1
|
Zuo Y, Li T, Yang S, Chen X, Tao X, Dong D, Liu F, Zhu Y. Contribution and expression of renal drug transporters in renal cell carcinoma. Front Pharmacol 2025; 15:1466877. [PMID: 40034145 PMCID: PMC11873565 DOI: 10.3389/fphar.2024.1466877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/23/2024] [Indexed: 03/05/2025] Open
Abstract
Renal cell carcinoma (RCC) is a common substantive tumor. According to incomplete statistics, RCC incidence accounts for approximately 90% of renal malignant tumors, and is the second most prevalent major malignant tumor in the genitourinary system, following bladder cancer. Only 10%-15% of chemotherapy regimens for metastatic renal cell carcinoma (mRCC) are effective, and mRCC has a high mortality. Drug transporters are proteins located on the cell membrane that are responsible for the absorption, distribution, and excretion of drugs. Lots of drug transporters are expressed in the kidneys. Changes in carrier function weaken balance, cause disease, or modify the effectiveness of drug treatment. The changes in expression of these transporters during cancer pathology results in multi-drug resistance to cancer chemotherapy. In the treatment of RCC, the study of drug transporters helps to optimize treatment regimens, improve therapeutic effects, and reduce drug side effects. In this review, we summarize advances in the role of renal drug transporters in the genesis, progression, and treatment of RCC.
Collapse
Affiliation(s)
- Yawen Zuo
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tong Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuyang Chen
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fang Liu
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Cai L, Wang D, Gui T, Wang X, Zhao L, Boron WF, Chen LM, Liu Y. Dietary sodium enhances the expression of SLC4 family transporters, IRBIT, L-IRBIT, and PP1 in rat kidney: Insights into the molecular mechanism for renal sodium handling. Front Physiol 2023; 14:1154694. [PMID: 37082243 PMCID: PMC10111226 DOI: 10.3389/fphys.2023.1154694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/24/2023] [Indexed: 04/07/2023] Open
Abstract
The kidney plays a central role in maintaining the fluid and electrolyte homeostasis in the body. Bicarbonate transporters NBCn1, NBCn2, and AE2 are expressed at the basolateral membrane of the medullary thick ascending limb (mTAL). In a previous study, NBCn1, NBCn2, and AE2 are proposed to play as a regulatory pathway to decrease NaCl reabsorption in the mTAL under high salt condition. When heterologously expressed, the activity of these transporters could be stimulated by the InsP3R binding protein released with inositol 1,4,5-trisphosphate (IRBIT), L-IRBIT (collectively the IRBITs), or protein phosphatase PP1. In the present study, we characterized by immunofluorescence the expression and localization of the IRBITs, and PP1 in rat kidney. Our data showed that the IRBITs were predominantly expressed from the mTAL through the distal renal tubules. PP1 was predominantly expressed in the TAL, but is also present in high abundance from the distal convoluted tubule through the medullary collecting duct. Western blotting analyses showed that the abundances of NBCn1, NBCn2, and AE2 as well as the IRBITs and PP1 were greatly upregulated in rat kidney by dietary sodium. Co-immunoprecipitation study provided the evidence for protein interaction between NBCn1 and L-IRBIT in rat kidney. Taken together, our data suggest that the IRBITs and PP1 play an important role in sodium handling in the kidney. We propose that the IRBITs and PP1 stimulates NBCn1, NBCn2, and AE2 in the basolateral mTAL to inhibit sodium reabsorption under high sodium condition. Our study provides important insights into understanding the molecular mechanism for the regulation of sodium homeostasis in the body.
