using two-dimensional gel electrophoresis (2DE). Protein spots with significant difference between mitochondrial fraction of renal cortex and medulla were identified by mass spectrometry. RESULTS Proteomic analysis identified 81 protein spots. Of these spots, 41 mitochondrial proteins were statistically different between renal cortex and medulla (p < 0.05). Protein spots containing enzymes of beta oxidation, amino acid metabolism, and gluconeogenesis were predominant in kidney cortex mitochondria. Spots containing tricarboxylic acid cycle enzymes and electron transport system proteins, proteins maintaining metabolite transport and mitochondrial translation were more abundant in medullar mitochondria. CONCLUSION This study provides the first proteomic profile of porcine kidney cortex and medullar mitochondrial proteome. Different protein expression pattern reflects divergent functional metabolic role of mitochondria in various kidney compartments. Our study could serve as a useful reference for further porcine experiments investigating renal mitochondrial physiology under various pathological states.
Collapse
|
9
|
Bullard KM, Broccardo C, Keenan SM. Effects of cyclin-dependent kinase inhibitor Purvalanol B application on protein expression and developmental progression in intra-erythrocytic Plasmodium falciparum parasites. Malar J 2015; 14:147. [PMID: 25879664 PMCID: PMC4403934 DOI: 10.1186/s12936-015-0655-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/17/2015] [Indexed: 11/10/2022] Open
Abstract
Background The 2013 Malaria World Report indicated that in 2012 there were approximately 207 million cases of malaria, which resulted in an estimated 627,000 malaria-related deaths. Due to the alarming resistance of these parasites to traditional anti-malarial treatments there is a pressing need to not only identify new anti-malarial compounds, but also to characterize the effect of compounds known to have an effect on the parasite life cycle. This study reports on effects of kinase inhibitor Purvalanol B administration on the growth and protein expression of Plasmodium falciparum late-stage trophozoites. Methods A SYBR® Green I parasite growth assay was used to measure the IC50 of Purvalanol B with P. falciparum (strain W2). Purvalanol B or DMSO control were applied to synchronized parasites 36 hours post invasion and parasites were incubated for 12 hours. Giemsa-stained blood smears were used to determine the effect of Purvalanol B on parasite growth, global quantitative proteomic analysis was used to examine differences in protein expression between Purvalanol B-treated and control parasites and results were confirmed by qPCR. Results There were no differences in parasitaemia between inhibitor-treated and control parasites. However, the ability of Purvalanol B-treated parasites to form schizonts was significantly reduced. Proteomic analysis detected 76 human proteins and 518 P. falciparum proteins (63 in control cultures only, 56 proteins in Purvalanol B cultures only, and 399 proteins in both cultures). Quantitative analysis of protein extracts revealed eight proteins that were up-regulated in the inhibitor-treated cultures, including several components of the parasite’s proteasome complex and thioredoxin reductase. Two proteins appeared to be down-regulated, including a helicase and an RNA-binding protein. Conclusion Purvalanol B application decreases the ability of late-stage P. falciparum trophozoites to form multinucleated schizonts and up-regulates proteasome subunits and proteins that contribute to redox homeostasis, which may indicate an increase in oxidative stress as a result of inhibitor application. While the efficacy of Purvalanol B is relatively low for use as an anti-malarial therapy, quantitative proteomic analysis may serve as a method of examining the action of drugs on the parasite and indicate the likelihood of future resistance development. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-0655-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristen M Bullard
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639, USA.
| | - Carolyn Broccardo
- Proteomics and Metabolomics Facility, Colorado State University, Fort ColliHns, CO, 80523, USA.
| | - Susan M Keenan
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639, USA.
