1
|
Koppin A, Chase L. Lysine 473 Regulates the Progression of SLC7A11, the Cystine/Glutamate Exchanger, through the Secretory Pathway. Int J Mol Sci 2024; 25:10271. [PMID: 39408599 PMCID: PMC11476549 DOI: 10.3390/ijms251910271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
System xc-, the cystine/glutamate exchanger, is a membrane transporter that plays a critical role in the antioxidant response of cells. Recent work has shown that System xc- localizes to the plasma membrane during oxidative stress, allowing for increased activity to support the production of glutathione. In this study, we used site-directed mutagenesis to examine the role of C-terminal lysine residues (K422, K472, and K473) of xCT (SLC7A11) in regulating System xc-. We observed that K473R exhibits loss of transporter activity and membrane localization and is 7.5 kD lower in molecular weight, suggesting that K473 regulates System xc- trafficking and is modified under basal conditions. After ruling out ubiquitination and neddylation, we demonstrated that unlike WT xCT, K473R lacks N- and O-glycosylation and is sequestered in the endoplasmic reticulum. Next, we demonstrated that K473Q, a constitutively acetylated lysine mimic, also exhibits loss of transporter activity, decreased membrane expression, and a 4 kD decrease in molecular weight; however, it is N- and O-glycosylated and localized to the endoplasmic reticulum and Golgi. These results suggest that acetylation and deacetylation of K473 in the endoplasmic reticulum and Golgi, respectively, serve to regulate the progression of the transporter through the biosynthetic pathway.
Collapse
Affiliation(s)
- Anna Koppin
- Departments of Biology and Chemistry, Hope College, Holland, MI 49423, USA;
| | - Leah Chase
- Neuroscience Program, Departments of Biology and Chemistry, Hope College, Holland, MI 49423, USA
| |
Collapse
|
2
|
Abad Baucells C, Schönauer R, Halbritter J. The genetics of cystinuria - an update and critical reevaluation. Curr Opin Nephrol Hypertens 2024; 33:231-237. [PMID: 38240263 DOI: 10.1097/mnh.0000000000000949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
PURPOSE OF REVIEW We aimed to critically evaluate how the establishment of genotype-based treatment for cystinuria has been hampered due to the large number of variants of unknown significance (VUS) within the disease causing genes as well as challenges in accessing a large enough sample size for systematic analysis of endpoint parameters that truly reflect disease severity. This review further discusses how to overcome these hurdles with the establishment of a cystinuria-specific refinement of the current American College of Medical Genetics and Genomics (ACMG)-criteria of variant interpretation. RECENT FINDINGS Novel tools such as AlphaMissense combined with the establishment of a refined ACMG criterion will play a significant role in classifying VUS within the responsible disease genes SLC3A1 (rBAT) and SLC7A9 (BAT1). This will also be essential in elucidating the role of promising candidate genes, such as SLC7A13 (AGT1), which have been derived from murine model systems and still need further research to determine if they are involved in human cystinuria. SUMMARY Cystinuria was one of the first disorders to receive a gene-based classification, nonetheless, the clinically actionable implications of genetic diagnostics is still minor. This is due to poorly characterized genotype-phenotype correlations which results in a lack of individualized (genotype-) based management and metaphylaxis.
Collapse
Affiliation(s)
- Clàudia Abad Baucells
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
3
|
Huang Y, Qiu F, Dziegielewska KM, Koehn LM, Habgood MD, Saunders NR. Effects of paracetamol/acetaminophen on the expression of solute carriers (SLCs) in late-gestation fetal rat brain, choroid plexus and the placenta. Exp Physiol 2024; 109:427-444. [PMID: 38059686 PMCID: PMC10988763 DOI: 10.1113/ep091442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Solute carriers (SLCs) regulate transfer of a wide range of molecules across cell membranes using facilitative or secondary active transport. In pregnancy, these transporters, expressed at the placental barrier, are important for delivery of nutrients to the fetus, whilst also limiting entry of potentially harmful substances, such as drugs. In the present study, RNA-sequencing analysis was used to investigate expression of SLCs in the fetal (embryonic day 19) rat brain, choroid plexus and placenta in untreated control animals and following maternal paracetamol treatment. In the treated group, paracetamol (15 mg/kg) was administered to dams twice daily for 5 days (from embryonic day 15 to 19). In untreated animals, overall expression of SLCs was highest in the placenta. In the paracetamol treatment group, expression of several SLCs was significantly different compared with control animals, with ion, amino acid, neurotransmitter and sugar transporters most affected. The number of SLC transcripts that changed significantly following treatment was the highest in the choroid plexus and lowest in the brain. All SLC transcripts that changed in the placenta following paracetamol treatment were downregulated. These results suggest that administration of paracetamol during pregnancy could potentially disrupt fetal nutrient homeostasis and affect brain development, resulting in major consequences for the neonate and extending into childhood.
Collapse
Affiliation(s)
- Yifan Huang
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
| | - Fiona Qiu
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
| | | | - Liam M. Koehn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Mark D. Habgood
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
| | | |
Collapse
|
4
|
Martínez-Magaña JJ, Genis-Mendoza AD, Gallegos-Silva I, López-Narváez ML, Juárez-Rojop IE, Diaz-Zagoya JC, Tovilla-Zárate CA, González-Castro TB, Nicolini H, Solis-Medina A. Differential Alterations of Expression of the Serotoninergic System Genes and Mood-Related Behavior by Consumption of Aspartame or Potassium Acesulfame in Rats. Nutrients 2024; 16:490. [PMID: 38398814 PMCID: PMC10892058 DOI: 10.3390/nu16040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The use of aspartame (ASP) and potassium acesulfame (ACK) to reduce weight gain is growing; however, contradictory effects in body mass index control and neurobiological alterations resulting from artificial sweeteners consumption have been reported. This study aimed to evaluate the impact of the chronic consumption of ASP and ACK on mood-related behavior and the brain expression of serotonin genes in male Wistar rats. Mood-related behaviors were evaluated using the swim-forced test and defensive burying at two time points: 45 days (juvenile) and 95 days (adult) postweaning. Additionally, the mRNA expression of three serotoninergic genes (Slc6a4, Htr1a, and Htr2c) was measured in the brain areas (prefrontal cortex, hippocampus, and hypothalamus) involved in controlling mood-related behaviors. In terms of mood-related behaviors, rats consuming ACK exhibited anxiety-like behavior only during the juvenile stage. In contrast, rats consuming ASP showed a reduction in depressive-like behavior during the juvenile stage but an increase in the adult stage. The expression of Slc6a4 mRNA increased in the hippocampus of rats consuming artificial sweeteners during the juvenile stage. In the adult stage, there was an upregulation in the relative expression of Slc6a4 and Htr1a in the hypothalamus, while Htr2c expression decreased in the hippocampus of rats consuming ASP. Chronic consumption of ASP and ACK appears to have differential effects during neurodevelopmental stages in mood-related behavior, potentially mediated by alterations in serotoninergic gene expression.
Collapse
Affiliation(s)
- José Jaime Martínez-Magaña
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (I.G.-S.); (A.S.-M.)
| | - Alma Delia Genis-Mendoza
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (I.G.-S.); (A.S.-M.)
| | - Ileana Gallegos-Silva
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (I.G.-S.); (A.S.-M.)
| | - María Lilia López-Narváez
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico; (M.L.L.-N.); (I.E.J.-R.)
| | - Isela Esther Juárez-Rojop
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico; (M.L.L.-N.); (I.E.J.-R.)
| | - Juan C. Diaz-Zagoya
- División de Investigación, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Carlos Alfonso Tovilla-Zárate
- División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa 86100, Mexico; (M.L.L.-N.); (I.E.J.-R.)
| | | | - Humberto Nicolini
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (I.G.-S.); (A.S.-M.)
| | - Anayelly Solis-Medina
- Laboratorio de Genómica de Enfermedades Psiquiátricas y Neurodegenerativas, Instituto Nacional de Medicina Genómica, Ciudad de México 14610, Mexico; (J.J.M.-M.); (A.D.G.-M.); (I.G.-S.); (A.S.-M.)
| |
Collapse
|
5
|
Mayayo-Vallverdú C, Prat E, Vecino-Pérez M, González L, Gràcia-Garcia S, San Miguel L, Lopera N, Arias A, Artuch R, López de Heredia M, Torrecilla C, Rousaud-Barón F, Angerri O, Errasti-Murugarren E, Nunes V. Exploring the Contribution of the Transporter AGT1/rBAT in Cystinuria Progression: Insights from Mouse Models and a Retrospective Cohort Study. Int J Mol Sci 2023; 24:17140. [PMID: 38138969 PMCID: PMC10743100 DOI: 10.3390/ijms242417140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/25/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
More than 20 years have passed since the identification of SLC3A1 and SLC7A9 as causative genes for cystinuria. However, cystinuria patients exhibit significant variability in the age of lithiasis onset, recurrence, and response to treatment, suggesting the presence of modulatory factors influencing cystinuria severity. In 2016, a second renal cystine transporter, AGT1, encoded by the SLC7A13 gene, was discovered. Although it was discarded as a causative gene for cystinuria, its possible effect as a modulatory gene remains unexplored. Thus, we analyzed its function in mouse models of cystinuria, screened the SLC7A13 gene in 34 patients with different lithiasic phenotypes, and functionally characterized the identified variants. Mice results showed that AGT1/rBAT may have a protective role against cystine lithiasis. In addition, among the four missense variants detected in patients, two exhibited a 25% impairment in AGT1/rBAT transport. However, no correlation between SLC7A13 genotypes and lithiasis phenotypes was observed in patients, probably because these variants were found in heterozygous states. In conclusion, our results, consistent with a previous study, suggest that AGT1/rBAT does not have a relevant effect on cystinuria patients, although an impact in patients carrying homozygous pathogenic variants cannot be discarded.
Collapse
Affiliation(s)
- Clara Mayayo-Vallverdú
- Human Molecular Genetics Laboratory, Gene, Disease and Therapy Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain; (C.M.-V.); (E.P.); (M.V.-P.); (L.G.); (M.L.d.H.)
- Genetics Section, Physiological Sciences Department, Health Sciences and Medicine Faculty, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain
| | - Esther Prat
- Human Molecular Genetics Laboratory, Gene, Disease and Therapy Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain; (C.M.-V.); (E.P.); (M.V.-P.); (L.G.); (M.L.d.H.)
