1
|
Arendshorst WJ, Vendrov AE, Kumar N, Ganesh SK, Madamanchi NR. Oxidative Stress in Kidney Injury and Hypertension. Antioxidants (Basel) 2024; 13:1454. [PMID: 39765782 PMCID: PMC11672783 DOI: 10.3390/antiox13121454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
Hypertension (HTN) is a major contributor to kidney damage, leading to conditions such as nephrosclerosis and hypertensive nephropathy, significant causes of chronic kidney disease (CKD) and end-stage renal disease (ESRD). HTN is also a risk factor for stroke and coronary heart disease. Oxidative stress, inflammation, and activation of the renin-angiotensin-aldosterone system (RAAS) play critical roles in causing kidney injury in HTN. Genetic and environmental factors influence the susceptibility to hypertensive renal damage, with African American populations having a higher tendency due to genetic variants. Managing blood pressure (BP) effectively with treatments targeting RAAS activation, oxidative stress, and inflammation is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD. Interactions between genetic and environmental factors impacting kidney function abnormalities are central to HTN development. Animal studies indicate that genetic factors significantly influence BP regulation. Anti-natriuretic mechanisms can reset the pressure-natriuresis relationship, requiring a higher BP to excrete sodium matched to intake. Activation of intrarenal angiotensin II receptors contributes to sodium retention and high BP. In HTN, the gut microbiome can affect BP by influencing energy metabolism and inflammatory pathways. Animal models, such as the spontaneously hypertensive rat and the chronic angiotensin II infusion model, mirror human essential hypertension and highlight the significance of the kidney in HTN pathogenesis. Overproduction of reactive oxygen species (ROS) plays a crucial role in the development and progression of HTN, impacting renal function and BP regulation. Targeting specific NADPH oxidase (NOX) isoforms to inhibit ROS production and enhance antioxidant mechanisms may improve renal structure and function while lowering blood pressure. Therapies like SGLT2 inhibitors and mineralocorticoid receptor antagonists have shown promise in reducing oxidative stress, inflammation, and RAAS activity, offering renal and antihypertensive protection in managing HTN and CKD. This review emphasizes the critical role of NOX in the development and progression of HTN, focusing on its impact on renal function and BP regulation. Effective BP management and targeting oxidative stress, inflammation, and RAAS activation, is crucial in preventing renal damage and the progression of HTN-related CKD and ESRD.
Collapse
Affiliation(s)
- Willaim J. Arendshorst
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Aleksandr E. Vendrov
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
| | - Nitin Kumar
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Santhi K. Ganesh
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nageswara R. Madamanchi
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (A.E.V.); (N.K.); (S.K.G.)
| |
Collapse
|
2
|
More HL, Braam B, Cupples WA. Reduced tubuloglomerular feedback activity and absence of its synchronization in a connexin40 knockout rat. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1208303. [PMID: 37705697 PMCID: PMC10495682 DOI: 10.3389/fnetp.2023.1208303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/10/2023] [Indexed: 09/15/2023]
Abstract
Introduction: Tubuloglomerular feedback (TGF) is the negative feedback component of renal blood flow (RBF) autoregulation. Neighbouring nephrons often exhibit spontaneous TGF oscillation and synchronization mediated by endothelial communication, largely via connexin40 (Cx40). Methods: We had a knockout (KO) rat made that lacks Cx40. One base pair was altered to create a stop codon in exon 1 of Gja5, the gene that encodes Cx40 (the strain is WKY-Gja55em1Mcwi). Blood pressure (BP)-RBF transfer functions probed RBF dynamics and laser speckle imaging interrogated the dynamics of multiple efferent arterioles that reach the surface (star vessels). Results: The distribution of wild type (WT), heterozygote, and KO pups at weaning approximated the Mendelian ratio of 1:2:1; growth did not differ among the three strains. The KO rats were hypertensive. BP-RBF transfer functions showed low gain of the myogenic mechanism and a smaller TGF resonance peak in KO than in WT rats. Laser speckle imaging showed that myogenic mechanism had higher frequency in KO than in WT rats, but similar maximum spectral power. In contrast, the TGF frequency was similar while peak power of its oscillation was much smaller in KO than in WT rats. In WT rats, plots of instantaneous TGF phase revealed BP-independent TGF synchronization among star vessels. The synchronization could be both prolonged and widespread. In KO rats TGF synchronization was not seen, although BP transients could elicit short-lived TGF entrainment. Discussion: Despite the reduced TGF spectral power in KO rats, there was sufficient TGF gain to induce oscillations and therefore enough gain to be effective locally. We conclude that failure to synchronize is dependent, at least in part, on impaired conducted vasomotor responses.
