1
|
Xie Y, Li X, Deng W, Nan N, Zou H, Gong L, Chen M, Yu J, Chen P, Cui D, Zhang F. Knockdown of USF2 inhibits pyroptosis of podocytes and attenuates kidney injury in lupus nephritis. J Mol Histol 2023; 54:313-327. [PMID: 37341818 DOI: 10.1007/s10735-023-10135-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 06/11/2023] [Indexed: 06/22/2023]
Abstract
As an essential factor in the prognosis of Systemic lupus erythematosus (SLE), lupus nephritis (LN) can accelerate the rate at which patients with SLE can transition to chronic kidney disease or even end-stage renal disease (ESRD). Proteinuria due to decreased glomerular filtration rate following podocyte injury is LN's most common clinical manifestation. Podocyte pyroptosis and related inflammatory factors in its process can promote lupus to involve kidney cells and worsen the occurrence and progression of LN, but its regulatory mechanism remains unknown. Accumulating evidence has shown that upstream stimulatory factor 2 (USF2) plays a vital role in the pathophysiology of kidney diseases. In this research, multiple experiments were performed to investigate the role of USF2 in the process of LN. USF2 was abnormally highly expressed in MRL/lpr mice kidney tissues. Renal function impairment and USF2 mRNA levels were positively correlated. Silencing of USF2 in MRL/lpr serum-stimulated cells significantly reduced serum-induced podocyte pyroptosis. USF2 enhanced NLRP3 expression at the transcriptional level. Silencing of USF2 in vivo attenuated kidney injury in MRL/lpr mice, which suggests that USF2 is important for LN development and occurrence.
Collapse
Affiliation(s)
- Ying Xie
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Xiaoying Li
- Department of Nephrology, The First People's Hospital of Guiyang, Guiyang, 550002, China
| | - Wenli Deng
- Department of Nephrology, The First People's Hospital of Guiyang, Guiyang, 550002, China
| | - Nan Nan
- Department of Pathology, The First People's Hospital of Guiyang, Guiyang, 550002, China
| | - Huimei Zou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
- School of Nursing, Guizhou Medical University, Guiyang, 550025, China
| | - Lei Gong
- Department of Basic Medicine, Qujing Medical College, Qujing, 655000, China
| | - Min Chen
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Jie Yu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Peilei Chen
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Daolin Cui
- Department of Basic Medicine, Qujing Medical College, Qujing, 655000, China.
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Sun J, Ge X, Wang Y, Niu L, Tang L, Pan S. USF2 knockdown downregulates THBS1 to inhibit the TGF-β signaling pathway and reduce pyroptosis in sepsis-induced acute kidney injury. Pharmacol Res 2022; 176:105962. [PMID: 34756923 DOI: 10.1016/j.phrs.2021.105962] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Acute kidney injury (AKI) is a serious complication of sepsis. This study was performed to explore the mechanism that THBS1 mediated pyroptosis by regulating the TGF-β signaling pathway in sepsis-induced AKI. METHODS Gene expression microarray related to sepsis-induced AKI was obtained from the GEO database, and the mechanism in sepsis-induced AKI was predicted by bioinformatics analysis. qRT-PCR and ELISA were performed to detect expressions of THBS1, USF2, TNF-α, IL-1β, and IL-18 in sepsis-induced AKI patients and healthy volunteers. The mouse model of sepsis-induced AKI was established, with serum creatinine, urea nitrogen, 24-h urine output measured, and renal tissue lesions observed by HE staining. The cell model of sepsis-induced AKI was cultured in vitro, with expressions of TNF-α, IL-1β, and IL-18, pyroptosis, Caspase-1 and GSDMD-N, and activation of TGF-β/Smad3 pathway detected. The upstream transcription factor USF2 was knocked down in cells to explore its effect on sepsis-induced AKI. RESULTS THBS1 and USF2 were highly expressed in patients with sepsis-induced AKI. Silencing THBS1 protected mice against sepsis-induced AKI, and significantly decreased the expressions of NLRP3, Caspase-1, GSDMD-N, IL-1β, and IL-18, increased cell viability, and decreased LDH activity, thus partially reversing the changes in cell morphology. Mechanistically, USF2 promoted oxidative stress responses by transcriptionally activating THBS1 to activate the TGF-β/Smad3/NLRP3/Caspase-1 signaling pathway and stimulate pyroptosis, and finally exacerbated sepsis-induced AKI. CONCLUSION USF2 knockdown downregulates THBS1 to inhibit the TGF-β/Smad3 signaling pathway and reduce pyroptosis and further ameliorate sepsis-induced AKI.