- Genetics Section, Physiological Sciences Department, Health Sciences and Medicine Faculty, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain
| | - Marta Vecino-Pérez
- Human Molecular Genetics Laboratory, Gene, Disease and Therapy Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain; (C.M.-V.); (E.P.); (M.V.-P.); (L.G.); (M.L.d.H.)
| | - Laura González
- Human Molecular Genetics Laboratory, Gene, Disease and Therapy Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain; (C.M.-V.); (E.P.); (M.V.-P.); (L.G.); (M.L.d.H.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain (R.A.)
| | - Silvia Gràcia-Garcia
- Urinary Lithiasis Laboratory, Fundació Puigvert, 08025 Barcelona, Spain; (S.G.-G.); (N.L.)
| | - Luz San Miguel
- Urology Service, Fundació Puigvert, 08025 Barcelona, Spain; (L.S.M.); (F.R.-B.); (O.A.)
| | - Noelia Lopera
- Urinary Lithiasis Laboratory, Fundació Puigvert, 08025 Barcelona, Spain; (S.G.-G.); (N.L.)
| | - Angela Arias
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain (R.A.)
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Rafael Artuch
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain (R.A.)
- Clinical Biochemistry Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - Miguel López de Heredia
- Human Molecular Genetics Laboratory, Gene, Disease and Therapy Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain; (C.M.-V.); (E.P.); (M.V.-P.); (L.G.); (M.L.d.H.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain (R.A.)
| | - Carlos Torrecilla
- Urology Service, Hospital Universitari de Bellvitge, 08908 L’Hospitalet de Llobregat, Spain;
| | - Ferran Rousaud-Barón
- Urology Service, Fundació Puigvert, 08025 Barcelona, Spain; (L.S.M.); (F.R.-B.); (O.A.)
| | - Oriol Angerri
- Urology Service, Fundació Puigvert, 08025 Barcelona, Spain; (L.S.M.); (F.R.-B.); (O.A.)
| | - Ekaitz Errasti-Murugarren
- Genetics Section, Physiological Sciences Department, Health Sciences and Medicine Faculty, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain (R.A.)
| | - Virginia Nunes
- Human Molecular Genetics Laboratory, Gene, Disease and Therapy Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), 08908 L’Hospitalet de Llobregat, Spain; (C.M.-V.); (E.P.); (M.V.-P.); (L.G.); (M.L.d.H.)
- Genetics Section, Physiological Sciences Department, Health Sciences and Medicine Faculty, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain
| |
Collapse
|
6
|
Gauthier-Coles G, Fairweather SJ, Bröer A, Bröer S. Do Amino Acid Antiporters Have Asymmetric Substrate Specificity? Biomolecules 2023; 13:biom13020301. [PMID: 36830670 PMCID: PMC9953452 DOI: 10.3390/biom13020301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Amino acid antiporters mediate the 1:1 exchange of groups of amino acids. Whether substrate specificity can be different for the inward and outward facing conformation has not been investigated systematically, although examples of asymmetric transport have been reported. Here we used LC-MS to detect the movement of 12C- and 13C-labelled amino acid mixtures across the plasma membrane of Xenopus laevis oocytes expressing a variety of amino acid antiporters. Differences of substrate specificity between transporter paralogs were readily observed using this method. Our results suggest that antiporters are largely symmetric, equalizing the pools of their substrate amino acids. Exceptions are the antiporters y+LAT1 and y+LAT2 where neutral amino acids are co-transported with Na+ ions, favouring their import. For the antiporters ASCT1 and ASCT2 glycine acted as a selective influx substrate, while proline was a selective influx substrate of ASCT1. These data show that antiporters can display non-canonical modes of transport.
Collapse
|
7
|
Miller KJ, Henry I, Maylin Z, Smith C, Arunachalam E, Pandha H, Asim M. A compendium of Androgen Receptor Variant 7 target genes and their role in Castration Resistant Prostate Cancer. Front Oncol 2023; 13:1129140. [PMID: 36937454 PMCID: PMC10014620 DOI: 10.3389/fonc.2023.1129140] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Persistent androgen receptor (AR) signalling is the main driver of prostate cancer (PCa). Truncated isoforms of the AR called androgen receptor variants (AR-Vs) lacking the ligand binding domain often emerge during treatment resistance against AR pathway inhibitors such as Enzalutamide. This review discusses how AR-Vs drive a more aggressive form of PCa through the regulation of some of their target genes involved in oncogenic pathways, enabling disease progression. There is a pressing need for the development of a new generation of AR inhibitors which can repress the activity of both the full-length AR and AR-Vs, for which the knowledge of differentially expressed target genes will allow evaluation of inhibition efficacy. This review provides a detailed account of the most common variant, AR-V7, the AR-V7 regulated genes which have been experimentally validated, endeavours to understand their relevance in aggressive AR-V driven PCa and discusses the utility of the downstream protein products as potential drug targets for PCa treatment.
Collapse
Affiliation(s)
| | | | - Zoe Maylin
- *Correspondence: Zoe Maylin, ; Mohammad Asim,
| | | | | | | | | |
Collapse
|
8
|
Kantipudi S, Harder D, Fotiadis D. Characterization of substrates and inhibitors of the human heterodimeric transporter 4F2hc-LAT1 using purified protein and the scintillation proximity radioligand binding assay. Front Physiol 2023; 14:1148055. [PMID: 36895635 PMCID: PMC9989278 DOI: 10.3389/fphys.2023.1148055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Amino acids have diverse and essential roles in many cellular functions such as in protein synthesis, metabolism and as precursors of different hormones. Translocation of amino acids and derivatives thereof across biological membranes is mediated by amino acid transporters. 4F2hc-LAT1 is a heterodimeric amino acid transporter that is composed of two subunits belonging to the SLC3 (4F2hc) and SLC7 (LAT1) solute carrier families. The ancillary protein 4F2hc is responsible for the correct trafficking and regulation of the transporter LAT1. Preclinical studies have identified 4F2hc-LAT1 as a valid anticancer target due to its importance in tumor progression. The scintillation proximity assay (SPA) is a valuable radioligand binding assay that allows the identification and characterization of ligands of membrane proteins. Here, we present a SPA ligand binding study using purified recombinant human 4F2hc-LAT1 protein and the radioligand [3H]L-leucine as tracer. Binding affinities of different 4F2hc-LAT1 substrates and inhibitors determined by SPA are comparable with previously reported K m and IC 50 values from 4F2hc-LAT1 cell-based uptake assays. In summary, the SPA is a valuable method for the identification and characterization of ligands of membrane transporters including inhibitors. In contrast to cell-based assays, where the potential interference with other proteins such as endogenous transporters persists, the SPA uses purified protein making target engagement and characterization of ligands highly reliable.
Collapse
Affiliation(s)
- Satish Kantipudi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Daniel Harder
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Li W, Siddique MS, Graham N, Yu W. Influence of Temperature on Biofilm Formation Mechanisms Using a Gravity-Driven Membrane (GDM) System: Insights from Microbial Community Structures and Metabolomics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8908-8919. [PMID: 35623093 DOI: 10.1021/acs.est.2c01243] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A biofilm has a significant effect on water treatment processes. Currently, there is a lack of knowledge about the effect of temperature on the biofilm structure in water treatment processes. In this study, a gravity-driven membrane ultrafiltration system was operated with river feedwater at two temperatures ("low", 4 °C; "high", 25 °C) to explore the biofilm structure and transformation mechanism. The results showed that the difference in dissolved oxygen concentration might be one of the main factors regulating the structural components of the biofilm. A denser biofilm formation and reduced flux were observed at the lower temperature. The linoleic acid metabolism was significantly inhibited at low temperature, resulting in enhanced pyrimidine metabolism by Na+ accumulation. In addition, the biofilm at low temperature had a higher proportion of the metabolites of lipids and lipid-like molecules (11.25%), organic acids and derivatives (10.83%), nucleosides, nucleotides, and analogues (7.083%), and organoheterocyclic compounds (6.66%). These small molecules secrete more polysaccharides having C═O and O═C-O functional groups, which intensified the resistance of the biofilm. Furthermore, the upregulation pathway of pyrimidine metabolism also increased the risk of urea accumulation at low temperature. Limnohabitans, Deinococcus, Diaphorobacter, Flavobacterium, and Pseudomonas were identified as the principal microorganisms involved in this metabolic transformation.
Collapse
Affiliation(s)
- Weihua Li
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Muhammad Saboor Siddique
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Nigel Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| |
Collapse
|
10
|
Ca 2+-mediated higher-order assembly of heterodimers in amino acid transport system b 0,+ biogenesis and cystinuria. Nat Commun 2022; 13:2708. [PMID: 35577790 PMCID: PMC9110406 DOI: 10.1038/s41467-022-30293-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Cystinuria is a genetic disorder characterized by overexcretion of dibasic amino acids and cystine, causing recurrent kidney stones and kidney failure. Mutations of the regulatory glycoprotein rBAT and the amino acid transporter b0,+AT, which constitute system b0,+, are linked to type I and non-type I cystinuria respectively and they exhibit distinct phenotypes due to protein trafficking defects or catalytic inactivation. Here, using electron cryo-microscopy and biochemistry, we discover that Ca2+ mediates higher-order assembly of system b0,+. Ca2+ stabilizes the interface between two rBAT molecules, leading to super-dimerization of b0,+AT-rBAT, which in turn facilitates N-glycan maturation and protein trafficking. A cystinuria mutant T216M and mutations of the Ca2+ site of rBAT cause the loss of higher-order assemblies, resulting in protein trapping at the ER and the loss of function. These results provide the molecular basis of system b0,+ biogenesis and type I cystinuria and serve as a guide to develop new therapeutic strategies against it. More broadly, our findings reveal an unprecedented link between transporter oligomeric assembly and protein-trafficking diseases.