Collapse
Affiliation(s)
- Heather L. More
- Department of Biomedical Physiology and Kinesiology, Faculty of Science Simon Fraser University, Burnaby, BC, Canada
| | - Branko Braam
- Division of Nephrology, Department of Medicine, Edmonton, AB, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - William A. Cupples
- Department of Biomedical Physiology and Kinesiology, Faculty of Science Simon Fraser University, Burnaby, BC, Canada
- Division of Nephrology, Department of Medicine, Edmonton, AB, Canada
| |
Collapse
|
3
|
Chivers JM, Whiles SA, Miles CB, Biederman BE, Ellison MF, Lovingood CW, Wright MH, Hoover DB, Raafey MA, Youngberg GA, Venkatachalam MA, Zheleznova NN, Yang C, Liu P, Kriegel AJ, Cowley AW, O'Connor PM, Picken MM, Polichnowski AJ. Brown-Norway chromosome 1 mitigates the upregulation of proinflammatory pathways in mTAL cells and subsequent age-related CKD in Dahl SS/JrHsdMcwi rats. Am J Physiol Renal Physiol 2023; 324:F193-F210. [PMID: 36475869 PMCID: PMC9886360 DOI: 10.1152/ajprenal.00145.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) has a strong genetic component; however, the underlying pathways are not well understood. Dahl salt-sensitive (SS)/Jr rats spontaneously develop CKD with age and are used to investigate the genetic determinants of CKD. However, there are currently several genetically diverse Dahl SS rats maintained at various institutions and the extent to which some exhibit age-related CKD is unclear. We assessed glomerulosclerosis (GS) and tubulointerstitial fibrosis (TIF) in 3- and 6-mo-old male and female SS/JrHsdMcwi, BN/NHsd/Mcwi [Brown-Norway (BN)], and consomic SS-Chr 1BN/Mcwi (SS.BN1) rats, in which chromosome 1 from the BN rat was introgressed into the genome of the SS/JrHsdMcwi rat. Rats were fed a 0.4% NaCl diet. GS (31 ± 3% vs. 7 ± 1%) and TIF (2.3 ± 0.2 vs. 0.5 ± 0.1) were significantly greater in 6-mo-old compared with 3-mo-old SS/JrHsdMcwi rats, and CKD was exacerbated in males. GS was minimal in 6- and 3-mo-old BN (3.9 ± 0.6% vs. 1.2 ± 0.4%) and SS.BN1 (2.4 ± 0.5% vs. 1.0 ± 0.3%) rats, and neither exhibited TIF. In SS/JrHsdMcwi and SS.BN1 rats, mean arterial blood pressure was significantly greater in 6-mo-old compared with 3-mo-old SS/JrHsdMcwi (162 ± 4 vs. 131 ± 2 mmHg) but not SS.BN1 (115 ± 2 vs. 116 ± 1 mmHg) rats. In 6-mo-old SS/JrHsdMcwi rats, blood pressure was significantly greater in females. RNA-sequencing analysis revealed that inflammatory pathways were upregulated in isolated medullary thick ascending tubules in 7-wk-old SS/JrHsdMcwi rats, before the development of tubule pathology, compared with SS.BN1 rats. In summary, SS/JrHsdMcwi rats exhibit robust age-related progression of medullary thick ascending limb abnormalities, CKD, and hypertension, and gene(s) on chromosome 1 have a major pathogenic role in such changes.NEW & NOTEWORTHY This study shows that the robust age-related progression of kidney disease in Dahl SS/JrHsdMcw rats maintained on a normal-salt diet is abolished in consomic SS.BN1 rats. Evidence that medullary thick ascending limb segments of SS/JrHsdMcw rats are structurally abnormal and enriched in proinflammatory pathways before the development of protein casts provides new insights into the pathogenesis of kidney disease in this model.
