1
|
Kapitsinou PP. Fueling kidney recovery: boosting BCAA metabolism to overcome nephrotoxic AKI. Am J Physiol Renal Physiol 2025; 328:F596-F598. [PMID: 40047271 DOI: 10.1152/ajprenal.00024.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/16/2025] [Accepted: 03/03/2025] [Indexed: 04/01/2025] Open
Affiliation(s)
- Pinelopi P Kapitsinou
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| |
Collapse
|
2
|
Huang P, Liu Y, Li Y, Xin Y, Nan C, Luo Y, Feng Y, Jin N, Peng Y, Wang D, Zhou Y, Luan F, Wang X, Wang X, Li H, Zhou Y, Zhang W, Liu Y, Yuan M, Zhang Y, Song Y, Xiao Y, Shen L, Yu K, Zhao M, Cheng L, Wang C. Metabolomics- and proteomics-based multi-omics integration reveals early metabolite alterations in sepsis-associated acute kidney injury. BMC Med 2025; 23:79. [PMID: 39934788 PMCID: PMC11818193 DOI: 10.1186/s12916-025-03920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Sepsis-associated acute kidney injury (SA-AKI) is a frequent complication in patients with sepsis and is associated with high mortality. Therefore, early recognition of SA-AKI is essential for administering supportive treatment and preventing further damage. This study aimed to identify and validate metabolite biomarkers of SA-AKI to assist in early clinical diagnosis. METHODS Untargeted renal proteomic and metabolomic analyses were performed on the renal tissues of LPS-induced SA-AKI and sepsis mice. Glomerular filtration rate (GFR) monitoring technology was used to evaluate real-time renal function in mice. To elucidate the distinctive characteristics of SA-AKI, a multi-omics Spearman correlation network was constructed integrating core metabolites, proteins, and renal function. Subsequently, metabolomics analysis was used to explore the dynamic changes of core metabolites in the serum of SA-AKI mice at 0, 8, and 24 h. Finally, a clinical cohort (28 patients with SA-AKI vs. 28 patients with sepsis) serum quantitative metabolomic analysis was carried out to build a diagnostic model for SA-AKI via logistic regression (LR). RESULTS Thirteen differential renal metabolites and 112 differential renal proteins were identified through a multi-omics study of SA-AKI mice. Subsequently, a multi-omics correlation network was constructed to highlight five core metabolites, i.e., 3-hydroxybutyric acid, 3-hydroxymethylglutaric acid, creatine, myristic acid, and inosine, the early changes of which were then observed via serum time series experiments of SA-AKI mice. The levels of 3-hydroxybutyric acid, 3-hydroxymethylglutaric acid, and creatine increased significantly at 24 h, myristic acid increased at 8 h, while inosine decreased at 8 h. Ultimately, based on the identified core metabolites, we recruited 56 patients and constructed a diagnostic model named IC3, using inosine, creatine, and 3-hydroxybutyric acid, to early identify SA-AKI (AUC = 0.90). CONCLUSIONS We proposed a blood metabolite model consisting of inosine, creatine, and 3-hydroxybutyric acid for the early screening of SA-AKI. Future studies will observe the performance of these metabolites in other clinical populations to evaluate their diagnostic role.
Collapse
Affiliation(s)
- Pengfei Huang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yanqi Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yue Li
- Department of Critical Care Medicine, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150086, China
| | - Yu Xin
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Chuanchuan Nan
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Department of Critical Care Medicine, First Affiliated Hospital of Southern, Shenzhen People's Hospital, University of Science and Technology, Shenzhen, 518020, China
| | - Yinghao Luo
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yating Feng
- Department of Critical Care Medicine, First Affiliated Hospital of Southern, Shenzhen People's Hospital, University of Science and Technology, Shenzhen, 518020, China
| | - Nana Jin
- Department of Critical Care Medicine, First Affiliated Hospital of Southern, Shenzhen People's Hospital, University of Science and Technology, Shenzhen, 518020, China
| | - Yahui Peng
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Dawei Wang
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yang Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Feiyu Luan
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Xinran Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Xibo Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Hongxu Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yuxin Zhou
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Weiting Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yuhan Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Mengyao Yuan
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yuxin Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yuchen Song
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Yu Xiao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Lifeng Shen
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China
| | - Kaijiang Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China.
| | - Mingyan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China.
| | - Lixin Cheng
- Department of Critical Care Medicine, First Affiliated Hospital of Southern, Shenzhen People's Hospital, University of Science and Technology, Shenzhen, 518020, China.
| | - Changsong Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
- Heilongjiang Provincial Key Laboratory of Critical Care Medicine, 23 Postal Street, Nangang District, Harbin, Heilongjiang, 150001, China.