Collapse
|
11
|
Chemical Approaches for Studying the Biology and Pharmacology of Membrane Transporters: The Histidine/Large Amino Acid Transporter SLC7A5 as a Benchmark. Molecules 2021; 26:molecules26216562. [PMID: 34770970 PMCID: PMC8588388 DOI: 10.3390/molecules26216562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
The localization of membrane transporters at the forefront of natural barriers makes these proteins very interesting due to their involvement in the absorption and distribution of nutrients and xenobiotics, including drugs. Over the years, structure/function relationship studies have been performed employing several strategies, including chemical modification of exposed amino acid residues. These approaches are very meaningful when applied to membrane transporters, given that these proteins are characterized by both hydrophobic and hydrophilic domains with a different degree of accessibility to employed chemicals. Besides basic features, the chemical targeting approaches can disclose information useful for pharmacological applications as well. An eminent example of this picture is the histidine/large amino acid transporter SLC7A5, known as LAT1 (Large Amino Acid Transporter 1). This protein is crucial in cell life because it is responsible for mediating the absorption and distribution of essential amino acids in peculiar body districts, such as the blood brain barrier and placenta. Furthermore, LAT1 can recognize a large variety of molecules of pharmacological interest and is also considered a hot target for drugs due to its over-expression in virtually all human cancers. Therefore, it is not surprising that the chemical targeting approach, coupled with bioinformatics, site-directed mutagenesis and transport assays, proved fundamental in describing features of LAT1 such as the substrate binding site, regulatory domains and interactions with drugs that will be discussed in this review. The results on LAT1 can be considered to have general applicability to other transporters linked with human diseases.
Collapse
|
12
|
Fort J, Nicolàs-Aragó A, Palacín M. The Ectodomains of rBAT and 4F2hc Are Fake or Orphan α-Glucosidases. Molecules 2021; 26:6231. [PMID: 34684812 PMCID: PMC8537225 DOI: 10.3390/molecules26206231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/22/2022] Open
Abstract
It is known that 4F2hc and rBAT are the heavy subunits of the heteromeric amino acid transporters (HATs). These heavy subunits are N-glycosylated proteins, with an N-terminal domain, one transmembrane domain and a bulky extracellular domain (ectodomain) that belongs to the α-amylase family. The heavy subunits are covalently linked to a light subunit from the SLC7 family, which is responsible for the amino acid transport activity, forming a heterodimer. The functions of 4F2hc and rBAT are related mainly to the stability and trafficking of the HATs in the plasma membrane of vertebrates, where they exert the transport activity. Moreover, 4F2hc is a modulator of integrin signaling, has a role in cell fusion and it is overexpressed in some types of cancers. On the other hand, some mutations in rBAT are found to cause the malfunctioning of the b0,+ transport system, leading to cystinuria. The ectodomains of 4F2hc and rBAT share both sequence and structure homology with α-amylase family members. Very recently, cryo-EM has revealed the structure of several HATs, including the ectodomains of rBAT and 4F2hc. Here, we analyze available data on the ectodomains of rBAT and 4Fhc and their relationship with the α-amylase family. The physiological relevance of this relationship remains largely unknown.
Collapse
Affiliation(s)
- Joana Fort
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (M.P.)
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Adrià Nicolàs-Aragó
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (M.P.)
| | - Manuel Palacín
- Laboratory of Amino Acid Transporters and Disease, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028 Barcelona, Spain; (A.N.-A.); (M.P.)
- CIBERER (Centro Español en Red de Biomedicina de Enfermedades Raras), 08028 Barcelona, Spain
- Department of Biochemistry and Molecular Biomedicine, Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
13
|
Ellingsen S, Narawane S, Fjose A, Verri T, Rønnestad I. The zebrafish cationic amino acid transporter/glycoprotein-associated family: sequence and spatiotemporal distribution during development of the transport system b 0,+ (slc3a1/slc7a9). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1507-1525. [PMID: 34338990 PMCID: PMC8478756 DOI: 10.1007/s10695-021-00984-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/29/2021] [Indexed: 06/12/2023]
Abstract
System b0,+ absorbs lysine, arginine, ornithine, and cystine, as well as some (large) neutral amino acids in the mammalian kidney and intestine. It is a heteromeric amino acid transporter made of the heavy subunit SLC3A1/rBAT and the light subunit SLC7A9/b0,+AT. Mutations in these two genes can cause cystinuria in mammals. To extend information on this transport system to teleost fish, we focused on the slc3a1 and slc7a9 genes by performing comparative and phylogenetic sequence analysis, investigating gene conservation during evolution (synteny), and defining early expression patterns during zebrafish (Danio rerio) development. Notably, we found that slc3a1 and slc7a9 are non-duplicated in the zebrafish genome. Whole-mount in situ hybridization detected co-localized expression of slc3a1 and slc7a9 in pronephric ducts at 24 h post-fertilization and in the proximal convoluted tubule at 3 days post-fertilization (dpf). Notably, both the genes showed co-localized expression in epithelial cells in the gut primordium at 3 dpf and in the intestine at 5 dpf (onset of exogenous feeding). Taken together, these results highlight the value of slc3a1 and slc7a9 as markers of zebrafish kidney and intestine development and show promise for establishing new zebrafish tools that can aid in the rapid screening(s) of substrates. Importantly, such studies will help clarify the complex interplay between the absorption of dibasic amino acids, cystine, and (large) neutral amino acids and the effect(s) of such nutrients on organismal growth.
Collapse
Affiliation(s)
- Ståle Ellingsen
- Department of Molecular Biology, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Shailesh Narawane
- Department of Molecular Biology, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Anders Fjose
- Department of Molecular Biology, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Lecce-Monteroni, 73100, Lecce, Italy
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway.
| |
Collapse
|
14
|
Pichia pastoris and the Recombinant Human Heterodimeric Amino Acid Transporter 4F2hc-LAT1: From Clone Selection to Pure Protein. Methods Protoc 2021; 4:mps4030051. [PMID: 34449687 PMCID: PMC8396027 DOI: 10.3390/mps4030051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Heterodimeric amino acid transporters (HATs) are protein complexes composed of two subunits, a heavy and a light subunit belonging to the solute carrier (SLC) families SLC3 and SLC7. HATs transport amino acids and derivatives thereof across the plasma membrane. The human HAT 4F2hc-LAT1 is composed of the type-II membrane N-glycoprotein 4F2hc (SLC3A2) and the L-type amino acid transporter LAT1 (SLC7A5). 4F2hc-LAT1 is medically relevant, and its dysfunction and overexpression are associated with autism and tumor progression. Here, we provide a general applicable protocol on how to screen for the best membrane transport protein-expressing clone in terms of protein amount and function using Pichia pastoris as expression host. Furthermore, we describe an overexpression and purification procedure for the production of the HAT 4F2hc-LAT1. The isolated heterodimeric complex is pure, correctly assembled, stable, binds the substrate L-leucine, and is thus properly folded. Therefore, this Pichia pastoris-derived recombinant human 4F2hc-LAT1 sample can be used for downstream biochemical and biophysical characterizations.
Collapse
|
15
|
Kantipudi S, Fotiadis D. Yeast Cell-Based Transport Assay for the Functional Characterization of Human 4F2hc-LAT1 and -LAT2, and LAT1 and LAT2 Substrates and Inhibitors. Front Mol Biosci 2021; 8:676854. [PMID: 34124158 PMCID: PMC8193492 DOI: 10.3389/fmolb.2021.676854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/06/2021] [Indexed: 01/04/2023] Open
Abstract
In mammalian cells, the L-type amino acid transporters (LATs) LAT1 (SLC7A5) and LAT2 (SLC7A8) form heterodimeric amino acid transporters (HATs) with the ancillary protein 4F2hc and are involved in the cellular uptake of specific amino acids. The HAT 4F2hc-LAT1 is found upregulated in various cancer cell types, while 4F2hc-LAT2 is a transporter for non-cancer cells. Preclinical studies have highlighted that 4F2hc-LAT1 plays an important role in tumor progression representing a valid anticancer target. Consequently, current research is focusing on the development of potent and specific human 4F2hc-LAT1 inhibitors. On the other hand, 4F2hc-LAT2 is emerging as target of other diseases, thus also gaining clinical interest. To determine affinity and specificity of substrates and inhibitors for 4F2hc-LAT1 or 4F2hc-LAT2, robust transport cell assays are indispensable. We have optimized and validated a transport assay using cells of the methylotrophic yeast Pichia pastoris stably overexpressing the human HATs 4F2hc-LAT1 or -LAT2, and the LATs LAT1 or LAT2 alone. The radioligand [3H]L-leucine was used as reporter and the substrates L-leucine, triiodothyronine (T3) and thyroxine (T4) as well as the inhibitors BCH and JPH203 (KYT-0353) for assay validation. Obtained half-maximal inhibitory concentrations also provided new insights, e.g., into the LAT specificity of the potent inhibitor JPH203 and on the potency of the thyroid hormones T3 and T4 to inhibit transport through human 4F2hc-LAT2. The LAT1 and LAT2 assays are of particular interest to determine possible implications and influences of 4F2hc in ligand binding and transport. In summary, the presented assays are valuable for characterization of ligands, e.g., towards 4F2hc-LAT1 specificity, and can also be applied for compound screening. Finally, our established approach and assay would also be applicable to other HATs and LATs of interest.
Collapse
Affiliation(s)
- Satish Kantipudi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
17
|
Sub-Nanometer Cryo-EM Density Map of the Human Heterodimeric Amino Acid Transporter 4F2hc-LAT2. Int J Mol Sci 2020; 21:ijms21197094. [PMID: 32993041 PMCID: PMC7584034 DOI: 10.3390/ijms21197094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022] Open
Abstract
Heterodimeric amino acid transporters (HATs) are protein complexes mediating the transport of amino acids and derivatives thereof across biological membranes. HATs are composed of two subunits, a heavy and a light chain subunit belonging to the solute carrier (SLC) families SLC3 and SLC7. The human HAT 4F2hc-LAT2 is composed of the type-II membrane N-glycoprotein 4F2hc (SCL3A2) and the L-type amino acid transporter LAT2 (SLC7A8), which are covalently linked to each other by a conserved disulfide bridge. Whereas LAT2 catalyzes substrate transport, 4F2hc is important for the successful trafficking of the transporter to the plasma membrane. The overexpression, malfunction, or absence of 4F2hc-LAT2 is associated with human diseases, and therefore, this heterodimeric complex represents a potential drug target. The recombinant human 4F2hc-LAT2 can be functionally overexpressed in the methylotrophic yeast Pichia pastoris, and the protein can be purified. Here, we present the cryo-EM density map of the human 4F2hc-LAT2 amino acid transporter at sub-nanometer resolution. A homology model of 4F2hc-LAT2 in the inward-open conformation was generated and fitted into the cryo-EM density and analyzed. In addition, disease-causing point mutations in human LAT2 were mapped on the homology model of 4F2hc-LAT2, and the possible functional implications on the molecular level are discussed.