Collapse
Affiliation(s)
- Lu Cai
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dengke Wang
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Tianxiang Gui
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingyu Zhao
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Walter F. Boron
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Li-Ming Chen, ; Ying Liu,
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Li-Ming Chen, ; Ying Liu,
| |
Collapse
|
3
|
Raines NH, Leone DA, O’Callaghan-Gordo C, Ramirez-Rubio O, Amador JJ, Lopez Pilarte D, Delgado IS, Leibler JH, Embade N, Gil-Redondo R, Bruzzone C, Bizkarguenaga M, Scammell MK, Parikh SM, Millet O, Brooks DR, Friedman DJ. Metabolic Features of Increased Gut Permeability, Inflammation, and Altered Energy Metabolism Distinguish Agricultural Workers at Risk for Mesoamerican Nephropathy. Metabolites 2023; 13:325. [PMID: 36984765 PMCID: PMC10058628 DOI: 10.3390/metabo13030325] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Mesoamerican nephropathy (MeN) is a form of chronic kidney disease found predominantly in young men in Mesoamerica. Strenuous agricultural labor is a consistent risk factor for MeN, but the pathophysiologic mechanism leading to disease is poorly understood. We compared the urine metabolome among men in Nicaragua engaged in sugarcane harvest and seed cutting (n = 117), a group at high risk for MeN, against three referents: Nicaraguans working less strenuous jobs at the same sugarcane plantations (n = 78); Nicaraguans performing non-agricultural work (n = 102); and agricultural workers in Spain (n = 78). Using proton nuclear magnetic resonance, we identified 136 metabolites among participants. Our non-hypothesis-based approach identified distinguishing urine metabolic features in the high-risk group, revealing increased levels of hippurate and other gut-derived metabolites and decreased metabolites related to central energy metabolism when compared to referent groups. Our complementary hypothesis-based approach, focused on nicotinamide adenine dinucleotide (NAD+) related metabolites, and revealed a higher kynurenate/tryptophan ratio in the high-risk group (p = 0.001), consistent with a heightened inflammatory state. Workers in high-risk occupations are distinguishable by urinary metabolic features that suggest increased gut permeability, inflammation, and altered energy metabolism. Further study is needed to explore the pathophysiologic implications of these findings.
Collapse
Affiliation(s)
- Nathan H. Raines
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dominick A. Leone
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Cristina O’Callaghan-Gordo
- Faculty of Health Sciences, Universitat Oberta de Catalunya, 08018 Barcelona, Spain
- ISGlobal, Barcelona Institute for Global Health, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
| | - Oriana Ramirez-Rubio
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
- ISGlobal, Barcelona Institute for Global Health, 08003 Barcelona, Spain
| | - Juan José Amador
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Damaris Lopez Pilarte
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Iris S. Delgado
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Jessica H. Leibler
- Department of Environmental Health, Boston University School of Public Health, Boston, MA 02118, USA
| | - Nieves Embade
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Rubén Gil-Redondo
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Chiara Bruzzone
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Maider Bizkarguenaga
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Madeleine K. Scammell
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - Samir M. Parikh
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Daniel R. Brooks
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| | - David J. Friedman
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
4
|
Diori Karidio I, Sanlier SH. Reviewing cancer's biology: an eclectic approach. J Egypt Natl Canc Inst 2021; 33:32. [PMID: 34719756 DOI: 10.1186/s43046-021-00088-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 09/11/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer refers to a group of some of the worldwide most diagnosed and deadliest pathophysiological conditions that conquered researchers' attention for decades and yet begs for more questions for a full comprehension of its complex cellular and molecular pathology. MAIN BODY The disease conditions are commonly characterized by unrestricted cell proliferation and dysfunctional replicative senescence pathways. In fact, the cell cycle operates under the rigorous control of complex signaling pathways involving cyclins and cyclin-dependent kinases assumed to be specific to each phase of the cycle. At each of these checkpoints, the cell is checked essentially for its DNA integrity. Genetic defects observed in these molecules (i.e., cyclins, cyclin-dependent kinases) are common features of cancer cells. Nevertheless, each cancer is different concerning its molecular and cellular etiology. These could range from the genetic defects mechanisms and/or the environmental conditions favoring epigenetically harbored homeostasis driving tumorigenesis alongside with the intratumoral heterogeneity with respect to the model that the tumor follows. CONCLUSIONS This review is not meant to be an exhaustive interpretation of carcinogenesis but to summarize some basic features of the molecular etiology of cancer and the intratumoral heterogeneity models that eventually bolster anticancer drug resistance for a more efficient design of drug targeting the pitfalls of the models.