Collapse
Affiliation(s)
- Jacqueline M Chivers
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Shannon A Whiles
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Conor B Miles
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Brianna E Biederman
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Megan F Ellison
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Connor W Lovingood
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Marie H Wright
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Donald B Hoover
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
| | - Muhammad A Raafey
- Department of Pathology, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - George A Youngberg
- Department of Pathology, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | | | | | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Paul M O'Connor
- Department of Physiology, Augusta University, Augusta, Georgia
| | - Maria M Picken
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois
| | - Aaron J Polichnowski
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
4
|
Shimada S, Yang C, Kurth T, Cowley AW. Divergent roles of angiotensin II upon the immediate and sustained increases of renal blood flow following unilateral nephrectomy. Am J Physiol Renal Physiol 2022; 322:F473-F485. [PMID: 35224992 PMCID: PMC8977133 DOI: 10.1152/ajprenal.00376.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/31/2022] [Accepted: 02/18/2022] [Indexed: 12/18/2022] Open
Abstract
Although the molecular and functional responses related to renal compensatory hypertrophy after unilateral nephrectomy (UNX) has been well described, many aspects of these events remain unclear. One question is how the remaining kidney senses the absence of the contralateral organ, and another is what the role of the renin-angiotensin system is in these responses. Both acute anesthetized and chronic unanesthetized experiments were performed using the angiotensin II type 1 receptor blocker losartan and the renin inhibitor aliskiren to determine the contribution of the renin-angiotensin system to immediate changes and losartan for chronic changes of renal blood flow (RBF) and the associated hypertrophic events in male Sprague-Dawley rats. Chronic experiments used implanted RBF probes and arterial catheters for continuous data collection, and the glomerular filtration rate was determined by noninvasive transcutaneous FITC-sinistrin measurements. The results of the acute experiments found that RBF increased nearly 25% (4.6 ± 0.5 to 5.6 ± 0.6 mL/min/g kidney wt) during the first 15 min following UNX and that this response was abolished by losartan (6.7 ± 0.7 to 7.0 ± 0.7 mL/min/g kidney wt) or aliskiren (5.8 ± 0.4 to 6.0 ± 0.4 mL/min/g kidney wt) treatment. Thereafter, RBF increased progressively over 7 days, and kidney weight increased by 19% of pre-UNX values. When normalized to kidney weight determined at day 7 after UNX, RBF was not significantly different from pre-UNX levels. Semiquantification of CD31-positive capillaries revealed increases of the glomeruli and peritubular capillaries that paralleled the kidney hypertrophy. None of these chronic changes was inhibited by losartan treatment, indicating that neither the compensatory structural nor the RBF changes were angiotensin II type 1 receptor dependent.NEW & NOTEWORTHY This study found that the immediate increases of renal blood flow (RBF) following unilateral nephrectomy (UNX) are a consequence of reduced angiotensin II type 1 (AT1) receptor stimulation. The continuous monitoring of RBF and intermittent measurement of glomerular filtration rate (GFR) in conscious rats during the 1-wk period of rapid hypertrophy following UNX provided unique insights into the regulation of RBF and GFR when faced with increased metabolic loads. It was found that neither kidney hypertrophy nor the associated increase of capillaries was an AT1-dependent phenomenon.
Collapse
Affiliation(s)
- Satoshi Shimada
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Chun Yang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Theresa Kurth
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Allen W Cowley
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
5
|
Potter JC, Whiles SA, Miles CB, Whiles JB, Mitchell MA, Biederman BE, Dawoud FM, Breuel KF, Williamson GA, Picken MM, Polichnowski AJ. Salt-Sensitive Hypertension, Renal Injury, and Renal Vasodysfunction Associated With Dahl Salt-Sensitive Rats Are Abolished in Consomic SS.BN1 Rats. J Am Heart Assoc 2021; 10:e020261. [PMID: 34689582 PMCID: PMC8751849 DOI: 10.1161/jaha.120.020261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Abnormal renal hemodynamic responses to salt‐loading are thought to contribute to salt‐sensitive (SS) hypertension. However, this is based largely on studies in anesthetized animals, and little data are available in conscious SS and salt‐resistant rats. Methods and Results We assessed arterial blood pressure, renal function, and renal blood flow during administration of a 0.4% NaCl and a high‐salt (4.0% NaCl) diet in conscious, chronically instrumented 10‐ to 14‐week‐old Dahl SS and consomic SS rats in which chromosome 1 from the salt‐resistant Brown‐Norway strain was introgressed into the genome of the SS strain (SS.BN1). Three weeks of high salt intake significantly increased blood pressure (20%) and exacerbated renal injury in SS rats. In contrast, the increase in blood pressure (5%) was similarly attenuated in Brown‐Norway and SS.BN1 rats, and both strains were completely protected against renal injury. In SS.BN1 rats, 1 week of high salt intake was associated with a significant decrease in renal vascular resistance (−8%) and increase in renal blood flow (15%). In contrast, renal vascular resistance failed to decrease, and renal blood flow remained unchanged in SS rats during high salt intake. Finally, urinary sodium excretion and glomerular filtration rate were similar between SS and SS.BN1 rats during 0.4% NaCl and high salt intake. Conclusions Our data support the concept that renal vasodysfunction contributes to blood pressure salt sensitivity in Dahl SS rats, and that genes on rat chromosome 1 play a major role in modulating renal hemodynamic responses to salt loading and salt‐induced hypertension.