| |
Collapse
|
10
|
Katt WP, Antonyak MA, Cerione RA. Simultaneously targeting tissue transglutaminase and kidney type glutaminase sensitizes cancer cells to acid toxicity and offers new opportunities for therapeutic intervention. Mol Pharm 2014; 12:46-55. [PMID: 25426679 PMCID: PMC4291776 DOI: 10.1021/mp500405h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most cancer cells undergo characteristic metabolic changes that are commonly referred to as the Warburg effect, with one of the hallmarks being a dramatic increase in the rate of lactic acid fermentation. This leads to the production of protons, which in turn acidifies the microenvironment surrounding tumors. Cancer cells have acquired resistance to acid toxicity, allowing them to survive and grow under these detrimental conditions. Kidney type glutaminase (GLS1), which is responsible for the conversion of glutamine to glutamate, produces ammonia as part of its catalytic activities and has been shown to modulate cellular acidity. In this study, we show that tissue, or type 2, transglutaminase (TG2), a γ-glutamyl transferase that is highly expressed in metastatic cancers and produces ammonia as a byproduct of its catalytic activity, is up-regulated by decreases in cellular pH and helps protect cells from acid-induced cell death. Since both TG2 and GLS1 can similarly function to protect cancer cells, we then proceeded to demonstrate that treatment of a variety of cancer cell types with inhibitors of each of these proteins results in synthetic lethality. The combination doses of the inhibitors induce cell death, while individual treatment with each compound shows little or no ability to kill cells. These results suggest that combination drug treatments that simultaneously target TG2 and GLS1 might provide an effective strategy for killing cancer cells.
Collapse
Affiliation(s)
- William P Katt
- Department of Molecular Medicine and Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853-6401, United States
| | | | | |
Collapse
|
11
|
Curthoys NP, Gstraunthaler G. pH-responsive, gluconeogenic renal epithelial LLC-PK1-FBPase+cells: a versatile in vitro model to study renal proximal tubule metabolism and function. Am J Physiol Renal Physiol 2014; 307:F1-F11. [PMID: 24808535 PMCID: PMC4080158 DOI: 10.1152/ajprenal.00067.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/30/2014] [Indexed: 01/28/2023] Open
Abstract
Ammoniagenesis and gluconeogenesis are prominent metabolic features of the renal proximal convoluted tubule that contribute to maintenance of systemic acid-base homeostasis. Molecular analysis of the mechanisms that mediate the coordinate regulation of the two pathways required development of a cell line that recapitulates these features in vitro. By adapting porcine renal epithelial LLC-PK1 cells to essentially glucose-free medium, a gluconeogenic subline, termed LLC-PK1-FBPase(+) cells, was isolated. LLC-PK1-FBPase(+) cells grow in the absence of hexoses and pentoses and exhibit enhanced oxidative metabolism and increased levels of phosphate-dependent glutaminase. The cells also express significant levels of the key gluconeogenic enzymes, fructose-1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK). Thus the altered phenotype of LLC-PK1-FBPase(+) cells is pleiotropic. Most importantly, when transferred to medium that mimics a pronounced metabolic acidosis (9 mM HCO3 (-), pH 6.9), the LLC-PK1-FBPase(+) cells exhibit a gradual increase in NH4 (+) ion production, accompanied by increases in glutaminase and cytosolic PEPCK mRNA levels and proteins. Therefore, the LLC-PK1-FBPase(+) cells retained in culture many of the metabolic pathways and pH-responsive adaptations characteristic of renal proximal tubules. The molecular mechanisms that mediate enhanced expression of the glutaminase and PEPCK in LLC-PK1-FBPase(+) cells have been extensively reviewed. The present review describes novel properties of this unique cell line and summarizes the molecular mechanisms that have been defined more recently using LLC-PK1-FBPase(+) cells to model the renal proximal tubule. It also identifies future studies that could be performed using these cells.
Collapse
Affiliation(s)
- Norman P Curthoys
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado; and
| | | |
Collapse
|
12
|
Webb KM, Broccardo CJ, Prenni JE, Wintermantel WM. Proteomic Profiling of Sugar Beet ( Beta vulgaris) Leaves during Rhizomania Compatible Interactions. Proteomes 2014; 2:208-223. [PMID: 28250378 PMCID: PMC5302737 DOI: 10.3390/proteomes2020208] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/15/2014] [Accepted: 03/27/2014] [Indexed: 11/16/2022] Open
Abstract
Rhizomania, caused by Beet necrotic yellow vein virus (BNYVV), severely impacts sugar beet (Beta vulgaris) production throughout the world, and is widely prevalent in most production regions. Initial efforts to characterize proteome changes focused primarily on identifying putative host factors that elicit resistant interactions with BNYVV, but as resistance breaking strains become more prevalent, effective disease control strategies will require the application of novel methods based on better understanding of disease susceptibility and symptom development. Herein, proteomic profiling was conducted on susceptible sugar beet, infected with two strains of BNYVV, to clarify the types of proteins prevalent during compatible virus-host plant interactions. Total protein was extracted from sugar beet leaf tissue infected with BNYVV, quantified, and analyzed by mass spectrometry. A total of 203 proteins were confidently identified, with a predominance of proteins associated with photosynthesis and energy, metabolism, and response to stimulus. Many proteins identified in this study are typically associated with systemic acquired resistance and general plant defense responses. These results expand on relatively limited proteomic data available for sugar beet and provide the ground work for additional studies focused on understanding the interaction of BNYVV with sugar beet.