Collapse
Affiliation(s)
- Ibrahim Diori Karidio
- Department of Biochemistry, Faculty of Science, E Block, Ege University, Erzene Mahallesi, Bornova, 35040, Izmir, Turkey.
| | - Senay Hamarat Sanlier
- Department of Biochemistry, Faculty of Science, E Block, Ege University, Erzene Mahallesi, Bornova, 35040, Izmir, Turkey.,ARGEFAR, Faculty of Medicine, Ege University, Bornova, 35040, Izmir, Turkey
| |
Collapse
|
5
|
Harris AN, Castro RA, Lee HW, Verlander JW, Weiner ID. Role of the renal androgen receptor in sex differences in ammonia metabolism. Am J Physiol Renal Physiol 2021; 321:F629-F644. [PMID: 34605272 PMCID: PMC8616601 DOI: 10.1152/ajprenal.00260.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/22/2022] Open
Abstract
There are sex differences in renal ammonia metabolism and structure, many of which are mediated by testosterone. The goal of the present study was to determine the role of renal expression of testosterone's canonical receptor, androgen receptor (AR), in these sexual dimorphisms. We studied mice with kidney-specific AR deletion [KS-AR-knockout (KO)] generated using Cre/loxP techniques; control mice were Cre-negative littermates (wild type). In male but not female mice, KS-AR-KO increased ammonia excretion, which eliminated sex differences. Although renal structural size typically parallel ammonia excretion, KS-AR-KO decreased kidney size, cortical proximal tubule volume density, and cortical proximal tubule cell height in males-neither were altered in females and collecting duct volume density was unaltered in both sexes. Analysis of key protein involved in ammonia handling showed in male mice that KS-AR-KO increased both phosphoenolpyruvate carboxykinase (PEPCK) and Na+-K+-2Cl- cotransporter (NKCC2) expression and decreased Na+/H+ exchanger isoform 3 (NHE3) and electrogenic Na+-bicarbonate cotransporter 1 (NBCe1)-A expression. In female mice, KS-AR-KO did not alter these parameters. These effects occurred even though KS-AR-KO did not alter plasma testosterone, food intake, or serum Na+, K+, or [Formula: see text] significantly in either sex. In conclusion, AR-dependent signaling pathways in male, but not female, kidneys regulate PEPCK and NKCC2 expression and lead to the sexual differences in ammonia excretion. Opposing effects on NHE3 and NBCe1-A expression likely limit the magnitude of ammonia excretion changes. As AR is not present in the thick ascending limb, the effect of KS-AR-KO on NKCC2 expression is indirect. Finally, AR mediates the greater kidney size and proximal tubule volume density in male compared with female mice.NEW & NOTEWORTHY Sexual dimorphisms in ammonia metabolism involve androgen receptor (AR)-dependent signaling pathways in male, but not female, kidneys that lead to altered proximal tubule (PT), phosphoenolpyruvate carboxykinase, and thick ascending limb Na+-K+-2Cl- cotransporter expression. Adaptive responses in Na+/H+ exchanger 3 and electrogenic Na+-bicarbonate cotransporter 1-A expression limit the magnitude of the effect on ammonia excretion. Finally, the greater kidney size and PT volume density in male mice is the result of PT androgen signaling through AR.