| |
Collapse
|
3
|
DiMartino S, Revelo MP, Mallipattu SK, Piret SE. Activation of branched chain amino acid catabolism protects against nephrotoxic acute kidney injury. Am J Physiol Renal Physiol 2025; 328:F152-F163. [PMID: 39653371 PMCID: PMC11918290 DOI: 10.1152/ajprenal.00260.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Acute kidney injury (AKI) is a major risk factor for chronic kidney disease (CKD), and there are currently no therapies for AKI. Proximal tubules (PTs) are particularly susceptible to AKI, due to nephrotoxins such as aristolochic acid I (AAI). Normal PTs use fatty acid oxidation and branched chain amino acid (BCAA; valine, leucine, and isoleucine) catabolism to generate ATP; however, in AKI, these pathways are downregulated. Our aim was to investigate the utility of a pharmacological activator of BCAA catabolism, BT2, in preventing nephrotoxic AKI. Mice were administered two injections of AAI 3 days apart to induce AKI, with or without daily BT2 treatment. Mice treated with BT2 had significantly protected kidney function (reduced serum creatinine and urea nitrogen), reduced histological injury, preservation of PT (Lotus lectin staining), and less PT injury (cytokeratin-20 staining) and inflammatory gene expression compared with mice with AAI alone. Mice with AKI had increased circulating BCAA and accumulation of BCAA in the kidney cortex. Leucine is a potent activator of the mechanistic target of rapamycin complex 1 (mTORC1) signaling, and mTORC1 signaling was activated in mice treated with AAI. However, BT2 reduced kidney cortical BCAA accumulation and attenuated the mTORC1 signaling. In vitro, injured primary PT cells had compromised mitochondrial bioenergetics, but cells treated with AAI + BT2 had partially restored mitochondrial bioenergetics and improved injury markers compared with cells treated with AAI alone. Thus, pharmacological activation of BCAA catabolism using BT2 attenuated nephrotoxic AKI in mice.NEW & NOTEWORTHY This study explored the effects of pharmacological activation of branched chain amino acid (BCAA) catabolism using BT2 to prevent nephrotoxic acute kidney injury (AKI) in mice. Our results indicate that activation of BCAA catabolism protects against nephrotoxic AKI, in association with reduced BCAA accumulation, reduced mammalian target of rapamycin protein complex 1 signaling, and improved mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Samaneh DiMartino
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, New York, United States
| | - Monica P Revelo
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States
| | - Sandeep K Mallipattu
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, New York, United States
- Renal Section, Northport VA Medical Center, Northport, New York, United States
| | - Sian E Piret
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, Stony Brook, New York, United States
| |
Collapse
|
4
|
Su X, Bai M, Shang Y, Du Y, Xu S, Lin X, Xiao Y, Zhang Y, Chen H, Zhang A. Slc25a21 in cisplatin-induced acute kidney injury: a new target for renal tubular epithelial protection by regulating mitochondrial metabolic homeostasis. Cell Death Dis 2024; 15:891. [PMID: 39695098 DOI: 10.1038/s41419-024-07231-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 12/20/2024]
Abstract
Acute kidney injury (AKI) is a significant global health issue, which is often caused by cisplatin therapy and characterized by mitochondrial dysfunction. Restoring mitochondrial homeostasis in tubular cells could exert therapeutic effects. Here, we investigated Slc25a21, a mitochondrial carrier, as a potential target for AKI intervention. Renal Slc25a21 expression is negatively associated with kidney function in both AKI patients and cisplatin-induced murine models. Sustaining renal expression of Slc25a21 slowed down AKI progression by reducing cellular apoptosis, necroptosis, and the inflammatory response, likely through its regulation of 2-oxoadipate conversion. Slc25a21 is highly expressed in proximal tubular epithelial cells, and its down-regulation contributes to compromised mitochondrial biogenesis and integrity, as well as impaired oxidative phosphorylation. Mechanistically, reduced Slc25a21 in AKI disrupts mitochondrial 2-oxoadipate transport, affecting related metabolites influx and the tricarboxylic acid cycle. These findings demonstrate a previously unappreciated metabolic function of Slc25a21 in tubular cells, and suggest that targeting mitochondrial metabolic homeostasis by sustaining Slc25a21 expression could be a potential novel therapeutic strategy for AKI.
Collapse
Affiliation(s)
- Xin Su
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
| | - Mi Bai
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Yaqiong Shang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Yang Du
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Shuang Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Xiuli Lin
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Yunzhi Xiao
- Centre for Computational Biology and Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
| | - Yue Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China
| | - Huimei Chen
- Centre for Computational Biology and Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore.
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Guangzhou Road 72, Nanjing, 210008, China.
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China.
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
5
|
Alhilal M, Erol HS, Yildirim S, Cakir A, Koc M, Alhilal S, Dereli E, Alkanoglu O, Ay V, Can I, Halici MB. Medicinal evaluation and molecular docking study of osajin as an anti-inflammatory, antioxidant, and antiapoptotic agent against sepsis-associated acute kidney injury in rats. Ren Fail 2024; 46:2379008. [PMID: 39034431 PMCID: PMC11262233 DOI: 10.1080/0886022x.2024.2379008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/07/2024] [Indexed: 07/23/2024] Open
Abstract
Despite efforts to find effective drugs for sepsis-associated acute kidney injury (SA-AKI), mortality rates in patients with SA-AKI have not decreased. Our study evaluated the protective effects of isoflavone osajin (OSJ) on SA-AKI in rats by targeting inflammation, oxidative stress, and apoptosis, which represent the cornerstones in the pathophysiological mechanism of SA-AKI. Polymicrobial sepsis was induced in rats via the cecal ligation and puncture (CLP) technique. Markers of oxidative stress were evaluated in kidney tissues using biochemical methods. The expression of interleukin-33 (IL-33), 8-hydroxydeoxyguanosine (8-OHdG), caspase-3, and kidney injury molecule-1 (KIM-1) was evaluated as indicators of inflammation, DNA damage, apoptosis, and SA-AKI respectively in the kidney tissues using immunohistochemical and immunofluorescent detection methods. The CLP technique significantly (p < 0.001) increased lipid peroxidation (LPO) levels and significantly (p < 0.001) decreased the activities of superoxide dismutase and catalase in kidney tissues. In the renal tissues, strong expression of IL-33, 8-OHdG, caspase-3, and KIM-1 was observed with severe degeneration and necrosis in the tubular epithelium and intense interstitial nephritis. In contrast, the administration of OSJ significantly (p < 0.001) reduced the level of LPO, markedly improved biomarkers of antioxidant status, decreased the levels of serum creatinine and urea, lowered the expression of IL-33, 8-OHdG, caspase-3, and KIM-1 and alleviated changes in renal histopathology. A promising binding score was found via a molecular docking investigation of the OSJ-binding mode with mouse IL-33 (PDB Code: 5VI4). Therefore, OSJ protects against SA-AKI by suppressing the IL-33/LPO/8-OHdG/caspase-3 pathway and improving the antioxidant system.
