1
|
Abstract
PURPOSE OF REVIEW Magnesium (Mg) imbalances are frequently overlooked. Hypermagnesemia usually occurs in preeclamptic women after Mg therapy or in end-stage renal disease patients, whereas hypomagnesemia is more common with a prevalence of up to 15% in the general population. Increasing evidence points toward a role for mild-to-moderate chronic hypomagnesemia in the pathogenesis of hypertension, type 2 diabetes mellitus, and metabolic syndrome. RECENT FINDINGS The kidneys are the major regulator of total body Mg homeostasis. Over the last decade, the identification of the responsible genes in rare genetic disorders has enhanced our understanding of how the kidney handles Mg. The different genetic disorders and medications contributing to abnormal Mg homeostasis are reviewed. SUMMARY As dysfunctional Mg homeostasis contributes to the development of many common human disorders, serum Mg deserves closer monitoring. Hypomagnesemic patients may be asymptomatic or may have mild symptoms. In severe hypomagnesemia, patients may present with neurological symptoms such as seizures, spasms, or cramps. Renal symptoms include nephrocalcinosis and impaired renal function. Most conditions affect tubular Mg reabsorption by disturbing the lumen-positive potential in the thick ascending limb or the negative membrane potential in the distal convoluted tubule.
Collapse
|
2
|
Abstract
The physiology of paracellular permeation of ions and solutes in the kidney is pivotally important but poorly understood. Claudins are the key components of the paracellular pathway. Defects in claudin function result in a broad range of renal diseases, including hypomagnesemia, hypercalciuria and nephrolithiasis. This review describes recent findings on the physiological function of claudins underlying paracellular transport mechanisms with a focus on renal Ca(2+) handling. We have uncovered a molecular mechanism underlying paracellular Ca(2+) transport in the thick ascending limb of Henle (TAL) that involves the functional interplay of three important claudin genes: claudin-14, -16 and -19, all of which are associated with human kidney diseases with hypercalciuria, nephrolithiasis and bone mineral loss. The Ca(2+) sensing receptor (CaSR) signaling in the kidney has long been a mystery. By analyzing small non-coding RNA molecules in the kidney, we have uncovered a novel microRNA based signaling pathway downstream of CaSR that directly regulates claudin-14 gene expression and establishes the claudin-14 molecule as a key regulator for renal Ca(2+) homeostasis. The molecular cascade of CaSR-microRNAs-claudins forms a regulatory loop to maintain proper Ca(2+) homeostasis in the kidney.
Collapse
Affiliation(s)
- Jianghui Hou
- Renal Division, Washington University, St. Louis, MO, USA.
| |
Collapse
|
3
|
Romani AMP. Cellular magnesium homeostasis. Arch Biochem Biophys 2011; 512:1-23. [PMID: 21640700 PMCID: PMC3133480 DOI: 10.1016/j.abb.2011.05.010] [Citation(s) in RCA: 375] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 12/12/2022]
Abstract
Magnesium, the second most abundant cellular cation after potassium, is essential to regulate numerous cellular functions and enzymes, including ion channels, metabolic cycles, and signaling pathways, as attested by more than 1000 entries in the literature. Despite significant recent progress, however, our understanding of how cells regulate Mg(2+) homeostasis and transport still remains incomplete. For example, the occurrence of major fluxes of Mg(2+) in either direction across the plasma membrane of mammalian cells following metabolic or hormonal stimuli has been extensively documented. Yet, the mechanisms ultimately responsible for magnesium extrusion across the cell membrane have not been cloned. Even less is known about the regulation in cellular organelles. The present review is aimed at providing the reader with a comprehensive and up-to-date understanding of the mechanisms enacted by eukaryotic cells to regulate cellular Mg(2+) homeostasis and how these mechanisms are altered under specific pathological conditions.
Collapse
Affiliation(s)
- Andrea M P Romani
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4970, USA.
| |
Collapse
|
4
|
Hebert SC, Desir G, Giebisch G, Wang W. Molecular diversity and regulation of renal potassium channels. Physiol Rev 2005; 85:319-71. [PMID: 15618483 PMCID: PMC2838721 DOI: 10.1152/physrev.00051.2003] [Citation(s) in RCA: 236] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
K(+) channels are widely distributed in both plant and animal cells where they serve many distinct functions. K(+) channels set the membrane potential, generate electrical signals in excitable cells, and regulate cell volume and cell movement. In renal tubule epithelial cells, K(+) channels are not only involved in basic functions such as the generation of the cell-negative potential and the control of cell volume, but also play a uniquely important role in K(+) secretion. Moreover, K(+) channels participate in the regulation of vascular tone in the glomerular circulation, and they are involved in the mechanisms mediating tubuloglomerular feedback. Significant progress has been made in defining the properties of renal K(+) channels, including their location within tubule cells, their biophysical properties, regulation, and molecular structure. Such progress has been made possible by the application of single-channel analysis and the successful cloning of K(+) channels of renal origin.