Collapse
Affiliation(s)
- Autumn N Harris
- Department of Small Animal Clinical Science, University of Florida College of Veterinary Medicine, Gainesville, Florida
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Rebeca A Castro
- Department of Small Animal Clinical Science, University of Florida College of Veterinary Medicine, Gainesville, Florida
| | - Hyun-Wook Lee
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
- Nephrology and Hypertension Section, Gainesville Veterans Administration Medical Center, Gainesville, Florida
| |
Collapse
|
6
|
Parker SJ, Encarnación-Rosado J, Hollinshead KER, Hollinshead DM, Ash LJ, Rossi JAK, Lin EY, Sohn ASW, Philips MR, Jones DR, Kimmelman AC. Spontaneous hydrolysis and spurious metabolic properties of α-ketoglutarate esters. Nat Commun 2021; 12:4905. [PMID: 34385458 PMCID: PMC8361106 DOI: 10.1038/s41467-021-25228-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 07/27/2021] [Indexed: 12/19/2022] Open
Abstract
α-ketoglutarate (KG), also referred to as 2-oxoglutarate, is a key intermediate of cellular metabolism with pleiotropic functions. Cell-permeable esterified analogs are widely used to study how KG fuels bioenergetic and amino acid metabolism and DNA, RNA, and protein hydroxylation reactions, as cellular membranes are thought to be impermeable to KG. Here we show that esterified KG analogs rapidly hydrolyze in aqueous media, yielding KG that, in contrast to prevailing assumptions, imports into many cell lines. Esterified KG analogs exhibit spurious KG-independent effects on cellular metabolism, including extracellular acidification, arising from rapid hydrolysis and de-protonation of α-ketoesters, and significant analog-specific inhibitory effects on glycolysis or mitochondrial respiration. We observe that imported KG decarboxylates to succinate in the cytosol and contributes minimally to mitochondrial metabolism in many cell lines cultured in normal conditions. These findings demonstrate that nuclear and cytosolic KG-dependent reactions may derive KG from functionally distinct subcellular pools and sources.
Collapse
Affiliation(s)
- Seth J Parker
- Department of Radiation Oncology, New York University School of Medicine, New York, NY, USA. .,Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA. .,Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
| | - Joel Encarnación-Rosado
- Department of Radiation Oncology, New York University School of Medicine, New York, NY, USA.,Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Kate E R Hollinshead
- Department of Radiation Oncology, New York University School of Medicine, New York, NY, USA.,Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | | | - Leonard J Ash
- Division of Advanced Research Technologies, New York University School of Medicine, New York, NY, USA
| | - Juan A K Rossi
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Elaine Y Lin
- Department of Radiation Oncology, New York University School of Medicine, New York, NY, USA.,Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Albert S W Sohn
- Department of Radiation Oncology, New York University School of Medicine, New York, NY, USA.,Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Mark R Philips
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Drew R Jones
- Division of Advanced Research Technologies, New York University School of Medicine, New York, NY, USA.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Alec C Kimmelman
- Department of Radiation Oncology, New York University School of Medicine, New York, NY, USA. .,Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Pizzagalli MD, Bensimon A, Superti‐Furga G. A guide to plasma membrane solute carrier proteins. FEBS J 2021; 288:2784-2835. [PMID: 32810346 PMCID: PMC8246967 DOI: 10.1111/febs.15531] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
This review aims to serve as an introduction to the solute carrier proteins (SLC) superfamily of transporter proteins and their roles in human cells. The SLC superfamily currently includes 458 transport proteins in 65 families that carry a wide variety of substances across cellular membranes. While members of this superfamily are found throughout cellular organelles, this review focuses on transporters expressed at the plasma membrane. At the cell surface, SLC proteins may be viewed as gatekeepers of the cellular milieu, dynamically responding to different metabolic states. With altered metabolism being one of the hallmarks of cancer, we also briefly review the roles that surface SLC proteins play in the development and progression of cancer through their influence on regulating metabolism and environmental conditions.