Collapse
|
18
|
Structural basis for amino acid exchange by a human heteromeric amino acid transporter. Proc Natl Acad Sci U S A 2020; 117:21281-21287. [PMID: 32817565 DOI: 10.1073/pnas.2008111117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heteromeric amino acid transporters (HATs) comprise a group of membrane proteins that belong to the solute carrier (SLC) superfamily. They are formed by two different protein components: a light chain subunit from an SLC7 family member and a heavy chain subunit from the SLC3 family. The light chain constitutes the transport subunit whereas the heavy chain mediates trafficking to the plasma membrane and maturation of the functional complex. Mutation, malfunction, and dysregulation of HATs are associated with a wide range of pathologies or represent the direct cause of inherited and acquired disorders. Here we report the cryogenic electron microscopy structure of the neutral and basic amino acid transport complex (b[0,+]AT1-rBAT) which reveals a heterotetrameric protein assembly composed of two heavy and light chain subunits, respectively. The previously uncharacterized interaction between two HAT units is mediated via dimerization of the heavy chain subunits and does not include participation of the light chain subunits. The b(0,+)AT1 transporter adopts a LeuT fold and is captured in an inward-facing conformation. We identify an amino-acid-binding pocket that is formed by transmembrane helices 1, 6, and 10 and conserved among SLC7 transporters.
Collapse
|
19
|
Fan T, Meng X, Sun C, Yang X, Chen G, Li W, Chen Z. Genome-wide DNA methylation profile analysis in thoracic ossification of the ligamentum flavum. J Cell Mol Med 2020; 24:8753-8762. [PMID: 32583558 PMCID: PMC7412700 DOI: 10.1111/jcmm.15509] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/12/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Thoracic ossification of the ligamentum flavum (TOLF) causes serious spinal canal stenosis. The underlying aetiology may relate to genetic and inflammatory factors. DNA methylation plays a critical role in osteogenesis and inflammation, whereas there is no genome‐wide DNA methylation analysis about TOLF. The two subtypes of TOLF (single‐level and multiple‐level) have distinct clinical features. Using micro‐computed tomography (micro‐CT), we showed the ossification arose from the joint between two vertebrae at one/both sides of ligament flavum. With Illumina Infinium Human Methylation 850 BeadChip arrays, genome‐wide DNA methylation profile was measured in ligament flavum of eight healthy and eight TOLF samples. Only 65 of the differentially methylated cytosine‐phosphate‐guanine dinucleotides were found in both subtype groups. Principal component analysis and heat map analysis showed a different methylation pattern in TOLF samples, and methylation patterns of two subtypes are also distinct. The Gene Ontology enrichment analysis was significantly enriched in differentiation and inflammation. Pyrosequencing analysis and quantitative real‐time polymerase chain reaction were performed to validate the arrays results and expression levels, to test six differentially methylated genes (SLC7A11, HOXA10, HOXA11AS, TNIK, homeobox transcript antisense RNA, IFITM1), using another independent samples (P < 0.05). Our findings first demonstrated an altered Genome‐wide DNA methylation profile in TOLF, and implied distinct methylated features in two subtypes.
Collapse
Affiliation(s)
- Tianqi Fan
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Xiangyu Meng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Chuiguo Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Xiaoxi Yang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Guanghui Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Zhongqiang Chen
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
20
|
Amino acid transportation, sensing and signal transduction in the mammary gland: key molecular signalling pathways in the regulation of milk synthesis. Nutr Res Rev 2020; 33:287-297. [DOI: 10.1017/s0954422420000074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe mammary gland, a unique exocrine organ, is responsible for milk synthesis in mammals. Neonatal growth and health are predominantly determined by quality and quantity of milk production. Amino acids are crucial maternal nutrients that are the building blocks for milk protein and are potential energy sources for neonates. Recent advances made regarding the mammary gland further demonstrate that some functional amino acids also regulate milk protein and fat synthesis through distinct intracellular and extracellular pathways. In the present study, we discuss recent advances in the role of amino acids (especially branched-chain amino acids, methionine, arginine and lysine) in the regulation of milk synthesis. The present review also addresses the crucial questions of how amino acids are transported, sensed and transduced in the mammary gland.
Collapse
|
21
|
Chase LA, VerHeulen Kleyn M, Schiller N, King AG, Flores G, Engelsman SB, Bowles C, Smith SL, Robinson AE, Rothstein J. Hydrogen peroxide triggers an increase in cell surface expression of system x c- in cultured human glioma cells. Neurochem Int 2019; 134:104648. [PMID: 31874187 DOI: 10.1016/j.neuint.2019.104648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022]
Abstract
System xc- exchanges extracellular cystine for intracellular glutamate across the plasma membrane of many cell types. One of the physiological roles of System xc- is to provide cystine for synthesis of the antioxidant glutathione. Here we report that hydrogen peroxide (H2O2) triggers the translocation of System xc- to the plasma membrane within 10 min of the initial exposure. Specifically, we observed a three-fold increase in 35S-l-cystine uptake following a 10 min exposure to 0.3 mM H2O2. This effect was dose-dependent with an EC50 for H2O2 of 65 μM. We then used cell surface biotinylation analysis to test the hypothesis that the increase in activity is due to an increased number of transporters on the plasma membrane. We demonstrated that the amount of transporter protein, xCT, localized to the plasma membrane doubles within 10 min of H2O2 exposure as a result of an increase in its delivery rate and a reduction in its internalization rate. In addition, we demonstrated that H2O2 triggered a rapid decrease in total cellular glutathione which recovered within 2 h of the oxidative insult. The kinetics of glutathione recovery matched the time course for the recovery of xCT cell surface expression and System xc- activity following removal of the oxidative insult. Collectively, these results suggest that oxidants acutely modulate the activity of System xc- by increasing its cell surface expression, and that this process may serve as an important mechanism to increase de novo glutathione synthesis during periods of oxidative stress.
Collapse
Affiliation(s)
- Leah A Chase
- Department of Chemistry, Hope College, Holland, MI, 49423, USA; Department of Biology, Hope College, Holland, MI, 49423, USA.
| | | | - NaTasha Schiller
- Department of Chemistry, Hope College, Holland, MI, 49423, USA; Department of Biology, Hope College, Holland, MI, 49423, USA
| | - Abby Goltz King
- Department of Chemistry, Hope College, Holland, MI, 49423, USA
| | - Guillermo Flores
- Department of Chemistry, Hope College, Holland, MI, 49423, USA; Department of Biology, Hope College, Holland, MI, 49423, USA
| | | | | | - Sara Lang Smith
- Department of Biology, Hope College, Holland, MI, 49423, USA
| | - Anne E Robinson
- Department of Chemistry, Hope College, Holland, MI, 49423, USA; Department of Biology, Hope College, Holland, MI, 49423, USA
| | - Jeffrey Rothstein
- Department of Neurology, Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21287, USA
| |
Collapse
|
22
|
Massimiani M, Lacconi V, La Civita F, Ticconi C, Rago R, Campagnolo L. Molecular Signaling Regulating Endometrium-Blastocyst Crosstalk. Int J Mol Sci 2019; 21:E23. [PMID: 31861484 PMCID: PMC6981505 DOI: 10.3390/ijms21010023] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Implantation of the embryo into the uterine endometrium is one of the most finely-regulated processes that leads to the establishment of a successful pregnancy. A plethora of factors are released in a time-specific fashion to synchronize the differentiation program of both the embryo and the endometrium. Indeed, blastocyst implantation in the uterus occurs in a limited time frame called the "window of implantation" (WOI), during which the maternal endometrium undergoes dramatic changes, collectively called "decidualization". Decidualization is guided not just by maternal factors (e.g., estrogen, progesterone, thyroid hormone), but also by molecules secreted by the embryo, such as chorionic gonadotropin (CG) and interleukin-1β (IL-1 β), just to cite few. Once reached the uterine cavity, the embryo orients correctly toward the uterine epithelium, interacts with specialized structures, called pinopodes, and begins the process of adhesion and invasion. All these events are guided by factors secreted by both the endometrium and the embryo, such as leukemia inhibitory factor (LIF), integrins and their ligands, adhesion molecules, Notch family members, and metalloproteinases and their inhibitors. The aim of this review is to give an overview of the factors and mechanisms regulating implantation, with a focus on those involved in the complex crosstalk between the blastocyst and the endometrium.
Collapse
Affiliation(s)
- Micol Massimiani
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (V.L.); (F.L.C.)
- Saint Camillus International University of Health Sciences, Via di Sant’Alessandro, 8, 00131 Rome, Italy
| | - Valentina Lacconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (V.L.); (F.L.C.)
| | - Fabio La Civita
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (V.L.); (F.L.C.)
| | - Carlo Ticconi
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy;
| | - Rocco Rago
- Physiopathology of Reproduction and Andrology Unit, Sandro Pertini Hospital, Via dei Monti Tiburtini 385/389, 00157 Rome, Italy;
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (V.L.); (F.L.C.)
| |
Collapse
|
23
|
Yoneda Y, Kuramoto N, Kawada K. The role of glutamine in neurogenesis promoted by the green tea amino acid theanine in neural progenitor cells for brain health. Neurochem Int 2019; 129:104505. [PMID: 31310779 DOI: 10.1016/j.neuint.2019.104505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/15/2022]
Abstract
The green tea amino acid theanine is abundant in green tea rather than black and oolong teas, which are all made of the identical tea plant "Chanoki" (Camellia sinensis). Theanine has a molecular structure close to glutamine (GLN) compared to glutamic acid (Glu), in terms of the absence of a free carboxylic acid moiety from the gamma carbon position. Theanine efficiently inhibits [3H]GLN uptake without affecting [3H]Glu uptake in rat brain synaptosomes. In contrast to GLN, however, theanine markedly stimulates the abilities to replicate and to commit to a neuronal lineage following prolonged exposure in cultured neural progenitor cells (NPCs) prepared from embryonic and adult rodent brains. Upregulation of transcript expression is found for one of the GLN transporter isoforms, Slc38a1, besides the promotion of both proliferation and neuronal commitment along with acceleration of the phosphorylation of mechanistic target of rapamycin (mTOR) and relevant downstream proteins, in murine NPCs cultured with theanine. Stable overexpression of Slc38a1 similarly facilitates both cellular replication and neuronal commitment in pluripotent embryonic carcinoma P19 cells. In P19 cells with stable overexpression of Slc38a1, marked phosphorylation is seen for mTOR and downstream proteins in a manner insensitive to further additional phosphorylation by theanine. Taken together, theanine would exhibit a novel pharmacological property to up-regulate Slc38a1 expression for activation of the intracellular mTOR signaling pathway required for neurogenesis after sustained exposure in undifferentiated NPCs in the brain. In this review, a novel neurogenic property of the green tea amino acid theanine is summarized for embryonic and adult neurogenesis with a focus on the endogenous amino acid GLN on the basis of our accumulating evidence to date.