Collapse
Affiliation(s)
- Steven C Hebert
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520-8026, USA.
| | | | | | | |
Collapse
|
5
|
Schlingmann KP, Konrad M, Seyberth HW. Genetics of hereditary disorders of magnesium homeostasis. Pediatr Nephrol 2004; 19:13-25. [PMID: 14634861 DOI: 10.1007/s00467-003-1293-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Revised: 07/25/2003] [Accepted: 07/28/2003] [Indexed: 10/26/2022]
Abstract
Magnesium plays an essential role in many biochemical and physiological processes. Homeostasis of magnesium is tightly regulated and depends on the balance between intestinal absorption and renal excretion. During the last decades, various hereditary disorders of magnesium handling have been clinically characterized and genetic studies in affected individuals have led to the identification of some molecular components of cellular magnesium transport. In addition to these hereditary forms of magnesium deficiency, recent studies have revealed a high prevalence of latent hypomagnesemia in the general population. This finding is of special interest in view of the association between hypomagnesemia and common chronic diseases such as diabetes, coronary heart disease, hypertension, and asthma. However, valuable methods for the diagnosis of body and tissue magnesium deficiency are still lacking. This review focuses on clinical and genetic aspects of hereditary disorders of magnesium homeostasis. We will review primary defects of epithelial magnesium transport, disorders associated with defects in Ca(2+)/ Mg(2+) sensing, as well as diseases characterized by renal salt wasting and hypokalemic alkalosis, with special emphasis on disturbed magnesium homeostasis.
Collapse
Affiliation(s)
- Karl P Schlingmann
- Department of Pediatrics, Philipps University, Deutschhausstrasse 12, 35037 Marburg, Germany
| | | | | |
Collapse
|
6
|
Hentschel H, Nearing J, Harris HW, Betka M, Baum M, Hebert SC, Elger M. Localization of Mg2+-sensing shark kidney calcium receptor SKCaR in kidney of spiny dogfish, Squalus acanthias. Am J Physiol Renal Physiol 2003; 285:F430-9. [PMID: 12759228 DOI: 10.1152/ajprenal.00081.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We recently cloned a homologue of the bovine parathyroid calcium receptor from the kidney of a spiny dogfish (Squalus acanthias) and termed this new protein SKCaR. SKCaR senses alterations in extracellular Mg2+ after its expression in human embryonic kidney cells (Nearing J, Betka M, Quinn S, Hentschel H, Elger M, Baum M, Bai M, Chattopadyhay N, Brown E, Hebert S, and Harris HW. Proc Natl Acad. Sci USA 99: 9231-9236, 2002). In this report, we used light and electron microscopic immunocytochemical techniques to study the distribution of SKCaR in dogfish kidney. SKCaR antiserum bound to the apical membranes of shark kidney epithelial cells in the following tubular segments: proximal tubules (PIa and PIIb), late distal tubule, and collecting tubule/collecting duct as well as diffusely labeled cells of early distal tubule. The highly specific distribution of SKCaR in mesial tissue as well as lateral countercurrent bundles of dogfish kidney is compatible with a role for SKCaR to sense local tubular Mg2+ concentrations. This highly specific distribution of SKCaR protein in dogfish kidney could possibly work in concert with the powerful Mg2+ secretory system present in the PIIa segment of elasmobranch fish kidney to affect recycling of Mg2+ from putative Mg2+-sensing/Mg2+-reabsorbing segments. These data provide support for the possible existence of Mg2+ cycling in elasmobranch kidney in a manner analogous to that described for mammals.
Collapse
|
7
|
Abstract
The serum levels of parathyroid hormone and magnesium depend on each other in a complex manner. The secretion of parathyroid hormone by the parathyroid is physiologically controlled by the serum calcium level, but magnesium can exert similar effects. While low levels of magnesium stimulate parathyroid hormone secretion, very low serum concentrations induce a paradoxical block. This block leads to clinically relevant hypocalcemia in severely hypomagnesiemic patients. The mechanism of this effect has recently been traced to an activation of the alpha-subunits of heterotrimeric G-proteins. This activation mimicks activation of the calcium sensing receptor and thus causes inhibition of parathyroid hormone secretion. In addition to the effects of magnesium on parathyroid hormone secretion, parathyroid hormone in turn regulates magnesium homeostasis by modulating renal magnesium reabsorption. The distal convoluted tubule is of crucial importance for parathyroid hormone-regulated magnesium homeostasis.