Collapse
Affiliation(s)
- Mattia D. Pizzagalli
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Giulio Superti‐Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaAustria
| |
Collapse
|
8
|
Single-Cell Transcriptomics Reveal Immune Mechanisms of the Onset and Progression of IgA Nephropathy. Cell Rep 2020; 33:108525. [PMID: 33357427 DOI: 10.1016/j.celrep.2020.108525] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/07/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
IgA nephropathy (IgAN) is the leading cause of kidney failure due to an incomplete understanding of its pathogenesis. We perform single-cell RNA sequencing (RNA-seq) on kidneys and CD14+ peripheral blood mononuclear cells (PBMCs) collected from IgAN and normal samples. In IgAN, upregulation of JCHAIN in mesangial cells provides insight into the trigger mechanism for the dimerization and deposition of IgA1 in situ. The pathological mesangium also demonstrates a prominent inflammatory signature and increased cell-cell communication with other renal parenchymal cells and immune cells, suggesting disease progress from the mesangium to the entire kidney. Specific gene expression of kidney-resident macrophages and CD8+ T cells further indicates abnormal regulation associated with proliferation and inflammation. A transitional cell type among intercalated cells with fibrosis signatures is identified, suggesting an adverse outcome of interstitial fibrosis. Altogether, we systematically analyze the molecular events in the onset and progression of IgAN, providing a promising landscape for disease treatment.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Both chronic kidney disease (CKD) and kidney stones are major public health problems, which are closely interrelated. Recurrent kidney stones predispose to CKD although CKD seems to decrease risk of further kidney stone formation. Herein, we review new information of this interrelationship. RECENT FINDINGS Several epidemiological studies in the past have shown an association between history of kidney stones and risk for CKD and CKD progression. Recent literature supports this concept and it is reviewed in this article. The issue of whether CKD protects against new kidney stone formation remains unsettled and there is no recent literature addressing it. In relation to stone risk factors in CKD, there are several interesting new articles that discuss mechanisms of hypocitraturia in early CKD before overt metabolic acidosis. Since hypocitraturia is an important risk factor for kidney stone formation we addressed these new data in detail. There are also new data supporting urinary oxalate excretion as a predictor of CKD progression. SUMMARY It seems clear that recurrent kidney stones should be avoided not only because of their immediate clinical manifestations but also because of their long-term predisposition to CKD progression. Mechanisms leading to hypocitraturia in early CKD still remain controversial.
Collapse
|
10
|
Harris AN, Lee HW, Verlander JW, Weiner ID. Testosterone modulates renal ammonia metabolism. Am J Physiol Renal Physiol 2020; 318:F922-F935. [PMID: 32116019 DOI: 10.1152/ajprenal.00560.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
There are substantial sex differences in renal structure and ammonia metabolism that correlate with differences in expression of proteins involved in ammonia generation and transport. This study determined the role of testis-derived testosterone in these differences. We studied 4-mo-old male C57BL/6 mice 4 and 8 wk after either bilateral orchiectomy (ORCH) or sham-operated control surgery and determined the effect of testosterone replacement to reverse the effects of ORCH. Finally, we determined the cellular expression of androgen receptor (AR), testosterone's canonical target receptor. ORCH decreased kidney and proximal tubule size, and testosterone replacement reversed this effect. ORCH increased ammonia excretion in a testosterone-dependent fashion; this occurred despite similar food intake, which is the primary component of endogenous acid production. ORCH increased expression of both phosphoenolpyruvate, a major ammonia-generating protein, and Na+-K+-2Cl- cotransporter, which mediates thick ascending limb ammonia reabsorption; these changes were reversed with testosterone replacement. Orchiectomy also decreased expression of Na+/H+ exchanger isoform 3, which mediates proximal tubule ammonia secretion, in a testosterone-dependent pattern. Finally, ARs are expressed throughout the proximal tubule in both the male and female kidney. Testosterone, possibly acting through ARs, has dramatic effects on kidney and proximal tubule size and decreases ammonia excretion through its effects on several key proteins involved in ammonia metabolism.