Collapse
Affiliation(s)
- Mohammad Alhilal
- Department of Nursing, Faculty of Health Sciences, Mardin Artuklu University, Mardin, Turkey
| | - Huseyin Serkan Erol
- Department of Biochemistry, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Ahmet Cakir
- Department of Chemistry, Faculty of Science, Kilis 7 Aralık University, Kilis, Turkey
| | - Murat Koc
- Department of Tradational, Complementary and Integrative Medicine, Public Health Institute, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Suzan Alhilal
- Department of Medical Services and Techniques, Vocational School of Health Services, Mardin Artuklu University, Mardin, Turkey
| | - Esra Dereli
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Omer Alkanoglu
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Volkan Ay
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Ismail Can
- Department of Histology-Embryology, Faculty of Medicine, Kafkas University, Kars, Turkey
- HALICI Life Care LLC. Atatruk University, ATA-TECHNOCITY, Erzurum, Turkiye
| | - Mesut Bunyami Halici
- Department of Biochemistry, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
- HALICI Life Care LLC. Atatruk University, ATA-TECHNOCITY, Erzurum, Turkiye
| |
Collapse
|
6
|
Tang W, Wei Q. The metabolic pathway regulation in kidney injury and repair. Front Physiol 2024; 14:1344271. [PMID: 38283280 PMCID: PMC10811252 DOI: 10.3389/fphys.2023.1344271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024] Open
Abstract
Kidney injury and repair are accompanied by significant disruptions in metabolic pathways, leading to renal cell dysfunction and further contributing to the progression of renal pathology. This review outlines the complex involvement of various energy production pathways in glucose, lipid, amino acid, and ketone body metabolism within the kidney. We provide a comprehensive summary of the aberrant regulation of these metabolic pathways in kidney injury and repair. After acute kidney injury (AKI), there is notable mitochondrial damage and oxygen/nutrient deprivation, leading to reduced activity in glycolysis and mitochondrial bioenergetics. Additionally, disruptions occur in the pentose phosphate pathway (PPP), amino acid metabolism, and the supply of ketone bodies. The subsequent kidney repair phase is characterized by a metabolic shift toward glycolysis, along with decreased fatty acid β-oxidation and continued disturbances in amino acid metabolism. Furthermore, the impact of metabolism dysfunction on renal cell injury, regeneration, and the development of renal fibrosis is analyzed. Finally, we discuss the potential therapeutic strategies by targeting renal metabolic regulation to ameliorate kidney injury and fibrosis and promote kidney repair.
Collapse
Affiliation(s)
- Wenbin Tang
- Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
7
|
Zhao L, Hao Y, Tang S, Han X, Li R, Zhou X. Energy metabolic reprogramming regulates programmed cell death of renal tubular epithelial cells and might serve as a new therapeutic target for acute kidney injury. Front Cell Dev Biol 2023; 11:1276217. [PMID: 38054182 PMCID: PMC10694365 DOI: 10.3389/fcell.2023.1276217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023] Open
Abstract
Acute kidney injury (AKI) induces significant energy metabolic reprogramming in renal tubular epithelial cells (TECs), thereby altering lipid, glucose, and amino acid metabolism. The changes in lipid metabolism encompass not only the downregulation of fatty acid oxidation (FAO) but also changes in cell membrane lipids and triglycerides metabolism. Regarding glucose metabolism, AKI leads to increased glycolysis, activation of the pentose phosphate pathway (PPP), inhibition of gluconeogenesis, and upregulation of the polyol pathway. Research indicates that inhibiting glycolysis, promoting the PPP, and blocking the polyol pathway exhibit a protective effect on AKI-affected kidneys. Additionally, changes in amino acid metabolism, including branched-chain amino acids, glutamine, arginine, and tryptophan, play an important role in AKI progression. These metabolic changes are closely related to the programmed cell death of renal TECs, involving autophagy, apoptosis, necroptosis, pyroptosis, and ferroptosis. Notably, abnormal intracellular lipid accumulation can impede autophagic clearance, further exacerbating lipid accumulation and compromising autophagic function, forming a vicious cycle. Recent studies have demonstrated the potential of ameliorating AKI-induced kidney damage through calorie and dietary restriction. Consequently, modifying the energy metabolism of renal TECs and dietary patterns may be an effective strategy for AKI treatment.
Collapse
Affiliation(s)
- Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yajie Hao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shuqin Tang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiutao Han
- The Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
8
|
Canlet C, Deborde C, Cahoreau E, Da Costa G, Gautier R, Jacob D, Jousse C, Lacaze M, Le Mao I, Martineau E, Peyriga L, Richard T, Silvestre V, Traïkia M, Moing A, Giraudeau P. NMR metabolite quantification of a synthetic urine sample: an inter-laboratory comparison of processing workflows. Metabolomics 2023; 19:65. [PMID: 37418094 PMCID: PMC10328857 DOI: 10.1007/s11306-023-02028-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
INTRODUCTION Absolute quantification of individual metabolites in complex biological samples is crucial in targeted metabolomic profiling. OBJECTIVES An inter-laboratory test was performed to evaluate the impact of the NMR software, peak-area determination method (integration vs. deconvolution) and operator on quantification trueness and precision. METHODS A synthetic urine containing 32 compounds was prepared. One site prepared the urine and calibration samples, and performed NMR acquisition. NMR spectra were acquired with two pulse sequences including water suppression used in routine analyses. The pre-processed spectra were sent to the other sites where each operator quantified the metabolites using internal referencing or external calibration, and his/her favourite in-house, open-access or commercial NMR tool. RESULTS For 1D NMR measurements with solvent presaturation during the recovery delay (zgpr), 20 metabolites were successfully quantified by all processing strategies. Some metabolites could not be quantified by some methods. For internal referencing with TSP, only one half of the metabolites were quantified with a trueness below 5%. With peak integration and external calibration, about 90% of the metabolites were quantified with a trueness below 5%. The NMRProcFlow integration module allowed the quantification of several additional metabolites. The number of quantified metabolites and quantification trueness improved for some metabolites with deconvolution tools. Trueness and precision were not significantly different between zgpr- and NOESYpr-based spectra for about 70% of the variables. CONCLUSION External calibration performed better than TSP internal referencing. Inter-laboratory tests are useful when choosing to better rationalize the choice of quantification tools for NMR-based metabolomic profiling and confirm the value of spectra deconvolution tools.