Collapse
Affiliation(s)
- Yukio Yoneda
- Department of Pharmacology, Osaka University Graduate School of Dentistry, Suita, 565-0871, Japan; The Institute of Prophylactic Pharmacology, Kita-Shinagawa, Shinagawa, 140-0001, Tokyo, Japan.
| | - Nobuyuki Kuramoto
- The Institute of Prophylactic Pharmacology, Kita-Shinagawa, Shinagawa, 140-0001, Tokyo, Japan; Laboratory of Molecular Pharmacology, Setsunan University Faculty of Pharmaceutical Sciences, Hirakata, 573-0101, Japan
| | - Koichi Kawada
- The Institute of Prophylactic Pharmacology, Kita-Shinagawa, Shinagawa, 140-0001, Tokyo, Japan; Department of Pharmacology, Chiba Institute of Science Faculty of Pharmaceutical Sciences, Chiba, 288-0025, Japan
| |
Collapse
|
24
|
Transport of cystine across xC− antiporter. Arch Biochem Biophys 2019; 664:117-126. [DOI: 10.1016/j.abb.2019.01.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/17/2023]
|
25
|
Jeckelmann JM, Fotiadis D. Volta Phase Plate Cryo-EM Structure of the Human Heterodimeric Amino Acid Transporter 4F2hc-LAT2. Int J Mol Sci 2019; 20:ijms20040931. [PMID: 30795505 PMCID: PMC6413005 DOI: 10.3390/ijms20040931] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 01/29/2023] Open
Abstract
Heteromeric amino acid transporters (HATs) are protein complexes that catalyze the transport of amino acids across plasma membranes. HATs are composed of two subunits, a heavy and a light subunit, which belong to the solute carrier (SLC) families SLC3 and SLC7. The two subunits are linked by a conserved disulfide bridge. Several human diseases are associated with loss of function or overexpression of specific HATs making them drug targets. The human HAT 4F2hc-LAT2 (SLC3A2-SLC7A8) is specific for the transport of large neutral L-amino acids and specific amino acid-related compounds. Human 4F2hc-LAT2 can be functionally overexpressed in the methylotrophic yeast Pichia pastoris and pure recombinant protein purified. Here we present the first cryo-electron microscopy (cryo-EM) 3D-map of a HAT, i.e., of the human 4F2hc-LAT2 complex. The structure could be determined at ~13 Å resolution using direct electron detector and Volta phase plate technologies. The 3D-map displays two prominent densities of different sizes. The available X-ray structure of the 4F2hc ectodomain fitted nicely into the smaller density revealing the relative position of 4F2hc with respect to LAT2 and the membrane plane.
Collapse
Affiliation(s)
- Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, CH-3012 Bern, Switzerland.
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, CH-3012 Bern, Switzerland.
| |
Collapse
|
26
|
Abstract
The small intestine mediates the absorption of amino acids after ingestion of protein and sustains the supply of amino acids to all tissues. The small intestine is an important contributor to plasma amino acid homeostasis, while amino acid transport in the large intestine is more relevant for bacterial metabolites and fluid secretion. A number of rare inherited disorders have contributed to the identification of amino acid transporters in epithelial cells of the small intestine, in particular cystinuria, lysinuric protein intolerance, Hartnup disorder, iminoglycinuria, and dicarboxylic aminoaciduria. These are most readily detected by analysis of urine amino acids, but typically also affect intestinal transport. The genes underlying these disorders have all been identified. The remaining transporters were identified through molecular cloning techniques to the extent that a comprehensive portrait of functional cooperation among transporters of intestinal epithelial cells is now available for both the basolateral and apical membranes. Mouse models of most intestinal transporters illustrate their contribution to amino acid homeostasis and systemic physiology. Intestinal amino acid transport activities can vary between species, but these can now be explained as differences of amino acid transporter distribution along the intestine. © 2019 American Physiological Society. Compr Physiol 9:343-373, 2019.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Stephen J Fairweather
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
27
|
Cystinuria: genetic aspects, mouse models, and a new approach to therapy. Urolithiasis 2018; 47:57-66. [PMID: 30515543 DOI: 10.1007/s00240-018-1101-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/27/2018] [Indexed: 01/07/2023]
Abstract
Cystinuria, a genetic disorder of cystine transport, is characterized by excessive excretion of cystine in the urine and recurrent cystine stones in the kidneys and, to a lesser extent, in the bladder. Males generally are more severely affected than females. The disorder may lead to chronic kidney disease in many patients. The cystine transporter (b0,+) is a heterodimer consisting of the rBAT (encoded by SLC3A1) and b0,+AT (encoded by SLC7A9) subunits joined by a disulfide bridge. The molecular basis of cystinuria is known in great detail, and this information is now being used to define genotype-phenotype correlations. Current treatments for cystinuria include increased fluid intake to increase cystine solubility and the administration of thiol drugs for more severe cases. These drugs, however, have poor patient compliance due to adverse effects. Thus, there is a need to reduce or eliminate the risks associated with therapy for cystinuria. Four mouse models for cystinuria have been described and these models provide a resource for evaluating the safety and efficacy of new therapies for cystinuria. We are evaluating a new approach for the treatment of cystine stones based on the inhibition of cystine crystal growth by cystine analogs. Our ongoing studies indicate that cystine diamides are effective in preventing cystine stone formation in the Slc3a1 knockout mouse model for cystinuria. In addition to crystal growth, crystal aggregation is required for stone formation. Male and female mice with cystinuria have comparable levels of crystalluria, but very few female mice form stones. The identification of factors that inhibit cystine crystal aggregation in female mice may provide insight into the gender difference in disease severity in patients with cystinuria.
Collapse
|
28
|
Wang SF, Wung CH, Chen MS, Chen CF, Yin PH, Yeh TS, Chang YL, Chou YC, Hung HH, Lee HC. Activated Integrated Stress Response Induced by Salubrinal Promotes Cisplatin Resistance in Human Gastric Cancer Cells via Enhanced xCT Expression and Glutathione Biosynthesis. Int J Mol Sci 2018; 19:3389. [PMID: 30380689 PMCID: PMC6275069 DOI: 10.3390/ijms19113389] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022] Open
Abstract
The integrated stress response (ISR) pathway is essential for adaption of various stresses and is related to mitochondrion-to-nucleus communication. Mitochondrial dysfunction-induced reactive oxygen species (ROS) was demonstrated to activate general control nonderepressible 2 (GCN2)⁻eukaryotic translation initiation factor 2α (eIF2α)⁻activating transcription factor-4 (ATF4) pathway-mediated cisplatin resistance of human gastric cancer cells. However, whether or how ISR activation per se could enhance chemoresistance remains unclear. In this study, we used eIF2α phosphatase inhibitor salubrinal to activate the ISR pathway and found that salubrinal reduced susceptibility to cisplatin. Moreover, salubrinal up-regulated ATF4-modulated gene expression, and knockdown of ATF4 attenuated salubrinal-induced drug resistance, suggesting that ATF4-modulated genes contribute to the process. The ATF4-modulated genes, xCT (a cystine/glutamate anti-transporter), tribbles-related protein 3 (TRB3), heme oxygenase 1 (HO-1), and phosphoenolpyruvate carboxykinase 2 (PCK2), were associated with a poorer prognosis for gastric cancer patients. By silencing individual genes, we found that xCT, but not TRB3, HO-1, or PCK2, is responsible for salubrinal-induced cisplatin resistance. In addition, salubrinal increased intracellular glutathione (GSH) and decreased cisplatin-induced lipid peroxidation. Salubrinal-induced cisplatin resistance was attenuated by inhibition of xCT and GSH biosynthesis. In conclusion, our results suggest that ISR activation by salubrinal up-regulates ATF4-modulated gene expression, increases GSH synthesis, and decreases cisplatin-induced oxidative damage, which contribute to cisplatin resistance in gastric cancer cells.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Chih-Hsuan Wung
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Meng-Shian Chen
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Chian-Feng Chen
- VYM Genome Research Center, National Yang-Ming University, Taipei 112, Taiwan.
| | - Pen-Hui Yin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112, Taiwan.
| | - Tien-Shun Yeh
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Yuh-Lih Chang
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Yueh-Ching Chou
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei 112, Taiwan.
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| | - Hung-Hsu Hung
- Division of Gastroenterology, Department of Medicine, Cheng Hsin General Hospital, Taipei 112, Taiwan.
- Faculty of Medicine, School of Medicine, Institute of Clinical Medicine and Genomic Research Center, National Yang-Ming University, Taipei 112, Taiwan.
| | - Hsin-Chen Lee
- Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
29
|
Scalise M, Galluccio M, Console L, Pochini L, Indiveri C. The Human SLC7A5 (LAT1): The Intriguing Histidine/Large Neutral Amino Acid Transporter and Its Relevance to Human Health. Front Chem 2018; 6:243. [PMID: 29988369 PMCID: PMC6023973 DOI: 10.3389/fchem.2018.00243] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022] Open
Abstract
SLC7A5, known as LAT1, belongs to the APC superfamily and forms a heterodimeric amino acid transporter interacting with the glycoprotein CD98 (SLC3A2) through a conserved disulfide. The complex is responsible for uptake of essential amino acids in crucial body districts such as placenta and blood brain barrier. LAT1/CD98 heterodimer has been studied over the years to unravel the transport mechanism and the role of each subunit. Studies conducted in intact cells demonstrated that LAT1/CD98 mediates a Na+ and pH independent antiport of amino acids. Some novel insights into the function of LAT1 derived from studies conducted in proteoliposomes reconstituted with the recombinant human LAT1. Using this experimental tool, it has been demonstrated that the preferred substrate is histidine and that CD98 is not required for transport being, plausibly, involved in routing LAT1 to the plasma membrane. Since a 3D structure of LAT1 is not available, homology models have been built on the basis of the AdiC transporter from E.coli. Crucial residues for substrate recognition and gating have been identified using a combined approach of bioinformatics and site-directed mutagenesis coupled to functional assays. Over the years, the interest around LAT1 increased because this transporter is involved in important human diseases such as neurological disorders and cancer. Therefore, LAT1 became an important pharmacological target together with other nutrient membrane transporters. Moving from knowledge on structure/function relationships, two cysteine residues, lying on the substrate binding site, have been exploited for designing thiol reacting covalent inhibitors. Some lead compounds have been characterized whose efficacy has been tested in a cancer cell line.