Collapse
Affiliation(s)
- Jacqueline C Potter
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Shannon A Whiles
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Conor B Miles
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Jenna B Whiles
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Mark A Mitchell
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Brianna E Biederman
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Febronia M Dawoud
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Kevin F Breuel
- Department of Obstetrics and Gynecology Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Geoffrey A Williamson
- Department of Electrical and Computer Engineering Illinois Institute of Technology Chicago IL
| | - Maria M Picken
- Department of Pathology Loyola University Medical Center Maywood IL
| | - Aaron J Polichnowski
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN.,Center of Excellence in Inflammation, Infectious Disease and Immunity East Tennessee State University Johnson City TN
| |
Collapse
|
6
|
Franzén S, Näslund E, Wang H, Frithiof R. Prevention of hemorrhage-induced renal vasoconstriction and hypoxia by angiotensin II type 1 receptor antagonism in pigs. Am J Physiol Regul Integr Comp Physiol 2021; 321:R12-R20. [PMID: 34009032 DOI: 10.1152/ajpregu.00073.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Angiotensin II (ANG II) is a potent vasoconstrictor and may reduce renal blood flow (RBF), causing renal hypoxia. Hypotensive hemorrhage elevates plasma ANG II levels and is associated with increased risk of acute kidney injury. We hypothesized that ANG II antagonism prevents renal vasoconstriction and hypoxia caused by hemorrhage. Pigs were anaesthetized, surgically prepared, and randomized to intravenous losartan (1.5 mg·kg-1·h-1, n = 8) or an equal volume of intravenous Ringer acetate (vehicle-treated, n = 8). Hemorrhage was induced by continuous aspiration of blood to reach and sustain mean arterial pressure of <50 mmHg for 30 min. Plasma ANG II levels, hemodynamics and oxygenation were assessed 60 min prehemorrhage, 30-min after the start of hemorrhage, and 60 min posthemorrhage. Erythropoietin mRNA was analyzed in cortical and medullary tissue sampled at the end of the experiment. Hypotensive hemorrhage increased plasma ANG II levels and decreased RBF and oxygen delivery in both groups. Losartan-treated animals recovered in RBF and oxygen delivery, whereas vehicle-treated animals had persistently reduced RBF and oxygen delivery. In accordance, renal vascular resistance increased over time post hemorrhage in vehicle-treated animals but was unchanged in losartan-treated animals. Renal oxygen extraction rate and cortical erythropoietin mRNA levels increased in the vehicle group but not in the losartan group. In conclusion, ANG II antagonism alleviates prolonged renal vasoconstriction and renal hypoxia in a large animal model of hypotensive hemorrhage.