Collapse
Affiliation(s)
- Kimberly M Webb
- USDA-ARS-SBRU, Crops Research Laboratory, 1701 Centre Ave., Fort Collins, CO 80526, USA.
| | - Carolyn J Broccardo
- Proteomics and Metabolomics Facility, Colorado State University, C130 Microbiology, 2021 Campus Delivery, Fort Collins, CO 80523, USA.
| | - Jessica E Prenni
- Proteomics and Metabolomics Facility, Colorado State University, C130 Microbiology, 2021 Campus Delivery, Fort Collins, CO 80523, USA.
| | | |
Collapse
|
13
|
Freund DM, Prenni JE, Curthoys NP. Proteomic profiling of the mitochondrial inner membrane of rat renal proximal convoluted tubules. Proteomics 2014; 13:2495-9. [PMID: 23780708 DOI: 10.1002/pmic.201200558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/26/2013] [Accepted: 05/27/2013] [Indexed: 11/08/2022]
Abstract
The proximal convoluted tubule is the primary site of renal fluid, electrolyte, and nutrient reabsorption, processes that consume large amounts of adenosine-5'-triphosphate. Previous proteomic studies have profiled the adaptions that occur in this segment of the nephron in response to the onset of metabolic acidosis. To extend this analysis, a proteomic workflow was developed to characterize the proteome of the mitochondrial inner membrane of the rat renal proximal convoluted tubule. Separation by LC coupled with analysis by MS/MS (LC-MS/MS) confidently identified 206 proteins in the combined samples. Further proteomic analysis identified 14 peptides that contain an N-ɛ-acetyl-lysine, seven of which are novel sites. This study provides the first proteomic profile of the mitochondrial inner membrane proteome of this segment of the rat renal nephron. The MS data have been deposited in the ProteomeXchange with the identifier PXD000121.
Collapse
Affiliation(s)
- Dana M Freund
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | | | | |
Collapse
|
14
|
Schauer KL, Freund DM, Prenni JE, Curthoys NP. Proteomic profiling and pathway analysis of the response of rat renal proximal convoluted tubules to metabolic acidosis. Am J Physiol Renal Physiol 2013; 305:F628-40. [PMID: 23804448 PMCID: PMC3761203 DOI: 10.1152/ajprenal.00210.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/13/2013] [Indexed: 01/10/2023] Open
Abstract
Metabolic acidosis is a relatively common pathological condition that is defined as a decrease in blood pH and bicarbonate concentration. The renal proximal convoluted tubule responds to this condition by increasing the extraction of plasma glutamine and activating ammoniagenesis and gluconeogenesis. The combined processes increase the excretion of acid and produce bicarbonate ions that are added to the blood to partially restore acid-base homeostasis. Only a few cytosolic proteins, such as phosphoenolpyruvate carboxykinase, have been determined to play a role in the renal response to metabolic acidosis. Therefore, further analysis was performed to better characterize the response of the cytosolic proteome. Proximal convoluted tubule cells were isolated from rat kidney cortex at various times after onset of acidosis and fractionated to separate the soluble cytosolic proteins from the remainder of the cellular components. The cytosolic proteins were analyzed using two-dimensional liquid chromatography and tandem mass spectrometry (MS/MS). Spectral counting along with average MS/MS total ion current were used to quantify temporal changes in relative protein abundance. In all, 461 proteins were confidently identified, of which 24 exhibited statistically significant changes in abundance. To validate these techniques, several of the observed abundance changes were confirmed by Western blotting. Data from the cytosolic fractions were then combined with previous proteomic data, and pathway analyses were performed to identify the primary pathways that are activated or inhibited in the proximal convoluted tubule during the onset of metabolic acidosis.