Collapse
Affiliation(s)
- Mariafrancesca Scalise
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Rende, Italy
| | - Michele Galluccio
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Rende, Italy
| | - Lara Console
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Rende, Italy
| | - Lorena Pochini
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Rende, Italy
| | - Cesare Indiveri
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Rende, Italy.,CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, Bari, Italy
| |
Collapse
|
30
|
Kim SM, Kim JS. A Review of Mechanisms of Implantation. Dev Reprod 2017; 21:351-359. [PMID: 29359200 PMCID: PMC5769129 DOI: 10.12717/dr.2017.21.4.351] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023]
Abstract
Implantation is a highly organized process that involves an interaction between a receptive uterus and a competent blastocyst. In humans, natural fecundity suggests that the chance of conception per cycle is relatively low (~30%) and two-third of lost pregnancies occur because of implantation failure. Defective implantation leads to adverse pregnancy outcomes including infertility, spontaneous miscarriage, intrauterine fetal growth restriction and preeclampsia. With use of advanced scientific technologies, gene expression analysis and genetically-engineered animal models have revealed critical cellular networks and molecular pathways. But, because of ethical restrictions and the lack of a mechanistic experiment, comprehensive steps in human implantation have still not been completely understood. This review primarily focuses on the recent advances in mechanisms of implantation. Because infertility is an emerging issue these days, gaining an understanding the molecular and hormonal signaling pathway will improve the outcome of natural pregnancy and assisted reproductive technology.
Collapse
Affiliation(s)
- Su-Mi Kim
- Dept. of Obstetrics and Gynecology, College of Medicine, Dankook
University, Cheonan 31116, Korea
| | - Jong-Soo Kim
- Dept. of Obstetrics and Gynecology, College of Medicine, Dankook
University, Cheonan 31116, Korea
| |
Collapse
|
31
|
An l-Glutamine Transporter Isoform for Neurogenesis Facilitated by l-Theanine. Neurochem Res 2017; 42:2686-2697. [DOI: 10.1007/s11064-017-2317-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 05/25/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022]
|
32
|
Amino acid homeostasis and signalling in mammalian cells and organisms. Biochem J 2017; 474:1935-1963. [PMID: 28546457 PMCID: PMC5444488 DOI: 10.1042/bcj20160822] [Citation(s) in RCA: 339] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/08/2017] [Accepted: 03/10/2017] [Indexed: 12/19/2022]
Abstract
Cells have a constant turnover of proteins that recycle most amino acids over time. Net loss is mainly due to amino acid oxidation. Homeostasis is achieved through exchange of essential amino acids with non-essential amino acids and the transfer of amino groups from oxidised amino acids to amino acid biosynthesis. This homeostatic condition is maintained through an active mTORC1 complex. Under amino acid depletion, mTORC1 is inactivated. This increases the breakdown of cellular proteins through autophagy and reduces protein biosynthesis. The general control non-derepressable 2/ATF4 pathway may be activated in addition, resulting in transcription of genes involved in amino acid transport and biosynthesis of non-essential amino acids. Metabolism is autoregulated to minimise oxidation of amino acids. Systemic amino acid levels are also tightly regulated. Food intake briefly increases plasma amino acid levels, which stimulates insulin release and mTOR-dependent protein synthesis in muscle. Excess amino acids are oxidised, resulting in increased urea production. Short-term fasting does not result in depletion of plasma amino acids due to reduced protein synthesis and the onset of autophagy. Owing to the fact that half of all amino acids are essential, reduction in protein synthesis and amino acid oxidation are the only two measures to reduce amino acid demand. Long-term malnutrition causes depletion of plasma amino acids. The CNS appears to generate a protein-specific response upon amino acid depletion, resulting in avoidance of an inadequate diet. High protein levels, in contrast, contribute together with other nutrients to a reduction in food intake.
Collapse
|
33
|
Fazzari J, Balenko MD, Zacal N, Singh G. Identification of capsazepine as a novel inhibitor of system x c- and cancer-induced bone pain. J Pain Res 2017; 10:915-925. [PMID: 28458574 PMCID: PMC5402992 DOI: 10.2147/jpr.s125045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The cystine/glutamate antiporter has been implicated in a variety of cancers as a major mediator of redox homeostasis. The excess glutamate secreted by this transporter in aggressive cancer cells has been associated with cancer-induced bone pain (CIBP) from distal breast cancer metastases. High-throughput screening of small molecule inhibitors of glutamate release from breast cancer cells identified several potential compounds. One such compound, capsazepine (CPZ), was confirmed to inhibit the functional unit of system xc- (xCT) through its ability to block uptake of its radiolabeled substrate, cystine. Blockade of this antiporter induced production of reactive oxygen species (ROS) within 4 hours and induced cell death within 48 hours at concentrations exceeding 25 μM. Furthermore, cell death and ROS production were significantly reduced by co-treatment with N-acetylcysteine, suggesting that CPZ toxicity is associated with ROS-induced cell death. These data suggest that CPZ can modulate system xc- activity in vitro and this translates into antinociception in an in vivo model of CIBP where systemic administration of CPZ successfully delayed the onset and reversed CIBP-induced nociceptive behaviors resulting from intrafemoral MDA-MB-231 tumors.
Collapse
Affiliation(s)
- Jennifer Fazzari
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Matthew D Balenko
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Natalie Zacal
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
34
|
Jin C, Zhang P, Zhang M, Zhang X, Lv L, Liu H, Liu Y, Zhou Y. Inhibition of SLC7A11 by Sulfasalazine Enhances Osteogenic Differentiation of Mesenchymal Stem Cells by Modulating BMP2/4 Expression and Suppresses Bone Loss in Ovariectomized Mice. J Bone Miner Res 2017; 32:508-521. [PMID: 27696501 DOI: 10.1002/jbmr.3009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/24/2016] [Accepted: 09/29/2016] [Indexed: 12/27/2022]
Abstract
An imbalance in osteogenesis and adipogenesis is a crucial pathological factor in the development of osteoporosis. Many attempts have been made to develop drugs to prevent and treat this disease. In the present study, we investigated the phenomenon whereby downregulation of SLC7A11 significantly enhanced the osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro, and promoted the bone formation in vivo. Sulfasalazine (SAS), an inhibitor of SLC7A11, increased the osteogenic potential effectively. Mechanistically, inhibition of SLC7A11 by SAS treatment or knockdown of SLC7A11 increased BMP2/4 expression dramatically. In addition, we detected increased Slc7a11 expression in bone marrow MSCs of ovariectomized (OVX) mice. Remarkably, SAS treatment attenuated bone loss in ovariectomized mice. Together, our data suggested that SAS could be used to treat osteoporosis by enhancing osteogenic differentiation of MSCs. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Chanyuan Jin
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Min Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Longwei Lv
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hao Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
35
|
Zhang M, Zhang X, Zhang B, Wang D. Composition, microstructure and element study of urinary calculi. Microsc Res Tech 2016; 79:1038-1044. [PMID: 27492889 DOI: 10.1002/jemt.22739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/08/2016] [Accepted: 07/09/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Min Zhang
- Department of Urology; First Hospital of Shanxi Medical University; Taiyuan China
| | - Xuhui Zhang
- First Clinical Medical College, Shanxi Medical University; Taiyuan China
| | - Bin Zhang
- Department of Urology; First Hospital of Shanxi Medical University; Taiyuan China
| | - Dongwen Wang
- Department of Urology; First Hospital of Shanxi Medical University; Taiyuan China
- First Clinical Medical College, Shanxi Medical University; Taiyuan China
| |
Collapse
|
36
|
Wu P, Li Y, Cheng J, Chen L, Zeng M, Wu Y, Wang J, Zhang J, Chu W. Transcriptome Analysis and Postprandial Expression of Amino Acid Transporter Genes in the Fast Muscles and Gut of Chinese Perch (Siniperca chuatsi). PLoS One 2016; 11:e0159533. [PMID: 27463683 PMCID: PMC4963124 DOI: 10.1371/journal.pone.0159533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/04/2016] [Indexed: 01/09/2023] Open
Abstract
The characterization of the expression and regulation of growth-related genes in the muscles of Chinese perch is of great interest to aquaculturists because of the commercial value of the species. The transcriptome annotation of the skeletal muscles is a crucial step in muscle growth-related gene analysis. In this study, we generated 52 504 230 reads of mRNA sequence data from the fast muscles of the Chinese perch by using Solexa/Illumina RNA-seq. Twenty-one amino acid transporter genes were annotated by searching protein and gene ontology databases, and postprandial changes in their transcript abundance were assayed after administering a single satiating meal to Chinese perch juveniles (body mass, approximately 100 g), following fasting for 1 week. The gut content of the Chinese perch increased significantly after 1 h and remained high for 6 h following the meal and emptied within 48-96 h. Expression of eight amino acid transporter genes was assayed in the fast muscles through quantitative real-time polymerase chain reaction at 0, 1, 3, 6, 12, 24, 48, and 96 h. Among the genes, five transporter transcripts were markedly up-regulated within 1 h of refeeding, indicating that they may be potential candidate genes involved in the rapid-response signaling system regulating fish myotomal muscle growth. These genes display coordinated regulation favoring the resumption of myogenesis responding to feeding.