Collapse
Affiliation(s)
- Thorsten Vetter
- Institute for Pharmacology and Toxicology, Würzburg, Germany
| | | |
Collapse
|
8
|
Kang HS, Kerstan D, Dai LJ, Ritchie G, Quamme GA. Adenosine modulates Mg(2+) uptake in distal convoluted tubule cells via A(1) and A(2) purinoceptors. Am J Physiol Renal Physiol 2001; 281:F1141-7. [PMID: 11704566 DOI: 10.1152/ajprenal.2001.281.6.f1141] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
tk;1Adenosine plays a role in the control of water and electrolyte reabsorption in the distal tubule. As the distal convoluted tubule is important in the regulation of renal Mg(2+) balance, we determined the effects of adenosine on cellular Mg(2+) uptake in this segment. The effect of adenosine was studied on immortalized mouse distal convoluted tubule (MDCT) cells, a model of the intact distal convoluted tubule. The rate of Mg(2+) uptake was measured with fluorescence techniques using mag-fura 2. To assess Mg(2+) uptake, MDCT cells were first Mg(2+) depleted to 0.22 +/- 0.01 mM by being cultured in Mg(2+)-free media for 16 h and then placed in 1.5 mM MgCl(2); next, changes in intracellular Mg(2+) concentration ([Mg(2+)](i)) were determined. [Mg(2+)](i) returned to basal levels, 0.53 +/- 0.02 mM, with a mean refill rate, d([Mg(2+)](i))/dt, of 137 +/- 16 nM/s. Adenosine stimulates basal Mg(2+) uptake by 41 +/- 10%. The selective A(1) purinoceptor agonist N(6)-cyclopentyladenosine (CPA) increased intracellular Ca(2+) and decreased parathyroid hormone (PTH)-stimulated cAMP formation and PTH-mediated Mg(2+) uptake. On the other hand, the selective A(2) receptor agonist 2-[p-(2-carbonyl-ethyl)-phenylethylamino]-5'-N-ethylcarboxamidoadenosine (CGS) stimulated Mg(2+) entry in a concentration-dependent fashion. CGS increased cAMP formation and the protein kinase A inhibitor RpcAMPS inhibited CGS-stimulated Mg(2+) uptake. Selective inhibition of phospholipase C, protein kinase C, or mitogen-activated protein kinase enzyme cascades with U-73122, Ro-31-8220, and PD-98059, respectively, diminished A(2) agonist-mediated Mg(2+) entry. Aldosterone potentiated CGS-mediated Mg(2+) entry, and elevation of extracellular Ca(2+) diminished CGS-responsive cAMP formation and Mg(2+) uptake. Accordingly, MDCT cells possess both A(1) and A(2) purinoceptor subtypes with intracellular signaling typical of these respective receptors. We conclude that adenosine has dual effects on Mg(2+) uptake in MDCT cells through separate A(1) and A(2) purinoceptor pathways.
Collapse
Affiliation(s)
- H S Kang
- Department of Medicine, University of British Columbia, Vancouver Hospital and Health Sciences Centre, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | | | |
Collapse
|
9
|
Ikari A, Nakajima K, Kawano K, Suketa Y. Polyvalent cation-sensing mechanism increased Na(+)-independent Mg(2+) transport in renal epithelial cells. Biochem Biophys Res Commun 2001; 287:671-4. [PMID: 11563847 DOI: 10.1006/bbrc.2001.5644] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Extracellular Ca(2+)/polyvalent cation-sensing receptor (CaSR) is capable of monitoring changes in extracellular polyvalent cation concentrations. In the present study, we investigated whether CaSR agonists reinforce the decrease of intracellular free Mg(2+) concentration ([Mg(2+)](i)) induced by extracellular Mg(2+) plus Na(+) removal. Interestingly, exposure of NRK-52E renal epithelial cells to increasing extracellular Mg(2+) concentrations from 0.8 to 15 mM for 1-2 days resulted in a twofold increase in the levels of CaSR mRNA and protein. By fluorophotometer (with mag-fura 2 fluorescent dye) and atomic absorption spectrophotometer, we confirmed that activation of CaSR by neomycin (0.5 mM) or gadolinium (1 mM) reinforced the decrease of [Mg(2+)](i) induced by Mg(2+) removal in the cells cultured in 10 mM Mg(2+)-containing medium. The neomycin-induced [Mg(2+)](i) decrease was inhibited by nicardipine (50 microM), but not by verapamil (50 microM) or amiloride (0.1 mM). These results indicate that CaSR monitors extracellular Mg(2+) concentration, and probably cause activation of Na(+)-independent Mg(2+)-transport system.