Collapse
Affiliation(s)
- Cécile Canlet
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, UPS, MetaToul-AXIOM Platform, National Infrastructure of Metabolomics and Fluxomics: MetaboHUB, INRAE, 31027, Toulouse, France
| | - Catherine Deborde
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR1332, Bordeaux Metabolome - MetaboHUB, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
| | - Edern Cahoreau
- TBI, Université de Toulouse, CNRS, INRAE, INSA, MetaboHUB - MetaToul, National Infrastructure of Metabolomics and Fluxomics, 31077, Toulouse, France
| | - Grégory Da Costa
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Bordeaux Metabolome - MetaboHUB, 33140, Villenave d'Ornon, France
| | - Roselyne Gautier
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, UPS, MetaToul-AXIOM Platform, National Infrastructure of Metabolomics and Fluxomics: MetaboHUB, INRAE, 31027, Toulouse, France
| | - Daniel Jacob
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR1332, Bordeaux Metabolome - MetaboHUB, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France
| | - Cyril Jousse
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand. Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, 63000, Clermont-Ferrand, France
| | - Mélia Lacaze
- Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, UPS, MetaToul-AXIOM Platform, National Infrastructure of Metabolomics and Fluxomics: MetaboHUB, INRAE, 31027, Toulouse, France
| | - Inès Le Mao
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Bordeaux Metabolome - MetaboHUB, 33140, Villenave d'Ornon, France
| | - Estelle Martineau
- Nantes Université, CNRS, CEISAM UMR 6230, 44000, Nantes, France
- CAPACITES SAS, 44200, Nantes, France
| | - Lindsay Peyriga
- TBI, Université de Toulouse, CNRS, INRAE, INSA, MetaboHUB - MetaToul, National Infrastructure of Metabolomics and Fluxomics, 31077, Toulouse, France
| | - Tristan Richard
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, Bordeaux Metabolome - MetaboHUB, 33140, Villenave d'Ornon, France
| | | | - Mounir Traïkia
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut de Chimie de Clermont-Ferrand. Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB Clermont, 63000, Clermont-Ferrand, France
| | - Annick Moing
- INRAE, Univ. Bordeaux, Biologie du Fruit et Pathologie, UMR1332, Bordeaux Metabolome - MetaboHUB, Centre INRAE de Nouvelle-Aquitaine Bordeaux, 33140, Villenave d'Ornon, France.
| | | |
Collapse
|
9
|
Ross IL, Beardslee JA, Steil MM, Chihanga T, Kennedy MA. Statistical considerations and database limitations in NMR-based metabolic profiling studies. Metabolomics 2023; 19:64. [PMID: 37378680 DOI: 10.1007/s11306-023-02027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
INTRODUCTION Interpretation and analysis of NMR-based metabolic profiling studies is limited by substantially incomplete commercial and academic databases. Statistical significance tests, including p-values, VIP scores, AUC values and FC values, can be largely inconsistent. Data normalization prior to statistical analysis can cause erroneous outcomes. OBJECTIVES The objectives were (1) to quantitatively assess consistency among p-values, VIP scores, AUC values and FC values in representative NMR-based metabolic profiling datasets, (2) to assess how data normalization can impact statistical significance outcomes, (3) to determine resonance peak assignment completion potential using commonly used databases and (4) to analyze intersection and uniqueness of metabolite space in these databases. METHODS P-values, VIP scores, AUC values and FC values, and their dependence on data normalization, were determined in orthotopic mouse model of pancreatic cancer and two human pancreatic cancer cell lines. Completeness of resonance assignments were evaluated using Chenomx, the human metabolite database (HMDB) and the COLMAR database. The intersection and uniqueness of the databases was quantified. RESULTS P-values and AUC values were strongly correlated compared to VIP or FC values. Distributions of statistically significant bins depended strongly on whether or not datasets were normalized. 40-45% of peaks had either no or ambiguous database matches. 9-22% of metabolites were unique to each database. CONCLUSIONS Lack of consistency in statistical analyses of metabolomics data can lead to misleading or inconsistent interpretation. Data normalization can have large effects on statistical analysis and should be justified. About 40% of peak assignments remain ambiguous or impossible with current databases. 1D and 2D databases should be made consistent to maximize metabolite assignment confidence and validation.
Collapse
Affiliation(s)
- Imani L Ross
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, 92093, USA
| | - Julie A Beardslee
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA
| | - Maria M Steil
- Division of Plastic Surgery, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Tafadzwa Chihanga
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, 45056, USA.
| |
Collapse
|
10
|
Piret SE, Mallipattu SK. Transcriptional regulation of proximal tubular metabolism in acute kidney injury. Pediatr Nephrol 2023; 38:975-986. [PMID: 36181578 DOI: 10.1007/s00467-022-05748-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/07/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
The kidney, and in particular the proximal tubule (PT), has a high demand for ATP, due to its function in bulk reabsorption of solutes. In normal PT, ATP levels are predominantly maintained by fatty acid β-oxidation (FAO), the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation. The normal PT also undertakes gluconeogenesis and metabolism of amino acids. Acute kidney injury (AKI) results in profound PT metabolic alterations, including suppression of FAO, gluconeogenesis, and metabolism of some amino acids, and upregulation of glycolytic enzymes. Recent studies have elucidated new transcriptional mechanisms regulating metabolic pathways in normal PT, as well as the metabolic switch in AKI. A number of transcription factors have been shown to play important roles in FAO, which are themselves downregulated in AKI, while hypoxia-inducible factor 1α, which is upregulated in ischemia-reperfusion injury, is a likely driver of the upregulation of glycolytic enzymes. Transcriptional regulation of amino acid metabolic pathways is less well understood, except for catabolism of branched-chain amino acids, which is likely suppressed in AKI by upregulation of Krüppel-like factor 6. This review will focus on the transcriptional regulation of specific metabolic pathways in normal PT and in AKI, as well as highlighting some of the gaps in knowledge and challenges that remain to be addressed.