Collapse
Affiliation(s)
- Ping Wu
- Department of Bioengneering and Environmental Science, Changsha University, Changsha, 410003, China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, China
| | - Yulong Li
- Department of Bioengneering and Environmental Science, Changsha University, Changsha, 410003, China
| | - Jia Cheng
- Department of Bioengneering and Environmental Science, Changsha University, Changsha, 410003, China
| | - Lin Chen
- Department of Bioengneering and Environmental Science, Changsha University, Changsha, 410003, China
| | - Ming Zeng
- Institute of Hunan Aquaculture and Fishes, Changsha, 410005, China
| | - Yuanan Wu
- Institute of Hunan Aquaculture and Fishes, Changsha, 410005, China
| | - Jianhua Wang
- Department of Bioengneering and Environmental Science, Changsha University, Changsha, 410003, China
| | - Jianshe Zhang
- Department of Bioengneering and Environmental Science, Changsha University, Changsha, 410003, China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, China
- * E-mail: (JSZ); (WYC)
| | - Wuying Chu
- Department of Bioengneering and Environmental Science, Changsha University, Changsha, 410003, China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, 415000, China
- * E-mail: (JSZ); (WYC)
| |
Collapse
|
37
|
Mechanisms involved in the transport of mercuric ions in target tissues. Arch Toxicol 2016; 91:63-81. [PMID: 27422290 DOI: 10.1007/s00204-016-1803-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/07/2016] [Indexed: 01/16/2023]
Abstract
Mercury exists in the environment in various forms, all of which pose a risk to human health. Despite guidelines regulating the industrial release of mercury into the environment, humans continue to be exposed regularly to various forms of this metal via inhalation or ingestion. Following exposure, mercuric ions are taken up by and accumulate in numerous organs, including brain, intestine, kidney, liver, and placenta. In order to understand the toxicological effects of exposure to mercury, a thorough understanding of the mechanisms that facilitate entry of mercuric ions into target cells must first be obtained. A number of mechanisms for the transport of mercuric ions into target cells and organs have been proposed in recent years. However, the ability of these mechanisms to transport mercuric ions and the regulatory features of these carriers have not been characterized completely. The purpose of this review is to summarize the current findings related to the mechanisms that may be involved in the transport of inorganic and organic forms of mercury in target tissues and organs. This review will describe mechanisms known to be involved in the transport of mercury and will also propose additional mechanisms that may potentially be involved in the transport of mercuric ions into target cells.
Collapse
|
38
|
Janeček Š, Gabriško M. Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family. Cell Mol Life Sci 2016; 73:2707-25. [PMID: 27154042 PMCID: PMC11108405 DOI: 10.1007/s00018-016-2246-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022]
Abstract
The α-amylase is a ubiquitous starch hydrolase catalyzing the cleavage of the α-1,4-glucosidic bonds in an endo-fashion. Various α-amylases originating from different taxonomic sources may differ from each other significantly in their exact substrate preference and product profile. Moreover, it also seems to be clear that at least two different amino acid sequences utilizing two different catalytic machineries have evolved to execute the same α-amylolytic specificity. The two have been classified in the Cabohydrate-Active enZyme database, the CAZy, in the glycoside hydrolase (GH) families GH13 and GH57. While the former and the larger α-amylase family GH13 evidently forms the clan GH-H with the families GH70 and GH77, the latter and the smaller α-amylase family GH57 has only been predicted to maybe define a future clan with the family GH119. Sequences and several tens of enzyme specificities found throughout all three kingdoms in many taxa provide an interesting material for evolutionarily oriented studies that have demonstrated remarkable observations. This review emphasizes just the three of them: (1) a close relatedness between the plant and archaeal α-amylases from the family GH13; (2) a common ancestry in the family GH13 of animal heavy chains of heteromeric amino acid transporter rBAT and 4F2 with the microbial α-glucosidases; and (3) the unique sequence features in the primary structures of amylomaltases from the genus Borrelia from the family GH77. Although the three examples cannot represent an exhaustive list of exceptional topics worth to be interested in, they may demonstrate the importance these enzymes possess in the overall scientific context.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia.
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 91701, Trnava, Slovakia.
| | - Marek Gabriško
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia
| |
Collapse
|
39
|
The Amino Acid Transporter JhI-21 Coevolves with Glutamate Receptors, Impacts NMJ Physiology, and Influences Locomotor Activity in Drosophila Larvae. Sci Rep 2016; 6:19692. [PMID: 26805723 PMCID: PMC4726445 DOI: 10.1038/srep19692] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/16/2015] [Indexed: 01/14/2023] Open
Abstract
Changes in synaptic physiology underlie neuronal network plasticity and behavioral phenomena, which are adjusted during development. The Drosophila larval glutamatergic neuromuscular junction (NMJ) represents a powerful synaptic model to investigate factors impacting these processes. Amino acids such as glutamate have been shown to regulate Drosophila NMJ physiology by modulating the clustering of postsynaptic glutamate receptors and thereby regulating the strength of signal transmission from the motor neuron to the muscle cell. To identify amino acid transporters impacting glutmatergic signal transmission, we used Evolutionary Rate Covariation (ERC), a recently developed bioinformatic tool. Our screen identified ten proteins co-evolving with NMJ glutamate receptors. We selected one candidate transporter, the SLC7 (Solute Carrier) transporter family member JhI-21 (Juvenile hormone Inducible-21), which is expressed in Drosophila larval motor neurons. We show that JhI-21 suppresses postsynaptic muscle glutamate receptor abundance, and that JhI-21 expression in motor neurons regulates larval crawling behavior in a developmental stage-specific manner.
Collapse
|
40
|
Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medical Aspects in Humans. JOURNAL OF AMINO ACIDS 2016; 2016:8952520. [PMID: 26881063 PMCID: PMC4737446 DOI: 10.1155/2016/8952520] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/06/2015] [Indexed: 12/27/2022]
Abstract
L-Tryptophan is the unique protein amino acid (AA) bearing an indole ring: its biotransformation in living organisms contributes either to keeping this chemical group in cells and tissues or to breaking it, by generating in both cases a variety of bioactive molecules. Investigations on the biology of Trp highlight the pleiotropic effects of its small derivatives on homeostasis processes. In addition to protein turn-over, in humans the pathways of Trp indole derivatives cover the synthesis of the neurotransmitter/hormone serotonin (5-HT), the pineal gland melatonin (MLT), and the trace amine tryptamine. The breakdown of the Trp indole ring defines instead the "kynurenine shunt" which produces cell-response adapters as L-kynurenine, kynurenic and quinolinic acids, or the coenzyme nicotinamide adenine dinucleotide (NAD(+)). This review aims therefore at tracing a "map" of the main molecular effectors in human tryptophan (Trp) research, starting from the chemistry of this AA, dealing then with its biosphere distribution and nutritional value for humans, also focusing on some proteins responsible for its tissue-dependent uptake and biotransformation. We will thus underscore the role of Trp biochemistry in the pathogenesis of human complex diseases/syndromes primarily involving the gut, neuroimmunoendocrine/stress responses, and the CNS, supporting the use of -Omics approaches in this field.
Collapse
|
41
|
Novel cystine transporter in renal proximal tubule identified as a missing partner of cystinuria-related plasma membrane protein rBAT/SLC3A1. Proc Natl Acad Sci U S A 2016; 113:775-80. [PMID: 26739563 DOI: 10.1073/pnas.1519959113] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterodimeric amino acid transporters play crucial roles in epithelial transport, as well as in cellular nutrition. Among them, the heterodimer of a membrane protein b(0,+)AT/SLC7A9 and its auxiliary subunit rBAT/SLC3A1 is responsible for cystine reabsorption in renal proximal tubules. The mutations in either subunit cause cystinuria, an inherited amino aciduria with impaired renal reabsorption of cystine and dibasic amino acids. However, an unsolved paradox is that rBAT is highly expressed in the S3 segment, the late proximal tubules, whereas b(0,+)AT expression is highest in the S1 segment, the early proximal tubules, so that the presence of an unknown partner of rBAT in the S3 segment has been proposed. In this study, by means of coimmunoprecipitation followed by mass spectrometry, we have found that a membrane protein AGT1/SLC7A13 is the second partner of rBAT. AGT1 is localized in the apical membrane of the S3 segment, where it forms a heterodimer with rBAT. Depletion of rBAT in mice eliminates the expression of AGT1 in the renal apical membrane. We have reconstituted the purified AGT1-rBAT heterodimer into proteoliposomes and showed that AGT1 transports cystine, aspartate, and glutamate. In the apical membrane of the S3 segment, AGT1 is suggested to locate itself in close proximity to sodium-dependent acidic amino acid transporter EAAC1 for efficient functional coupling. EAAC1 is proposed to take up aspartate and glutamate released into luminal fluid by AGT1 due to its countertransport so that preventing the urinary loss of aspartate and glutamate. Taken all together, AGT1 is the long-postulated second cystine transporter in the S3 segment of proximal tubules and a possible candidate to be involved in isolated cystinuria.
Collapse
|
42
|
Herpes Simplex Virus 1 Recruits CD98 Heavy Chain and β1 Integrin to the Nuclear Membrane for Viral De-Envelopment. J Virol 2015; 89:7799-812. [PMID: 25995262 DOI: 10.1128/jvi.00741-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/11/2015] [Indexed: 01/08/2023] Open
Abstract
UNLABELLED Herpesviruses have evolved a unique mechanism for nucleocytoplasmic transport of nascent nucleocapsids: the nucleocapsids bud through the inner nuclear membrane (INM; primary envelopment), and the enveloped nucleocapsids then fuse with the outer nuclear membrane (de-envelopment). Little is known about the molecular mechanism of herpesviral de-envelopment. We show here that the knockdown of both CD98 heavy chain (CD98hc) and its binding partner β1 integrin induced membranous structures containing enveloped herpes simplex virus 1 (HSV-1) virions that are invaginations of the INM into the nucleoplasm and induced aberrant accumulation of enveloped virions in the perinuclear space and in the invagination structures. These effects were similar to those of the previously reported mutation(s) in HSV-1 proteins gB, gH, UL31, and/or Us3, which were shown here to form a complex(es) with CD98hc in HSV-1-infected cells. These results suggested that cellular proteins CD98hc and β1 integrin synergistically or independently regulated HSV-1 de-envelopment, probably by interacting directly and/or indirectly with these HSV-1 proteins. IMPORTANCE Certain cellular and viral macromolecular complexes, such as Drosophila large ribonucleoprotein complexes and herpesvirus nucleocapsids, utilize a unique vesicle-mediated nucleocytoplasmic transport: the complexes acquire primary envelopes by budding through the inner nuclear membrane into the space between the inner and outer nuclear membranes (primary envelopment), and the enveloped complexes then fuse with the outer nuclear membrane to release de-enveloped complexes into the cytoplasm (de-envelopment). However, there is a lack of information on the molecular mechanism of de-envelopment fusion. We report here that HSV-1 recruited cellular fusion regulatory proteins CD98hc and β1 integrin to the nuclear membrane for viral de-envelopment fusion. This is the first report of cellular proteins required for efficient de-envelopment of macromolecular complexes during their nuclear egress.