Collapse
Affiliation(s)
- Autumn N Harris
- Deparment of Small Animal Clinical Science, University of Florida College of Veterinary Medicine, Gainesville, Florida.,Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Hyun-Wook Lee
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida.,Nephrology and Hypertension Section, Gainesville Veterans Administration Medical Center, Gainesville, Florida
| |
Collapse
|
11
|
Lee HW, Harris AN, Romero MF, Welling PA, Wingo CS, Verlander JW, Weiner ID. NBCe1-A is required for the renal ammonia and K + response to hypokalemia. Am J Physiol Renal Physiol 2019; 318:F402-F421. [PMID: 31841393 DOI: 10.1152/ajprenal.00481.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hypokalemia increases ammonia excretion and decreases K+ excretion. The present study examined the role of the proximal tubule protein NBCe1-A in these responses. We studied mice with Na+-bicarbonate cotransporter electrogenic, isoform 1, splice variant A (NBCe1-A) deletion [knockout (KO) mice] and their wild-type (WT) littermates were provided either K+ control or K+-free diet. We also used tissue sections to determine the effect of extracellular ammonia on NaCl cotransporter (NCC) phosphorylation. The K+-free diet significantly increased proximal tubule NBCe1-A and ammonia excretion in WT mice, and NBCe1-A deletion blunted the ammonia excretion response. NBCe1-A deletion inhibited the ammoniagenic/ammonia recycling enzyme response in the cortical proximal tubule (PT), where NBCe1-A is present in WT mice. In the outer medulla, where NBCe1-A is not present, the PT ammonia metabolism response was accentuated by NBCe1-A deletion. KO mice developed more severe hypokalemia and had greater urinary K+ excretion during the K+-free diet than did WT mice. This was associated with blunting of the hypokalemia-induced change in NCC phosphorylation. NBCe1-A KO mice have systemic metabolic acidosis, but experimentally induced metabolic acidosis did not alter NCC phosphorylation. Although KO mice have impaired ammonia metabolism, experiments in tissue sections showed that lack of ammonia does impair NCC phosphorylation. Finally, urinary aldosterone was greater in KO mice than in WT mice, but neither expression of epithelial Na+ channel α-, β-, and γ-subunits nor of H+-K+-ATPase α1- or α2-subunits correlated with changes in urinary K+. We conclude that NBCe1-A is critical for the effect of diet-induced hypokalemia to increase cortical proximal tubule ammonia generation and for the expected decrease in urinary K+ excretion.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Autumn N Harris
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Michael F Romero
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Paul A Welling
- Nephrology Division, Departments of Medicine and Physiology, Johns Hopkins Medical School, Baltimore, Maryland
| | - Charles S Wingo
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida.,Nephrology and Hypertension Section, Gainesville Veterans Affairs Medical Center, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida.,Nephrology and Hypertension Section, Gainesville Veterans Affairs Medical Center, Gainesville, Florida
| |
Collapse
|
12
|
Harris AN, Lee HW, Fang L, Verlander JW, Weiner ID. Differences in acidosis-stimulated renal ammonia metabolism in the male and female kidney. Am J Physiol Renal Physiol 2019; 317:F890-F905. [PMID: 31390234 DOI: 10.1152/ajprenal.00244.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Renal ammonia excretion is a critical component of acid-base homeostasis, and changes in ammonia excretion are the predominant component of increased net acid excretion in response to metabolic acidosis. We recently reported substantial sex-dependent differences in basal ammonia metabolism that correlate with sex-dependent differences in renal structure and expression of key proteins involved in ammonia metabolism. The purpose of the present study was to investigate the effect of sex on the renal ammonia response to an exogenous acid load. We studied 4-mo-old C57BL/6 mice. Ammonia excretion, which was less in male mice under basal conditions, increased in response to acid loading to a greater extent in male mice, such that maximal ammonia excretion did not differ between the sexes. Fundamental structural sex differences in the nonacid-loaded kidney persisted after acid loading, with less cortical proximal tubule volume density in the female kidney than in the male kidney, whereas collecting duct volume density was greater in the female kidney. To further investigate sex-dependent differences in the response to acid loading, we examined the expression of proteins involved in ammonia metabolism. The change in expression of phosphoenolpyruvate carboxykinase and Rh family B glycoprotein with acid loading was greater in male mice than in female mice, whereas Na+-K+-2Cl- cotransporter and inner stripe of the outer medulla intercalated cell Rh family C glycoprotein expression were significantly greater in female mice than in male mice. There was no significant sex difference in glutamine synthetase, Na+/H+ exchanger isoform 3, or electrogenic Na+-bicarbonate cotransporter 1 variant A protein expression in response to acid loading. We conclude that substantial sex-dependent differences in the renal ammonia response to acid loading enable a similar maximum ammonia excretion response.