Collapse
Affiliation(s)
- Stephanie Franzén
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Erik Näslund
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden.,Centre for Research and Development, Uppsala University/Region Gävleborg, Gavle, Sweden
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Infections and Defenses, Uppsala University, Uppsala, Sweden
| | - Robert Frithiof
- Department of Surgical Sciences, Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Shimada S, Abais-Battad JM, Alsheikh AJ, Yang C, Stumpf M, Kurth T, Mattson DL, Cowley AW. Renal Perfusion Pressure Determines Infiltration of Leukocytes in the Kidney of Rats With Angiotensin II-Induced Hypertension. Hypertension 2020; 76:849-858. [PMID: 32755400 DOI: 10.1161/hypertensionaha.120.15295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The present study examined the extent to which leukocyte infiltration into the kidneys in Ang II (angiotensin II)-induced hypertension is determined by elevation of renal perfusion pressure (RPP). Male Sprague-Dawley rats were instrumented with carotid and femoral arterial catheters for continuous monitoring of blood pressure and a femoral venous catheter for infusion. An inflatable aortic occluder cuff placed between the renal arteries with computer-driven servo-controller maintained RPP to the left kidney at control levels during 7 days of intravenous Ang II (50 ng/kg per minute) or vehicle (saline) infusion. Rats were fed a 0.4% NaCl diet throughout the study. Ang II-infused rats exhibited nearly a 50 mm Hg increase of RPP (carotid catheter) to the right kidney while RPP to the left kidney (femoral catheter) was controlled at baseline pressure throughout the study. As determined at the end of the studies by flow cytometry, right kidneys exhibited significantly greater numbers of T cells, B cells, and monocytes/macrophages compared with the servo-controlled left kidneys and compared with vehicle treated rats. No difference was found between Ang II servo-controlled left kidneys and vehicle treated kidneys. Immunostaining found that the density of glomeruli, cortical, and outer medullary capillaries were significantly reduced in the right kidney of Ang II-infused rats compared with servo-controlled left kidney. We conclude that in this model of hypertension the elevation of RPP, not Ang II nor dietary salt, leads to leukocyte infiltration in the kidney and to capillary rarefaction.
Collapse
Affiliation(s)
- Satoshi Shimada
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| | | | - Ammar J Alsheikh
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| | - Chun Yang
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| | - Megan Stumpf
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| | - Theresa Kurth
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| | - David L Mattson
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| | - Allen W Cowley
- From the Department of Physiology, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
8
|
Bidani AK, Polichnowski AJ, Licea-Vargas H, Long J, Kliethermes S, Williamson GA, Griffin KA. BP Fluctuations and the Real-Time Dynamics of Renal Blood Flow Responses in Conscious Rats. J Am Soc Nephrol 2019; 31:324-336. [PMID: 31792155 DOI: 10.1681/asn.2019070718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/29/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Renal autoregulation maintains stable renal function despite BP fluctuations and protects glomerular capillaries from hypertensive injury. However, real-time dynamics of renal autoregulation in conscious animals have not been characterized. METHODS To develop novel analytic methods for assessing renal autoregulation, we recorded concurrent BP and renal blood flow in conscious rats, comparing animals with renal autoregulation that was intact versus impaired (from 3/4 nephrectomy), before and after additional impairment (from the calcium channel blocker amlodipine). We calculated autoregulatory indices for adjacent short segments of increasing length (0.5, 1, 2.5, 5, 10, and 20 seconds) that exhibited a mean BP difference of at least 5 mm Hg. RESULTS Autoregulatory restoration of renal blood flow to baseline after BP changes in conscious rats occurs rapidly, in 5-10 seconds. The response is significantly slower in states of impaired renal autoregulation, enhancing glomerular pressure exposure. However, in rats with severe renal autoregulation impairment (3/4 nephrectomy plus amlodipine), renal blood flow in conscious animals (but not anesthetized animals) was still restored to baseline, but took longer (15-20 seconds). Consequently, the ability to maintain overall renal blood flow stability is not compromised in conscious rats with impaired renal autoregulation. CONCLUSIONS These novel findings show the feasibility of renal autoregulation assessment in conscious animals with spontaneous BP fluctuations and indicate that transient increases in glomerular pressure may play a greater role in the pathogenesis of hypertensive glomerulosclerosis than previously thought. These data also show that unidentified mechanosensitive mechanisms independent of known renal autoregulation mechanisms and voltage-gated calcium channels can maintain overall renal blood flow and GFR stability despite severely impaired renal autoregulation.