Collapse
Affiliation(s)
- Kevin L Schauer
- Dept. of Biochemistry and Molecular Biology, Colorado State Univ., Campus Delivery 1870, Ft. Collins, CO 80523-1870, USA
| | | | | | | |
Collapse
|
15
|
Abstract
The human kidneys produce approximately 160-170 L of ultrafiltrate per day. The proximal tubule contributes to fluid, electrolyte, and nutrient homeostasis by reabsorbing approximately 60%-70% of the water and NaCl, a greater proportion of the NaHCO3, and nearly all of the nutrients in the ultrafiltrate. The proximal tubule is also the site of active solute secretion, hormone production, and many of the metabolic functions of the kidney. This review discusses the transport of NaCl, NaHCO3, glucose, amino acids, and two clinically important anions, citrate and phosphate. NaCl and the accompanying water are reabsorbed in an isotonic fashion. The energy that drives this process is generated largely by the basolateral Na(+)/K(+)-ATPase, which creates an inward negative membrane potential and Na(+)-gradient. Various Na(+)-dependent countertransporters and cotransporters use the energy of this gradient to promote the uptake of HCO3 (-) and various solutes, respectively. A Na(+)-dependent cotransporter mediates the movement of HCO3 (-) across the basolateral membrane, whereas various Na(+)-independent passive transporters accomplish the export of various other solutes. To illustrate its homeostatic feat, the proximal tubule alters its metabolism and transport properties in response to metabolic acidosis. The uptake and catabolism of glutamine and citrate are increased during acidosis, whereas the recovery of phosphate from the ultrafiltrate is decreased. The increased catabolism of glutamine results in increased ammoniagenesis and gluconeogenesis. Excretion of the resulting ammonium ions facilitates the excretion of acid, whereas the combined pathways accomplish the net production of HCO3 (-) ions that are added to the plasma to partially restore acid-base balance.
Collapse
Affiliation(s)
- Norman P Curthoys
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado; and
| | - Orson W Moe
- Departments of Internal Medicine and Physiology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
16
|
Schauer KL, Broccardo CJ, Webb KM, Covey PA, Prenni JE. Mass spectrometry contamination from Tinuvin 770, a common additive in laboratory plastics. J Biomol Tech 2013; 24:57-61. [PMID: 23814497 DOI: 10.7171/jbt.13-2402-004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The superior sensitivity of current mass spectrometers makes them prone to contamination issues, which can have deleterious effects on sample analysis. Here, bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate (marketed under the name Tinuvin 770) is identified as a major contaminant in applications using liquid chromatography coupled with mass spectrometry (LC-MS). Tinuvin 770 is often added to laboratory and medical plastics as a UV stabilizer. One particular lot of microcentrifuge tubes was found to have an excess of this compound that would leach into samples and drastically interfere with LC-MS data acquisition. Further analysis found that Tinuvin 770 readily leached into polar and nonpolar solvents from the contaminated tube lot. Efforts to remove Tinuvin 770 from contaminated samples were unsuccessful. A prescreening method using MALDI-TOF MS is presented to prevent system contamination and sample loss.
Collapse
Affiliation(s)
- Kevin L Schauer
- Colorado State University Proteomics and Metabolomics Facility, Fort Collins, Colorado 80523, USA
| | | | | | | | | |
Collapse
|
17
|
Freund DM, Prenni JE. Improved detection of quantitative differences using a combination of spectral counting and MS/MS total ion current. J Proteome Res 2013; 12:1996-2004. [PMID: 23445521 DOI: 10.1021/pr400100k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Label-free quantitative strategies are commonly used in shotgun proteomics to detect differences in protein abundance between biological sample groups. Here, we have employed a combination of two such approaches, spectral counting (SpC) and average MS/MS total ion current (MS(2) TIC), for the analysis of rat kidney mitochondria in response to metabolic acidosis. In total, 49 proteins were observed to be significantly altered in response to metabolic acidosis (p-value < 0.05). Of these, 32 proteins were uniquely observed as significantly different by SpC, 14 by MS(2) TIC, and only 3 by both approaches. Western blot analysis was performed on a subset of these proteins to validate the observed abundance differences. This study illustrates the utility and ease of combining these two label-free quantitative approaches to increase the number of detected protein abundance differences in the shotgun analysis of complex biological samples.
Collapse
Affiliation(s)
- Dana M Freund
- Department of Biochemistry and Molecular Biology and Proteomics and Metabolomics Facility, Colorado State University , Fort Collins, Colorado 80523, United States
| | | |
Collapse
|