Collapse
|
43
|
Trötschel C, Follmann M, Nettekoven JA, Mohrbach T, Forrest LR, Burkovski A, Marin K, Krämer R. Methionine uptake in Corynebacterium glutamicum by MetQNI and by MetPS, a novel methionine and alanine importer of the NSS neurotransmitter transporter family. Biochemistry 2015; 47:12698-709. [PMID: 18991398 DOI: 10.1021/bi801206t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The soil bacterium Corynebacterium glutamicum is a model organism in amino acid biotechnology. Here we present the identification of two different L-methionine uptake systems including the first characterization of a bacterial secondary methionine carrier. The primary carrier MetQNI is a high affinity ABC-type transporter specific for l-methionine. Its expression is under the control of the transcription factor McbR, the global regulator of sulfur metabolism in C. glutamicum. Besides MetQNI, a novel secondary methionine uptake system of the NSS (neurotransmitter:sodium symporter) family was identified and named MetP. The MetP system is characterized by a lower affinity for methionine and uses Na(+) ions for energetic coupling. It is also the main alanine transporter in C. glutamicum and is expressed constitutively. These observations are consistent with models of methionine, alanine, and leucine bound to MetP, derived from the X-ray crystal structure of the LeuT transporter from Aquifex aeolicus. Complementation studies show that MetP consists of two components, a large subunit with 12 predicted transmembrane segments and, surprisingly, an additional subunit with one predicted transmembrane segment only. Thus, this new member of the NSS transporter family adds a novel feature to this class of carriers, namely, the functional dependence on an additional small subunit.
Collapse
Affiliation(s)
- Christian Trötschel
- Institute of Biochemistry, University of Koln, 50674 Koln, Germany, and Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438 Frankfurt, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Most extracellular glutamate in the brain is released by xCT, a glial antiporter that exports glutamate and imports cystine. The function of xCT, and extracellular glutamate in general, remains unclear. Several lines of evidence suggest that glutamate from xCT could act in a paracrine fashion to suppress glutamatergic synapse strength by triggering removal of postsynaptic glutamate receptors. To test this idea, we used whole-cell patch-clamp electrophysiology and immunohistochemistry to quantify receptor number and synapse function in xCT knock-out mouse hippocampal CA3-CA1 synapses. Consistent with the hypothesis that xCT suppresses glutamate receptor number and synapse strength, xCT knock-out synapses showed increased AMPA receptor abundance with concomitant large enhancements of spontaneous and evoked synaptic transmission. We saw no evidence for changes in GABA receptor abundance or the overall number of glutamatergic synapses. The xCT knock-out phenotype was replicated by incubating slices in the xCT inhibitor (S)-4-carboxyphenylglycine, and consistent with the idea that xCT works by regulating extracellular glutamate, the xCT knock-out phenotype could be reproduced in controls by incubating the slices in glutamate-free aCSF. We conclude that glutamate secreted via xCT suppresses glutamatergic synapse strength by triggering removal of postsynaptic AMPA receptors.
Collapse
|
45
|
Featherstone DE, Yanoga F, Grosjean Y. Accelerated bang recovery in Drosophila genderblind mutants. Commun Integr Biol 2014; 1:14-17. [PMID: 19430543 DOI: 10.4161/cib.1.1.6437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cystine-glutamate transporters import cystine into cells for glutathione synthesis and protection from oxidative stress, but also export significant amounts of glutamate. Increasing evidence suggests that 'ambient extracellular glutamate' secreted by cystine-glutamate transporters in the nervous system modulates glutamatergic synapse strength and behavior. To date, the only cystine-glutamate transporter mutants examined behaviorally are Drosophila genderblind mutants. These animals contain loss-of-function mutations in the 'genderblind' gene, which encodes an xCT subunit essential for cystine-glutamate transporter function. Genderblind was named based on a mutant courtship phenotype: male genderblind mutants are attracted to normally aversive male pheromones and thus court and attempt to copulate with both male and female partners equally. However, genderblind protein is expressed in many parts of the fly brain and thus might be expected to also regulate other behaviors, including behaviors not related to male courtship or chemosensation. Here, we show that genderblind mutants display faster recovery and increased negative geotaxis after strong mechanical stimuli (e.g., they climb faster and farther after vial banging). This phenotype is displayed by both males and females, consistent with strong genderblind expression in both sexes.
Collapse
Affiliation(s)
- David E Featherstone
- Department of Biological Sciences; University of Illinois at Chicago; Chicago, Illinois, USA
| | | | | |
Collapse
|
46
|
Linking our understanding of mammary gland metabolism to amino acid nutrition. Amino Acids 2014; 46:2447-62. [DOI: 10.1007/s00726-014-1818-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/25/2014] [Indexed: 12/15/2022]
|
47
|
Yang J, Tan Q, Zhu W, Chen C, Liang X, Pan L. Cloning and molecular characterization of cationic amino acid transporter y⁺LAT1 in grass carp (Ctenopharyngodon idellus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:93-104. [PMID: 23817987 DOI: 10.1007/s10695-013-9827-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 06/18/2013] [Indexed: 06/02/2023]
Abstract
The solute carrier family 7A, member 7 gene encodes the light chain- y⁺L amino acid transporter-1 (y⁺LAT1) of the heterodimeric carrier responsible for cationic amino acid (CAA) transport across the basolateral membranes of epithelial cells in intestine and kidney. Rising attention has been given to y⁺LAT1 involved in CAA metabolic pathways and growth control. The molecular characterization and function analysis of y⁺LAT1 in grass carp (Ctenopharyngodon idellus) is currently unknown. In the present study, full-length cDNA (2,688 bp), which encodes y⁺LAT1 and contains a 5'-untranslated region (319 bp), an open reading frame (1,506 bp) and a 3'-untranslated region (863 bp), has been cloned from grass carp. Amino acid sequence of grass carp y⁺LAT1 contains 11 transmembrane domains and shows 95 %, 80 % and 75 % sequence similarity to zebra fish, amphibian and mammalian y⁺LAT1, respectively. The tissue distribution and expression regulation by fasting of y⁺LAT1 mRNA were analyzed using real-time PCR. Our results showed that y⁺LAT1 mRNA was highly expressed in midgut, foregut and spleen while weakly expressed in hindgut, kidney, gill, brain, heart, liver and muscle. Nutritional status significantly influenced y⁺LAT1 mRNA expression in fish tissues, such as down-regulation of y⁺LAT1 mRNA expression after fasting (14 days).
Collapse
Affiliation(s)
- Jixuan Yang
- Fisheries College, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | |
Collapse
|
48
|
The SLC3 and SLC7 families of amino acid transporters. Mol Aspects Med 2013; 34:139-58. [PMID: 23506863 DOI: 10.1016/j.mam.2012.10.007] [Citation(s) in RCA: 499] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/15/2012] [Indexed: 01/18/2023]
Abstract
Amino acids are necessary for all living cells and organisms. Specialized transporters mediate the transfer of amino acids across plasma membranes. Malfunction of these proteins can affect whole-body homoeostasis giving raise to diverse human diseases. Here, we review the main features of the SLC3 and SLC7 families of amino acid transporters. The SLC7 family is divided into two subfamilies, the cationic amino acid transporters (CATs), and the L-type amino acid transporters (LATs). The latter are the light or catalytic subunits of the heteromeric amino acid transporters (HATs), which are associated by a disulfide bridge with the heavy subunits 4F2hc or rBAT. These two subunits are glycoproteins and form the SLC3 family. Most CAT subfamily members were functionally characterized and shown to function as facilitated diffusers mediating the entry and efflux of cationic amino acids. In certain cells, CATs play an important role in the delivery of L-arginine for the synthesis of nitric oxide. HATs are mostly exchangers with a broad spectrum of substrates and are crucial in renal and intestinal re-absorption and cell redox balance. Furthermore, the role of the HAT 4F2hc/LAT1 in tumor growth and the application of LAT1 inhibitors and PET tracers for reduction of tumor progression and imaging of tumors are discussed. Finally, we describe the link between specific mutations in HATs and the primary inherited aminoacidurias, cystinuria and lysinuric protein intolerance.
Collapse
|
49
|
Santiago-Gómez A, Barrasa JI, Olmo N, Lecona E, Burghardt H, Palacín M, Lizarbe MA, Turnay J. 4F2hc-silencing impairs tumorigenicity of HeLa cells via modulation of galectin-3 and β-catenin signaling, and MMP-2 expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2045-56. [PMID: 23651923 DOI: 10.1016/j.bbamcr.2013.04.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 01/17/2023]
Abstract
4F2hc is a type-II glycoprotein whose covalent-bound association with one of several described light chains yields a heterodimer mainly involved in large neutral amino acid transport. Likewise, it is well known that the heavy chain interacts with β-integrins mediating integrin-dependent events such as survival, proliferation, migration and even transformation. 4F2hc is a ubiquitous protein whose overexpression has been related to tumor development and progression. Stable silencing of 4F2hc in HeLa cells using an artificial miRNA impairs in vivo tumorigenicity and leads to an ineffective proliferation response to mitogens. 4F2hc colocalizes with β1-integrins and CD147, but this interaction does not occur in lipid rafts in HeLa cells. Moreover, silenced cells present defects in integrin- (FAK, Akt and ERK1/2) and hypoxia-dependent signaling, and reduced expression/activity of MMP-2. These alterations seem to be dependent on the inappropriate formation of CD147/4F2hc/β1-integrin heterocomplexes on the cell surface, arising when CD147 cannot interact with 4F2hc. Although extracellular galectin-3 accumulates due to the decrease in MMP-2 activity, galectin-3 signaling events are blocked due to an impaired interaction with 4F2hc, inducing an increased degradation of β-catenin. Furthermore, cell motility is compromised after protein silencing, suggesting that 4F2hc is related to tumor invasion by facilitating cell motility. Therefore, here we propose a molecular mechanism by which 4F2hc participates in tumor progression, favoring first steps of epithelial-mesenchymal transition by inhibition of β-catenin proteasomal degradation through Akt/GSK-3β signaling and enabling cell motility.
Collapse
Affiliation(s)
- Angélica Santiago-Gómez
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, 28040-Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Evolutionary History of Eukaryotic α-Glucosidases from the α-Amylase Family. J Mol Evol 2013; 76:129-45. [DOI: 10.1007/s00239-013-9545-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/25/2013] [Indexed: 11/26/2022]
|