Collapse
Affiliation(s)
- A Ikari
- Department of Environmental Biochemistry and Toxicology, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Shizuoka, 422-8526, Japan.
| | | | | | | |
Collapse
|
10
|
Ritchie G, Kerstan D, Dai LJ, Kang HS, Canaff L, Hendy GN, Quamme GA. 1,25(OH)(2)D(3) stimulates Mg2+ uptake into MDCT cells: modulation by extracellular Ca2+ and Mg2+. Am J Physiol Renal Physiol 2001; 280:F868-78. [PMID: 11292630 DOI: 10.1152/ajprenal.2001.280.5.f868] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The distal convoluted tubule plays a significant role in renal magnesium conservation. Although the cells of the distal convoluted tubule possess the vitamin D receptor, little is known about the effects of 1alpha,25-dihydroxyvitamin D [1,25(OH)(2)D(3)] on magnesium transport. In this study, we examined the effect of 1,25(OH)(2)D(3) on distal cellular magnesium uptake and the modulation of this response by extracellular Ca2+ and Mg2+ in an immortalized mouse distal convoluted tubule (MDCT) cell line. MDCT cells possess the divalent cation-sensing receptor (CaSR) that responds to elevation of extracellular Ca2+ and Mg2+ concentrations to diminish peptide hormone-stimulated Mg2+ uptake. Mg2+ uptake rates were determined by microfluorescence in Mg2+ -depleted MDCT cells. Treatment of MDCT cells with 1,25(OH)(2)D(3) for 16-24 h stimulated basal Mg2+ uptake in a concentration-dependent manner from basal levels of 164 +/- 5 to 210 +/- 11 nM/s, representing a 28 +/- 3% change. Pretreatment with actinomycin D or cycloheximide abolished 1,25(OH)(2)D(3)-stimulated(.)Mg2+ uptake (154 +/- 18 nM/s), suggesting that 1,25(OH)(2)D(3) stimulates Mg2+ uptake through gene activation and protein synthesis. Elevation of extracellular Ca2+ inhibited 1,25(OH)(2)D(3)-stimulated Mg2+ uptake (143 +/- 5 nM/s). Preincubation of the cells with an antibody to the CaSR prevented the inhibition by elevated extracellular Ca2+ of 1,25(OH)(2)D(3)-stimulated Mg2+ uptake (202 +/- 8 nM/s). Treatment with an antisense CaSR mRNA oligodeoxynucleotide also abolished the effects of extracellular Ca2+ on 1,25(OH)(2)D(3)-responsive Mg2+ entry. This showed that elevated extracellular calcium modulates 1,25(OH)(2)D-mediated responses through the CaSR. In summary, 1,25(OH)(2)D(3) stimulated Mg2+ uptake in MDCT cells, and this is dependent on de novo protein synthesis. Elevation of extracellular Ca2+, acting via the CaSR, inhibited 1,25(OH)(2)D(3)-stimulated Mg2+ entry. These data indicate that 1,25(OH)(2)D(3) has important effects on the control of magnesium entry in MDCT cells and these responses can be modulated by extracellular divalent cations.