Collapse
Affiliation(s)
- Anil K Bidani
- Division of Nephrology, Department of Medicine, Loyola University Medical Center and .,Renal Section, Department of Medicine, Edward Hines Jr. Veterans Administration Hospital, Maywood, Illinois
| | - Aaron J Polichnowski
- Division of Nephrology, Department of Medicine, Loyola University Medical Center and.,Department of Biomedical Sciences and Center of Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Hector Licea-Vargas
- Division of Nephrology, Department of Medicine, Loyola University Medical Center and
| | - Jianrui Long
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois; and
| | - Stephanie Kliethermes
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin
| | - Geoffrey A Williamson
- Department of Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, Illinois; and
| | - Karen A Griffin
- Division of Nephrology, Department of Medicine, Loyola University Medical Center and.,Renal Section, Department of Medicine, Edward Hines Jr. Veterans Administration Hospital, Maywood, Illinois
| |
Collapse
|
9
|
Lerman LO, Kurtz TW, Touyz RM, Ellison DH, Chade AR, Crowley SD, Mattson DL, Mullins JJ, Osborn J, Eirin A, Reckelhoff JF, Iadecola C, Coffman TM. Animal Models of Hypertension: A Scientific Statement From the American Heart Association. Hypertension 2019; 73:e87-e120. [PMID: 30866654 DOI: 10.1161/hyp.0000000000000090] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hypertension is the most common chronic disease in the world, yet the precise cause of elevated blood pressure often cannot be determined. Animal models have been useful for unraveling the pathogenesis of hypertension and for testing novel therapeutic strategies. The utility of animal models for improving the understanding of the pathogenesis, prevention, and treatment of hypertension and its comorbidities depends on their validity for representing human forms of hypertension, including responses to therapy, and on the quality of studies in those models (such as reproducibility and experimental design). Important unmet needs in this field include the development of models that mimic the discrete hypertensive syndromes that now populate the clinic, resolution of ongoing controversies in the pathogenesis of hypertension, and the development of new avenues for preventing and treating hypertension and its complications. Animal models may indeed be useful for addressing these unmet needs.
Collapse
|
10
|
Angiotensin II-induced hypertension in rats is only transiently accompanied by lower renal oxygenation. Sci Rep 2018; 8:16342. [PMID: 30397212 PMCID: PMC6218546 DOI: 10.1038/s41598-018-34211-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 10/09/2018] [Indexed: 02/08/2023] Open
Abstract
Activation of the renin-angiotensin system may initiate chronic kidney disease. We hypothesised that renal hypoxia is a consequence of hemodynamic changes induced by angiotensin II and occurs prior to development of severe renal damage. Male Sprague-Dawley rats were infused continuously with angiotensin II (350 ng/kg/min) for 8 days. Mean arterial pressure (n = 5), cortical (n = 6) and medullary (n = 7) oxygenation (pO2) were continuously recorded by telemetry and renal tissue injury was scored. Angiotensin II increased arterial pressure gradually to 150 ± 18 mmHg. This was associated with transient reduction of oxygen levels in renal cortex (by 18 ± 2%) and medulla (by 17 ± 6%) at 10 ± 2 and 6 ± 1 hours, respectively after starting infusion. Thereafter oxygen levels normalised to pre-infusion levels and were maintained during the remainder of the infusion period. In rats receiving angiotensin II, adding losartan to drinking water (300 mg/L) only induced transient increase in renal oxygenation, despite normalisation of arterial pressure. In rats, renal hypoxia is only a transient phenomenon during initiation of angiotensin II-induced hypertension.
Collapse
|
11
|
Moonen L, D'Haese PC, Vervaet BA. Epithelial Cell Cycle Behaviour in the Injured Kidney. Int J Mol Sci 2018; 19:E2038. [PMID: 30011818 PMCID: PMC6073451 DOI: 10.3390/ijms19072038] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI), commonly caused by ischemia-reperfusion injury, has far-reaching health consequences. Despite the significant regenerative capacity of proximal tubular epithelium cells (PTCs), repair frequently fails, leading to the development of chronic kidney disease (CKD). In the last decade, it has been repeatedly demonstrated that dysregulation of the cell cycle can cause injured kidneys to progress to CKD. More precisely, severe AKI causes PTCs to arrest in the G1/S or G2/M phase of the cell cycle, leading to maladaptive repair and a fibrotic outcome. The mechanisms causing these arrests are far from known. The arrest might, at least partially, be attributed to DNA damage since activation of the DNA-damage response pathway leads to cell cycle arrest. Alternatively, cytokine signalling via nuclear factor kappa beta (NF-κβ) and p38-mitogen-activated protein kinase (p38-MAPK) pathways, and reactive oxygen species (ROS) can play a role independent of DNA damage. In addition, only a handful of cell cycle regulators (e.g., p53, p21) have been thoroughly studied during renal repair. Still, why and how PTCs decide to arrest their cell cycle and how this arrest can efficiently be overcome remain open and challenging questions. In this review we will discuss the evidence for cell cycle involvement during AKI and development of CKD together with putative therapeutic approaches.