Collapse
Affiliation(s)
- Sian E Piret
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA.
| | - Sandeep K Mallipattu
- Division of Nephrology and Hypertension, Department of Medicine, Stony Brook University, 101 Nicolls Road, Stony Brook, NY, 11794, USA
- Renal Division, Northport VA Medical Center, Northport, NY, USA
| |
Collapse
|
11
|
Qiu S, Cai Y, Yao H, Lin C, Xie Y, Tang S, Zhang A. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct Target Ther 2023; 8:132. [PMID: 36941259 PMCID: PMC10026263 DOI: 10.1038/s41392-023-01399-3] [Citation(s) in RCA: 257] [Impact Index Per Article: 128.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
Metabolic abnormalities lead to the dysfunction of metabolic pathways and metabolite accumulation or deficiency which is well-recognized hallmarks of diseases. Metabolite signatures that have close proximity to subject's phenotypic informative dimension, are useful for predicting diagnosis and prognosis of diseases as well as monitoring treatments. The lack of early biomarkers could lead to poor diagnosis and serious outcomes. Therefore, noninvasive diagnosis and monitoring methods with high specificity and selectivity are desperately needed. Small molecule metabolites-based metabolomics has become a specialized tool for metabolic biomarker and pathway analysis, for revealing possible mechanisms of human various diseases and deciphering therapeutic potentials. It could help identify functional biomarkers related to phenotypic variation and delineate biochemical pathways changes as early indicators of pathological dysfunction and damage prior to disease development. Recently, scientists have established a large number of metabolic profiles to reveal the underlying mechanisms and metabolic networks for therapeutic target exploration in biomedicine. This review summarized the metabolic analysis on the potential value of small-molecule candidate metabolites as biomarkers with clinical events, which may lead to better diagnosis, prognosis, drug screening and treatment. We also discuss challenges that need to be addressed to fuel the next wave of breakthroughs.
Collapse
Affiliation(s)
- Shi Qiu
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China
| | - Ying Cai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Hong Yao
- First Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
| | - Chunsheng Lin
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, 150001, China
| | - Yiqiang Xie
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Songqi Tang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
| | - Aihua Zhang
- International Advanced Functional Omics Platform, Scientific Experiment Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), College of Chinese Medicine, Hainan Medical University, Xueyuan Road 3, Haikou, 571199, China.
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, 150040, China.
| |
Collapse
|
12
|
Hasson DC, Watanabe-Chailland M, Romick-Rosendale L, Koterba A, Miner DS, Lahni P, Ma Q, Goldstein SL, Devarajan P, Standage SW. Choline supplementation attenuates experimental sepsis-associated acute kidney injury. Am J Physiol Renal Physiol 2022; 323:F255-F271. [PMID: 35834274 PMCID: PMC9394731 DOI: 10.1152/ajprenal.00033.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/22/2022] Open
Abstract
Acute kidney injury (AKI) is common in critically ill patients, and sepsis is its leading cause. Sepsis-associated AKI (SA-AKI) causes greater morbidity and mortality than other AKI etiologies, yet the underlying mechanisms are incompletely understood. Metabolomic technologies can characterize cellular energy derangements, but few discovery analyses have evaluated the metabolomic profile of SA-AKI. To identify metabolic derangements amenable to therapeutic intervention, we assessed plasma and urine metabolites in septic mice and critically ill children and compared them by AKI status. Metabolites related to choline and central carbon metabolism were differentially abundant in SA-AKI in both mice and humans. Gene expression of enzymes related to choline metabolism was altered in the kidneys and liver of mice with SA-AKI. Treatment with intraperitoneal choline improved renal function in septic mice. Because pediatric patients with sepsis displayed similar metabolomic profiles to septic mice, choline supplementation may attenuate pediatric septic AKI.NEW & NOTEWORTHY Altered choline metabolism plays a role in both human and murine sepsis-associated acute kidney injury (SA-AKI), and choline administration in experimental SA-AKI improved renal function. These findings indicate that 1) mouse models can help interrogate clinically relevant mechanisms and 2) choline supplementation may ameliorate human SA-AKI. Future research will investigate clinically the impact of choline supplementation on human renal function in sepsis and, using model systems, how choline mediates its effects.
Collapse
Affiliation(s)
- Denise C Hasson
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Miki Watanabe-Chailland
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lindsey Romick-Rosendale
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Adeleine Koterba
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Dashiell S Miner
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Patrick Lahni
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Qing Ma
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stuart L Goldstein
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Stephen W Standage
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
13
|
Oh TS, Zabalawi M, Jain S, Long D, Stacpoole PW, McCall CE, Quinn MA. Dichloroacetate improves systemic energy balance and feeding behavior during sepsis. JCI Insight 2022; 7:153944. [PMID: 35730570 PMCID: PMC9309051 DOI: 10.1172/jci.insight.153944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by dysregulated host response to an infection. The metabolic aberrations associated with sepsis underly an acute and organism-wide hyperinflammatory response and multiple organ dysfunction; however, crosstalk between systemic metabolomic alterations and metabolic reprogramming at organ levels remains unknown. We analyzed substrate utilization by the respiratory exchange ratio, energy expenditure, metabolomic screening, and transcriptional profiling in a cecal ligation and puncture model to show that sepsis increases circulating free fatty acids and acylcarnitines but decreases levels of amino acids and carbohydrates, leading to a drastic shift in systemic fuel preference. Comparative analysis of previously published metabolomics from septic liver indicated a positive correlation with hepatic and plasma metabolites during sepsis. In particular, glycine deficiency was a common abnormality of the plasma and liver during sepsis. Interrogation of the hepatic transcriptome in septic mice suggested that the septic liver may contribute to systemic glycine deficiency by downregulating genes involved in glycine synthesis. Interestingly, intraperitoneal injection of the pyruvate dehydrogenase kinase (PDK) inhibitor dichloroacetate reversed sepsis-induced anorexia, energy imbalance, inflammation, dyslipidemia, hypoglycemia, and glycine deficiency. Collectively, our data indicated that PDK inhibition rescued systemic energy imbalance and metabolic dysfunction in sepsis partly through restoration of hepatic fuel metabolism.