Collapse
Affiliation(s)
- Autumn N Harris
- Department of Small Animal Clinical Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida.,Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Hyun-Wook Lee
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Lijuan Fang
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida.,Nephrology and Hypertension Section, Gainesville Veterans Administration Medical Center, Gainesville, Florida
| |
Collapse
|
13
|
Kostidis S, Bank JR, Soonawala D, Nevedomskaya E, van Kooten C, Mayboroda OA, de Fijter JW. Urinary metabolites predict prolonged duration of delayed graft function in DCD kidney transplant recipients. Am J Transplant 2019; 19:110-122. [PMID: 29786954 DOI: 10.1111/ajt.14941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 01/25/2023]
Abstract
Extending kidney donor criteria, including donation after circulatory death (DCD), has resulted in increased rates of delayed graft function (DGF) and primary nonfunction. Here, we used Nuclear Magnetic Resonance (NMR) spectroscopy to analyze the urinary metabolome of DCD transplant recipients at multiple time points (days 10, 42, 180, and 360 after transplantation). The aim was to identify markers that predict prolonged duration of functional DGF (fDGF). Forty-seven metabolites were quantified and their levels were evaluated in relation to fDGF. Samples obtained at day 10 had a different profile than samples obtained at the other time points. Furthermore, at day 10 there was a statistically significant increase in eight metabolites and a decrease in six metabolites in the group with fDGF (N = 53) vis-à-vis the group without fDGF (N = 22). In those with prolonged fDGF (≥21 days) (N = 17) urine lactate was significantly higher and pyroglutamate lower than in those with limited fDGF (<21 days) (N = 36). In order to further distinguish prolonged fDGF from limited fDGF, the ratios of all metabolites were analyzed. In a logistic regression analysis, the sum of branched-chain amino acids (BCAAs) over pyroglutamate and lactate over fumarate, predicted prolonged fDGF with an AUC of 0.85. In conclusion, kidney transplant recipients with fDGF can be identified based on their altered urinary metabolome. Furthermore, two ratios of urinary metabolites, lactate/fumarate and BCAAs/pyroglutamate, adequately predict prolonged duration of fDGF.
Collapse
Affiliation(s)
- S Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - J R Bank
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - D Soonawala
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - E Nevedomskaya
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - C van Kooten
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - O A Mayboroda
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - J W de Fijter
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
14
|
Harris AN, Lee HW, Osis G, Fang L, Webster KL, Verlander JW, Weiner ID. Differences in renal ammonia metabolism in male and female kidney. Am J Physiol Renal Physiol 2018; 315:F211-F222. [PMID: 29561185 DOI: 10.1152/ajprenal.00084.2018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Renal ammonia metabolism has a major role in the maintenance of acid-base homeostasis. Sex differences are well recognized as an important biological variable in many aspects of renal function, including fluid and electrolyte metabolism. However, sex differences in renal ammonia metabolism have not been previously reported. Therefore, the purpose of the current study was to investigate sex differences in renal ammonia metabolism. We studied 4-mo-old wild-type C57BL/6 mice fed a normal diet. Despite similar levels of food intake, and, thus, protein intake, which is the primary determinant of endogenous acid production, female mice excreted greater amounts of ammonia, but not titratable acids, than did male mice. This difference in ammonia metabolism was associated with fundamental structural differences between the female and male kidney. In the female mouse kidney, proximal tubules account for a lower percentage of the renal cortical parenchyma compared with the male kidney, whereas collecting ducts account for a greater percentage of the renal parenchyma than in male kidneys. To further investigate the mechanism(s) behind the greater ammonia excretion in female mice, we examined differences in the expression of proteins involved in renal ammonia metabolism and transport. Greater basal ammonia excretion in females was associated with greater expression of PEPCK, glutamine synthetase, NKCC2, Rhbg, and Rhcg than was observed in male mice. We conclude that there are sex differences in basal ammonia metabolism that involve both renal structural differences and differences in expression of proteins involved in ammonia metabolism.