Collapse
Affiliation(s)
- G Ritchie
- Department of Medicine, University Hospital, University of British Columbia, Vancouver, British Columbia V6T 1Z3
| | | | | | | | | | | | | |
Collapse
|
11
|
Dai LJ, Ritchie G, Kerstan D, Kang HS, Cole DE, Quamme GA. Magnesium transport in the renal distal convoluted tubule. Physiol Rev 2001; 81:51-84. [PMID: 11152754 DOI: 10.1152/physrev.2001.81.1.51] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The distal tubule reabsorbs approximately 10% of the filtered Mg(2+), but this is 70-80% of that delivered from the loop of Henle. Because there is little Mg(2+) reabsorption beyond the distal tubule, this segment plays an important role in determining the final urinary excretion. The distal convoluted segment (DCT) is characterized by a negative luminal voltage and high intercellular resistance so that Mg(2+) reabsorption is transcellular and active. This review discusses recent evidence for selective and sensitive control of Mg(2+) transport in the DCT and emphasizes the importance of this control in normal and abnormal renal Mg(2+) conservation. Normally, Mg(2+) absorption is load dependent in the distal tubule, whether delivery is altered by increasing luminal Mg(2+) concentration or increasing the flow rate into the DCT. With the use of microfluorescent studies with an established mouse distal convoluted tubule (MDCT) cell line, it was shown that Mg(2+) uptake was concentration and voltage dependent. Peptide hormones such as parathyroid hormone, calcitonin, glucagon, and arginine vasopressin enhance Mg(2+) absorption in the distal tubule and stimulate Mg(2+) uptake into MDCT cells. Prostaglandin E(2) and isoproterenol increase Mg(2+) entry into MDCT cells. The current evidence indicates that cAMP-dependent protein kinase A, phospholipase C, and protein kinase C signaling pathways are involved in these responses. Steroid hormones have significant effects on distal Mg(2+) transport. Aldosterone does not alter basal Mg(2+) uptake but potentiates hormone-stimulated Mg(2+) entry in MDCT cells by increasing hormone-mediated cAMP formation. 1,25-Dihydroxyvitamin D(3), on the other hand, stimulates basal Mg(2+) uptake. Elevation of plasma Mg(2+) or Ca(2+) inhibits hormone-stimulated cAMP accumulation and Mg(2+) uptake in MDCT cells through activation of extracellular Ca(2+)/Mg(2+)-sensing mechanisms. Mg(2+) restriction selectively increases Mg(2+) uptake with no effect on Ca(2+) absorption. This intrinsic cellular adaptation provides the sensitive and selective control of distal Mg(2+) transport. The distally acting diuretics amiloride and chlorothiazide stimulate Mg(2+) uptake in MDCT cells acting through changes in membrane voltage. A number of familial and acquired disorders have been described that emphasize the diversity of cellular controls affecting renal Mg(2+) balance. Although it is clear that many influences affect Mg(2+) transport within the DCT, the transport processes have not been identified.
Collapse
Affiliation(s)
- L J Dai
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Kang HS, Kerstan D, Dai LJ, Ritchie G, Quamme GA. beta-Adrenergic agonists stimulate Mg(2+) uptake in mouse distal convoluted tubule cells. Am J Physiol Renal Physiol 2000; 279:F1116-23. [PMID: 11097631 DOI: 10.1152/ajprenal.2000.279.6.f1116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
beta-Adrenergic agonists influence electrolyte reabsorption in the proximal tubule, loop of Henle, and distal tubule. Although isoproterenol enhances magnesium absorption in the thick ascending limb, it is unclear what effect, if any, beta-adrenergic agonists have on tubular magnesium handling. The effects of isoproterenol were studied in immortalized mouse distal convoluted tubule (MDCT) cells by measuring cellular cAMP formation with radioimmunoassays and Mg(2+) uptake with fluorescence techniques. Intracellular free Mg(2+) concentration ([Mg(2+)](i)) was measured in single MDCT cells by using microfluorescence with mag-fura-2. To assess Mg(2+) uptake, MDCT cells were first Mg(2+) depleted to 0.22 +/- 0.01 mM by culturing in Mg(2+)-free media for 16 h and then placed in 1.5 mM MgCl(2), and the changes in [Mg(2+)](i) were determined. [Mg(2+)](i) returned to basal levels, 0.53 +/- 0.02 mM, with a mean refill rate, d([Mg(2+)](i))/dt, of 168 +/- 11 nM/s. Isoproterenol stimulated Mg(2+) entry in a concentration-dependent manner, with a maximal response of 252 +/- 11 nM/s, at a concentration of 10(-7) M, that represented a 50 +/- 7% increase in uptake rate above control values. This was associated with a sixfold increase in intracellular cAMP generation. Isoproterenol-stimulated Mg(2+) uptake was completely inhibited with RpcAMPS, a protein kinase A inhibitor, and U-73122, a phospholipase C inhibitor, and partially blocked by RO 31-822, a protein kinase C inhibitor. Accordingly, isoproterenol-mediated Mg(2+) entry rates involve multiple intracellular signaling pathways. Aldosterone potentiated isoproterenol-stimulated Mg(2+) uptake (326 +/- 31 nM/s), whereas elevation of extracellular Ca(2+) inhibited isoproterenol-mediated cAMP accumulation and Mg(2+) uptake, 117 +/- 37 nM/s. These studies demonstrate that isoproterenol stimulates Mg(2+) uptake in a cell line of mouse distal convoluted tubules that is modulated by hormonal and extracellular influences.
Collapse
Affiliation(s)
- H S Kang
- Department of Medicine, University of British Columbia, Vancouver Hospital and Health Sciences Centre, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | | | |
Collapse
|