Collapse
Affiliation(s)
- Tae Seok Oh
- Department of Pathology, Section on Comparative Medicine, and
| | - Manal Zabalawi
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Shalini Jain
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - David Long
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Peter W. Stacpoole
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine and Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Charles E. McCall
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Matthew A. Quinn
- Department of Pathology, Section on Comparative Medicine, and,Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
14
|
Davidson JA, Robison J, Khailova L, Frank BS, Jaggers J, Ing RJ, Lawson S, Iguidbashian J, Ali E, Treece A, Soranno DE, Osorio-Lujan S, Klawitter J. Metabolomic profiling demonstrates evidence for kidney and urine metabolic dysregulation in a piglet model of cardiac surgery-induced acute kidney injury. Am J Physiol Renal Physiol 2022; 323:F20-F32. [PMID: 35532069 PMCID: PMC9236877 DOI: 10.1152/ajprenal.00039.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Acute kidney injury (AKI) is a common cause of morbidity after congenital heart disease surgery. Progress on diagnosis and therapy remains limited, however, in part due to poor mechanistic understanding and a lack of relevant translational models. Metabolomic approaches could help identify novel mechanisms of injury and potential therapeutic targets. In the present study, we used a piglet model of cardiopulmonary bypass with deep hypothermic circulatory arrest (CPB/DHCA) and targeted metabolic profiling of kidney tissue, urine, and serum to evaluate metabolic changes specific to animals with histological acute kidney injury. CPB/DHCA animals with acute kidney injury were compared with those without acute kidney injury and mechanically ventilated controls. Acute kidney injury occurred in 10 of 20 CPB/DHCA animals 4 h after CPB/DHCA and 0 of 7 control animals. Injured kidneys showed a distinct tissue metabolic profile compared with uninjured kidneys (R2 = 0.93, Q2 = 0.53), with evidence of dysregulated tryptophan and purine metabolism. Nine urine metabolites differed significantly in animals with acute kidney injury with a pattern suggestive of increased aerobic glycolysis. Dysregulated metabolites in kidney tissue and urine did not overlap. CPB/DHCA strongly affected the serum metabolic profile, with only one metabolite that differed significantly with acute kidney injury (pyroglutamic acid, a marker of oxidative stress). In conclusion, based on these findings, kidney tryptophan and purine metabolism are candidates for further mechanistic and therapeutic investigation. Urine biomarkers of aerobic glycolysis could help diagnose early acute kidney injury after CPB/DHCA and warrant further evaluation. The serum metabolites measured at this early time point did not strongly differentiate based on acute kidney injury. NEW & NOTEWORTHY This project explored the metabolic underpinnings of postoperative acute kidney injury (AKI) following pediatric cardiac surgery in a translationally relevant large animal model of cardiopulmonary bypass with deep hypothermic circulatory arrest. Here, we present novel evidence for dysregulated tryptophan catabolism and purine catabolism in kidney tissue and increased urinary glycolysis intermediates in animals who developed histological AKI. These pathways represent potential diagnostic and therapeutic targets for postoperative AKI in this high-risk population.
Collapse
Affiliation(s)
- Jesse A Davidson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Justin Robison
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, United States
| | - Ludmila Khailova
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Benjamin S Frank
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - James Jaggers
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Richard J Ing
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Scott Lawson
- Heart Institute, Children's Hospital Colorado, Aurora, CO, United States
| | - John Iguidbashian
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Eiman Ali
- Heart Institute, Children's Hospital Colorado, Aurora, CO, United States
| | - Amy Treece
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Danielle E Soranno
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Suzanne Osorio-Lujan
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jelena Klawitter
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
15
|
Odum JD, Standage S, Alder M, Zingarelli B, Devarajan P, Wong HR. Candidate Biomarkers for Sepsis-Associated Acute Kidney Injury Mechanistic Studies. Shock 2022; 57:687-693. [PMID: 35234208 PMCID: PMC9117431 DOI: 10.1097/shk.0000000000001916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Sepsis-associated acute kidney injury (SA-AKI) is a frequent complication of sepsis, yet the pathophysiologic mechanisms of SA-AKI are incompletely understood. PERSEVERE is a clinically validated serum biomarker panel with high sensitivity in predicting mortality from sepsis, and recent evidence suggests it can also predict severe, persistent SA-AKI at day 3 of hospitalization among septic children. We developed a murine model of PERSEVERE (mPERSEVERE) to further interrogate the sepsis-related biological underpinnings of SA-AKI using candidate biomarkers within mPERSEVERE. METHODS Eight-week-old C57BL/6 male mice underwent induction of sepsis by cecal ligation and puncture (CLP). mPERSEVERE biomarkers were collected at 8-hours and kidneys were harvested at 24-hours post-CLP Classification and regression tree analysis (CART) was used to generate a SA-AKI predictive model. Kidney gene expression levels of candidate biomarkers were quantified using real time polymerase chain reaction. RESULTS Thirty- five mice underwent CLP Among mice identified by mPERSEVERE as high-risk for mortality, 70% developed SA-AKI at 24-hours compared to 22% of low-risk mice. CART analysis identified two mPERSEVERE biomarkers-C-C motif chemokine ligand 3 (CCL3) and keratinocyte-derived chemokine (KC)-as most predictive for SA-AKI with an area under the receiver operating curve of 0.90. In mice that developed SA-AKI, renal expression of KC was significantly increased compared to mice without SA-AKI (p = 0.013), whereas no difference was seen in renal expression of CCL3 in mice with SA-AKI vs. no SA-AKI. KC and CCL3 localized to renal tubule epithelial cells as opposed to infiltrating immune cells by immunohistochemistry. CONCLUSIONS The combination of plasma CCL3+KC can predict SA-AKI development in mice at 24-hours following CLP Of these two biomarkers, only renal expression of KC is increased in mice with SA-AKI. Further studies are required to determine if KC directly contributes to the underlying pathobiology of SA-AKI.