Collapse
Affiliation(s)
- Lies Moonen
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium.
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium.
| | - Benjamin A Vervaet
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium.
| |
Collapse
|
12
|
Huang L, Wang A, Hao Y, Li W, Liu C, Yang Z, Zheng F, Zhou MS. Macrophage Depletion Lowered Blood Pressure and Attenuated Hypertensive Renal Injury and Fibrosis. Front Physiol 2018; 9:473. [PMID: 29867533 PMCID: PMC5949360 DOI: 10.3389/fphys.2018.00473] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/16/2018] [Indexed: 01/13/2023] Open
Abstract
Monocyte/macrophage recruitment is closely associated with the degree of hypertensive renal injury. We investigated the direct role of macrophages using liposome-encapsulated clodronate (LEC) to deplete monocytes/macrophages in hypertensive renal injury. C57BL/6 mice were treated with a pressor dose of angiotensin (Ang, 1.4 mg/kg/day) II plus LEC or the PBS-liposome for 2 weeks. Ang II mice developed hypertension, albuminuria, glomerulosclerosis, and renal fibrosis. LEC treatment reduced systolic blood pressure (SBP), albuminuria, and protected against renal structural injury in Ang II mice. Ang II significantly increased renal macrophage infiltration (MOMA2+ cells) and the expression of renal tumor necrosis factor α and interleukin β1, which were significantly reduced in Ang II/LEC mice. Ang II increased renal oxidative stress and the expression of profibrotic factors transforming growth factor (TGF) β1 and fibronectin. Ang II also inhibited the phosphorylation of endothelial nitric oxide synthase [phospho-endothelial nitric oxide synthesis (eNOS), ser1177]. LEC treatment reduced renal oxidative stress and TGFβ1 and fibronectin expressions, and increased phospho-eNOS expression in the Ang II mice. In Dahl rats of salt-sensitive hypertension, LEC treatment for 4 weeks significantly attenuated the elevation of SBP induced by high salt intake and protected against renal injury and fibrosis. Our results demonstrate that renal macrophages play a critical role in the development of hypertension and hypertensive renal injury and fibrosis; the underlying mechanisms may be involved in the reduction in macrophage-driven renal inflammation and restoration of the balance between renal oxidative stress and eNOS. Therefore, macrophages should be considered as a potential therapeutic target to reduce the adverse consequences of hypertensive renal diseases.
Collapse
Affiliation(s)
- Lei Huang
- Department of Physiology, Shenyang Medical University, Shenyang, China.,Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Aimei Wang
- Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Yun Hao
- Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Weihong Li
- Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Chang Liu
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhihang Yang
- Department of Physiology, Shenyang Medical University, Shenyang, China
| | - Feng Zheng
- Department of Nephrology, Second Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - Ming-Sheng Zhou
- Department of Physiology, Shenyang Medical University, Shenyang, China.,Department of Physiology, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
13
|
Chen D, Xiong XQ, Zang YH, Tong Y, Zhou B, Chen Q, Li YH, Gao XY, Kang YM, Zhu GQ. BCL6 attenuates renal inflammation via negative regulation of NLRP3 transcription. Cell Death Dis 2017; 8:e3156. [PMID: 29072703 PMCID: PMC5680929 DOI: 10.1038/cddis.2017.567] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 12/26/2022]
Abstract
Renal inflammation contributes to the pathogeneses of hypertension. This study was designed to determine whether B-cell lymphoma 6 (BCL6) attenuates renal NLRP3 inflammasome activation and inflammation and its underlying mechanism. Male spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) were used in the present study. Angiotensin (Ang) II or lipopolysaccharides (LPS) was used to induce inflammation in HK-2 cells, a human renal tubular epithelial (RTE) cell line. NLRP3 inflammasome was activated and BCL6 was downregulated in the kidneys of SHR. Either Ang II or LPS suppressed BCL6 expression in HK-2 cells. BCL6 overexpression in HK-2 cells attenuated Ang II-induced NLRP3 upregulation, inflammation and cell injury. The inhibitory effects of BCL6 overexpression on NLRP3 expression and inflammation were also observed in LPS-treated HK-2 cells. BCL6 inhibited the NLRP3 transcription via binding to the NLRP3 promoter. BCL6 knockdown with shRNA increased NLRP3 and mature IL-1β expression levels in both PBS- or Ang II-treated HK-2 cells but had no significant effects on ASC, pro-caspase-1 and pro-IL-1β expression levels. BCL6 overexpression caused by recombinant lentivirus expressing BCL6 reduced blood pressure in SHR. BCL6 overexpression prevented the upregulation of NLRP3 and mature IL-1β expression levels in the renal cortex of SHR. The results indicate that BCL6 attenuates Ang II- or LPS-induced inflammation in HK-2 cells via negative regulation of NLRP3 transcription. BCL6 overexpression in SHR reduced blood pressure, NLRP3 expression and inflammation in the renal cortex of SHR.