Collapse
Affiliation(s)
- Autumn N Harris
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Hyun-Wook Lee
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Gunars Osis
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Lijuan Fang
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Kierstin L Webster
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - Jill W Verlander
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine , Gainesville, Florida
| | - I David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, University of Florida College of Medicine , Gainesville, Florida.,Nephrology and Hypertension Section, Gainesville Veterans Administration Medical Center , Gainesville, Florida
| |
Collapse
|
15
|
Lin YY, Yu MW, Lin SM, Lee SD, Chen CL, Chen DS, Chen PJ. Genome-wide association analysis identifies a GLUL haplotype for familial hepatitis B virus-related hepatocellular carcinoma. Cancer 2017; 123:3966-3976. [PMID: 28662289 DOI: 10.1002/cncr.30851] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND A family history of liver cancer increases the risk of developing hepatocellular carcinoma (HCC) by 2-fold to 10-fold among patients with chronic hepatitis B virus (HBV). Previous genome-wide association studies have identified many possible susceptible loci associated with sporadic HBV-related HCC. However, despite family history being a well-known risk factor for HBV-related HCC, to the authors' knowledge its genetic mechanisms and associating loci remain largely unknown or unexplored, most likely due to the relative rarity of familial HCC and the difficulty of sample collection. METHODS The authors conducted a genome-wide association study with 139 male cases with familial HBV-related HCC and 139 non-HCC male controls with chronic HBV. The results were corroborated further with an independent cohort of 101 patients with familial HBV-related HCC and comparison with both the 1000 Genomes Project and the Taiwan Biobank. RESULTS A total of 51 risk single-nucleotide polymorphisms (P≤1E-04) were identified in the association analyses, which included 2 clusters of associated single-nucleotide polymorphisms and haplotypes at 1q25.3 (glutamate-ammonia ligase [GLUL]/transmembrane epididymal protein 1 [TEDDM1]/long intergenic non-protein-coding RNA 272 [LINC00272]/regulator of G-protein signaling-like 1 [RGSL1]) and 17q11.2 (solute carrier family 13 member 2 [SLC13A2]/forkhead box N1 [FOXN1]). Both the GLUL and SLC13A2/FOXN1 haplotypes have large effect sizes and were found to be different from those found from genome-wide association studies of sporadic HCCs. CONCLUSIONS To the authors' knowledge, the current study is the first genome-wide association study to identify genetic factors for familial HBV-related HCC. The results identified 2 large effect susceptible haplotypes located at GLUL and SLC13A2/FOXN1. The current study findings also suggest different genetic susceptibility between familial and sporadic HBV-related HCC. Cancer 2017;123:3966-76. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- You-Yu Lin
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Whei Yu
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Shi-Ming Lin
- Liver Research Unit, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei, Taiwan
| | - Shou-Dong Lee
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan.,Division of Gastroenterology, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Chih-Ling Chen
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | - Ding-Shinn Chen
- Hepatitis Research Center, National Taiwan University, Taipei, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|