Collapse
Affiliation(s)
- James D Odum
- Division of Critical Care, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Steve Standage
- Division of Critical Care, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Matthew Alder
- Division of Critical Care, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Basilia Zingarelli
- Division of Critical Care, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Prasad Devarajan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hector R Wong
- Division of Critical Care, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
16
|
Zhang X, Tian B, Deng Q, Cao J, Ding X, Liu Q, Zhang Y, Ye C, Deng C, Qiu L, Guo C. Nicotinamide riboside relieves the severity of experimental necrotizing enterocolitis by regulating endothelial function via eNOS deacetylation. Free Radic Biol Med 2022; 184:218-229. [PMID: 35430341 DOI: 10.1016/j.freeradbiomed.2022.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/08/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Nicotinamide adenine dinucleotide (NAD+) is involved in regulating oxidative stress. Although NAD+ is associated with various health issues, its role in the intestinal microcirculation in necrotizing enterocolitis (NEC) remains to be confirmed. In the current study, we explored whether nicotinamide riboside (NR), a natural NAD + precursor, ameliorates the severity of NEC through endothelial nitric oxide synthase(eNOS) signaling. METHODS A mouse experimental NEC model was induced by formula gavage and hypoxia in full-term mouse pups. Intestinal endothelial cells (MIMECs) were isolated and subjected to stress using tumor necrosis factor (TNF)-α. NR was administered to assess the intestinal microcirculation and lipid peroxidation levels and to explore the involved signaling pathways. RESULTS NAD + levels were reduced after induction of NEC stress, which was associated with intestinal injury. NR administration promoted NAD + levels, attenuated oxidative stress and relieved the symptoms of experimental NEC, which were relevant to increased intestinal microcirculatory perfusion through the sirtuin (SIRT) 1 pathway in experimental NEC mice. However, this improvement was not found in eNOS-knockout mice. Consistently, MIMECs exposed to TNFα showed decreased SIRT1 activity associated with increased eNOS acetylation, which could bring about endothelial dysfunction due to limited nitric oxide production. NR administration increased the NAD + content and repressed the production of reactive oxygen species (ROS) in MIMECs under TNFα stress. NR also promoted SIRT1 activity and accordingly suppressed the eNOS acetylation levels under TNFα stress. CONCLUSION The current data indicate that NR administration improves the survival of experimental NEC mice via SIRT1-associated eNOS acetylation/deacetylation modulation, which is implicated in endothelial dysfunction. Although NR is commonly found in the human diet, it may also be a promising strategy for NEC treatment because of its pathogenic association with NEC.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of General and Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Burn, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Key Laboratory of Children's Development and Disorders, Ministry of Education, Chongqing, China; National International Science and Technology Cooperation Base for Development and Critical Disorders in Children, Chongqing, China; Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China
| | - Bing Tian
- Department of Pediatrics, Yongchuan Hospital, Chongqing Medical University, Chongqing, 400054, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Key Laboratory of Children's Development and Disorders, Ministry of Education, Chongqing, China; National International Science and Technology Cooperation Base for Development and Critical Disorders in Children, Chongqing, China; Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China
| | - Qin Deng
- Department of General and Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Clinical Nutrition, Yongchuan Hospital, Chongqing Medical University, Chongqing, 400054, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Key Laboratory of Children's Development and Disorders, Ministry of Education, Chongqing, China; National International Science and Technology Cooperation Base for Development and Critical Disorders in Children, Chongqing, China; Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China
| | - Jian Cao
- Department of General and Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Key Laboratory of Children's Development and Disorders, Ministry of Education, Chongqing, China; National International Science and Technology Cooperation Base for Development and Critical Disorders in Children, Chongqing, China; Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China
| | - Xionghui Ding
- Department of Burn, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Key Laboratory of Children's Development and Disorders, Ministry of Education, Chongqing, China; National International Science and Technology Cooperation Base for Development and Critical Disorders in Children, Chongqing, China; Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China
| | - Qingshuang Liu
- Department of General and Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Key Laboratory of Children's Development and Disorders, Ministry of Education, Chongqing, China; National International Science and Technology Cooperation Base for Development and Critical Disorders in Children, Chongqing, China; Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China
| | - Yunfei Zhang
- Department of Burn, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Key Laboratory of Children's Development and Disorders, Ministry of Education, Chongqing, China; National International Science and Technology Cooperation Base for Development and Critical Disorders in Children, Chongqing, China; Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China
| | - Cuilian Ye
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Chun Deng
- Department of Pediatrics, Yongchuan Hospital, Chongqing Medical University, Chongqing, 400054, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Key Laboratory of Children's Development and Disorders, Ministry of Education, Chongqing, China; National International Science and Technology Cooperation Base for Development and Critical Disorders in Children, Chongqing, China; Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China
| | - Lin Qiu
- Department of Burn, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Key Laboratory of Children's Development and Disorders, Ministry of Education, Chongqing, China; National International Science and Technology Cooperation Base for Development and Critical Disorders in Children, Chongqing, China; Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China.