Collapse
Affiliation(s)
- Dan Chen
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xiao-Qing Xiong
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ying-Hao Zang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ying Tong
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bing Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xing-Ya Gao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an 710061, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
14
|
Affiliation(s)
- Karen A Griffin
- From the Hines VA Hospital, IL; and Loyola University Medical Center, Maywood, IL.
| |
Collapse
|
15
|
Wang X, Johnson AC, Sasser JM, Williams JM, Solberg Woods LC, Garrett MR. Spontaneous one-kidney rats are more susceptible to develop hypertension by DOCA-NaCl and subsequent kidney injury compared with uninephrectomized rats. Am J Physiol Renal Physiol 2016; 310:F1054-64. [PMID: 26936874 PMCID: PMC5002061 DOI: 10.1152/ajprenal.00555.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/25/2016] [Indexed: 12/12/2022] Open
Abstract
There is little clinical data of how hypertension may influence individuals with nephron deficiency in the context of being born with a single kidney. We recently developed a new rat model (the heterogeneous stock-derived model of unilateral renal agenesis rat) that is born with a single kidney and exhibits progressive kidney injury and decline in kidney function with age. We hypothesized that DOCA-salt would induce a greater increase in blood pressure and therefore accelerate the progression of kidney injury in rats born with a solitary kidney compared with rats that have undergone unilateral nephrectomy. Time course evaluation of blood pressure, kidney injury, and renal hemodynamics was performed in the following six groups of animals from weeks 13 to 18: 1) DOCA-treated rats with a solitary kidney (DOCA+S group), 2) placebo-treated rats with a solitary kidney, 3) DOCA-treated control rats with two kidneys (DOCA+C group), 4) placebo-treated control rats with two kidneys, 5) DOCA-treated rats with two kidneys that underwent uninephrectomy (DOCA+UNX8 group), and 6) placebo-treated rats with two kidneys that underwent uninephrectomy. DOCA+S rats demonstrated a significant rise (P < 0.05) in blood pressure (192 ± 4 mmHg), proteinuria (205 ± 31 mg/24 h), and a decline in glomerular filtration rate (600 ± 42 μl·min(-1)·g kidney weight(-1)) relative to the DOCA+UNX8 (173 ± 3 mmHg, 76 ± 26 mg/24 h, and 963 ± 36 μl·min(-1)·g kidney weight(-1)) and DOCA+C (154 ± 2 mmHg, 7 ± 1 mg/24 h, and 1,484 ± 121 μl·min(-1)·g kidney weight(-1)) groups. Placebo-treated groups showed no significant change among the three groups. An assessment of renal injury markers via real-time PCR/Western blot analysis and histological analysis was concordant with the measured physiological parameters. In summary, congenital solitary kidney rats are highly susceptible to the induction of hypertension compared with uninephrectomized rats, suggesting that low nephron endowment is an important driver of elevated blood pressure, hastening nephron injury through the transmission of elevated systemic blood pressure and thereby accelerating decline in kidney function.
Collapse
Affiliation(s)
- Xuexiang Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ashley C Johnson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jennifer M Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jan M Williams
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | | | - Michael R Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; Department of Medicine (Nephrology), University of Mississippi Medical Center, Jackson, Mississippi; and
| |
Collapse
|