| | - Chunbao Guo
- Department of General and Neonatal Surgery, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Burn, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Key Laboratory of Children's Development and Disorders, Ministry of Education, Chongqing, China; National International Science and Technology Cooperation Base for Development and Critical Disorders in Children, Chongqing, China; Key Laboratory of Pediatrics in Chongqing, Chongqing, 400014, China.
| |
Collapse
|
17
|
Raines NH, Cheung MD, Wilson LS, Edberg JC, Erdmann NB, Schmaier AA, Berryhill TF, Manickas-Hill Z, Li JZ, Yu XG, Agarwal A, Barnes S, Parikh SM. Nicotinamide Adenine Dinucleotide Biosynthetic Impairment and Urinary Metabolomic Alterations Observed in Hospitalized Adults With COVID-19-Related Acute Kidney Injury. Kidney Int Rep 2021; 6:3002-3013. [PMID: 34541422 PMCID: PMC8439094 DOI: 10.1016/j.ekir.2021.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Acute kidney injury (AKI) is common in COVID-19 and associated with increased morbidity and mortality. We investigated alterations in the urine metabolome to test the hypothesis that impaired nicotinamide adenine dinucleotide (NAD+) biosynthesis and other deficiencies in energy metabolism in the kidney, previously characterized in ischemic, toxic, and inflammatory etiologies of AKI, will be present in COVID-19-associated AKI. METHODS This is a case-control study among the following 2 independent populations of adults hospitalized with COVID-19: a critically ill population in Boston, Massachusetts, and a general population in Birmingham, Alabama. The cases had AKI stages 2 or 3 by Kidney Disease Improving Global Outcomes (KDIGO) criteria; the controls had no AKI. Metabolites were measured by liquid chromatography-mass spectrometry. RESULTS A total of 14 cases and 14 controls were included from Boston and 8 cases and 10 controls from Birmingham. Increased urinary quinolinate-to-tryptophan ratio (Q/T), found with impaired NAD+ biosynthesis, was present in the cases at each location and pooled across locations (median [interquartile range]: 1.34 [0.59-2.96] in cases, 0.31 [0.13-1.63] in controls, P = 0.0013). Altered energy metabolism and purine metabolism contributed to a distinct urinary metabolomic signature that differentiated patients with and without AKI (supervised random forest class error: 2 of 28 in Boston, 0 of 18 in Birmingham). CONCLUSION Urinary metabolites spanning multiple biochemical pathways differentiate AKI versus non-AKI in patients hospitalized with COVID-19 and suggest a conserved impairment in NAD+ biosynthesis, which may present a novel therapeutic target to mitigate COVID-19-associated AKI.
Collapse
Affiliation(s)
- Nathan H. Raines
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew D. Cheung
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Landon S. Wilson
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffrey C. Edberg
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nathaniel B. Erdmann
- Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alec A. Schmaier
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Taylor F. Berryhill
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zachary Manickas-Hill
- Ragon Institute of the Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard University, Massachusetts General Hospital, Cambridge, Massachusetts, USA
| | - Jonathan Z. Li
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Xu G. Yu
- Ragon Institute of the Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard University, Massachusetts General Hospital, Cambridge, Massachusetts, USA
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Stephen Barnes
- Targeted Metabolomics and Proteomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Samir M. Parikh
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
18
|
Wee HN, Liu JJ, Ching J, Kovalik JP, Lim SC. The Kynurenine Pathway in Acute Kidney Injury and Chronic Kidney Disease. Am J Nephrol 2021; 52:771-787. [PMID: 34753140 PMCID: PMC8743908 DOI: 10.1159/000519811] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The kynurenine pathway (KP) is the major catabolic pathway for tryptophan degradation. The KP plays an important role as the sole de novo nicotinamide adenine dinucleotide (NAD+) biosynthetic pathway in normal human physiology and functions as a counter-regulatory mechanism to mitigate immune responses during inflammation. Although the KP has been implicated in a variety of disorders including Huntington's disease, seizures, cardiovascular disease, and osteoporosis, its role in renal diseases is seldom discussed. SUMMARY This review summarizes the roles of the KP and its metabolites in acute kidney injury (AKI) and chronic kidney disease (CKD) based on current literature evidence. Metabolomics studies demonstrated that the KP metabolites were significantly altered in patients and animal models with AKI or CKD. The diagnostic and prognostic values of the KP metabolites in AKI and CKD were highlighted in cross-sectional and longitudinal human observational studies. The biological impact of the KP on the pathophysiology of AKI and CKD has been studied in experimental models of different etiologies. In particular, the activation of the KP was found to confer protection in animal models of glomerulonephritis, and its immunomodulatory mechanism may involve the regulation of T cell subsets such as Th17 and regulatory T cells. Manipulation of the KP to increase NAD+ production or diversion toward specific KP metabolites was also found to be beneficial in animal models of AKI. Key Messages: KP metabolites are reported to be dysregulated in human observational and animal experimental studies of AKI and CKD. In AKI, the magnitude and direction of changes in the KP depend on the etiology of the damage. In CKD, KP metabolites are altered with the onset and progression of CKD all the way to advanced stages of the disease, including uremia and its related vascular complications. The activation of the KP and diversion to specific sub-branches are currently being explored as therapeutic strategies in these diseases, especially with regards to the immunomodulatory effects of certain KP metabolites. Further elucidation of the KP may hold promise for the development of biomarkers and targeted therapies for these kidney diseases.
Collapse
Affiliation(s)
| | - Jian-Jun Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Jianhong Ching
- Duke-NUS Medical School, Singapore, Singapore
- KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | | | - Su Chi Lim
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Diabetes Centre, Admiralty Medical Centre, Singapore, Singapore
| |
Collapse
|