Collapse
Affiliation(s)
- Jian Sun
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai 518110, China
| | - Xiaoli Ge
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai 518110, China
| | - Yang Wang
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai 518110, China
| | - Lei Niu
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai 518110, China
| | - Lujia Tang
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai 518110, China
| | - Shuming Pan
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai 518110, China.
| |
Collapse
|
3
|
Xu L, Zhang Y, Chen J, Xu Y. Thrombospondin-1: A Key Protein That Induces Fibrosis in Diabetic Complications. J Diabetes Res 2020; 2020:8043135. [PMID: 32626782 PMCID: PMC7306092 DOI: 10.1155/2020/8043135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022] Open
Abstract
Fibrosis accompanies most common pathophysiological features of diabetes complications in different organs. It is characterized by an excessive accumulation of extracellular matrix (ECM) components, the response to which contributes to inevitable organ injury. The extracellular protein thrombospondin-1 (TSP-1), a kind of extracellular glycoprotein, is upregulated by the increased activity of some transcription factors and results in fibrosis by activating multiple pathways in diabetes. The results of studies from our team and other colleagues indicate that TSP-1 is associated with the pathological process leading to diabetic complications and is considered to be the most important factor in fibrosis. This review summarizes the molecular mechanism of increased TSP-1 induced by hyperglycemia and the role of TSP-1 in fibrosis during the development of diabetes complications.
Collapse
Affiliation(s)
- Linhao Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006 Zhejiang, China
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053 Zhejiang, China
- Translational Medicine Research Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, China
| | - Yong Zhang
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 Zhejiang, China
| | - Jian Chen
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053 Zhejiang, China
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 310006 Zhejiang, China
| |
Collapse
|
4
|
Abstract
Diabetic nephropathy (DN) is the most common cause of end-stage renal disease (ESRD). About 20%-30% of people with type 1 and type 2 diabetes develop DN. DN is characterized by both glomerulosclerosis with thickening of the glomerular basement membrane and mesangial matrix expansion, and tubulointerstitial fibrosis. Hyperglycemia and the activation of the intra-renal renin-angiotensin system (RAS) in diabetes have been suggested to play a critical role in the pathogenesis of DN. However, the mechanisms are not well known. Studies from our laboratory demonstrated that the transcription factor-upstream stimulatory factor 2 (USF2) is an important regulator of DN. Moreover, the renin gene is a downstream target of USF2. Importantly, USF2 transgenic (Tg) mice demonstrate a specific increase in renal renin expression and angiotensin II (AngII) levels in kidney and exhibit increased urinary albumin excretion and extracellular matrix deposition in glomeruli, supporting a role for USF2 in the development of diabetic nephropathy. In this review, we summarize our findings of the mechanisms by which diabetes regulates USF2 in kidney cells and its role in regulation of renal renin-angiotensin system and the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Shuxia Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
5
|
Zhang J, Song R, Li Y, Feng J, Peng L, Li J. Integration of microarray profiles associated with cardiomyopathy and the potential role of Ube3a in apoptosis. Mol Med Rep 2013; 9:621-5. [PMID: 24337433 DOI: 10.3892/mmr.2013.1848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 12/03/2013] [Indexed: 11/05/2022] Open
Abstract
Cardiomyopathy is the one of the primary causes of mortality. High‑throughput genome datasets provide novel information that aids the understanding of the complex mechanisms involved in cardiomyopathy. However, the causative mechanisms underlying cardiomyopathy are yet to be elucidated. In order to improve the use of the high‑throughput genome datasets, the present study employed 9 microarray datasets to mine for differentially expressed cardiomyopathy‑associated genes using bioinformatic methods. Following validation using quantitative polymerase chain reaction, ubiquitin‑protein ligase E3a (Ube3a) was selected as a candidate gene for the disease. Substantial evidence suggests that apoptosis may be involved in the pathophysiology of cardiomyopathies. Therefore, in the present study, H2O2 was utilized to induce apoptosis in H9C2 cells in order to understand the interrelation between Ube3a and the apoptosis-related protein p53. Ube3a and p53 were observed to be significantly increased at the transcriptional and translational levels in response to H2O2 treatment. The results of this study indicate the efficiency of the data integration and the significant interrelation between Ube3a and p53 in myocardial cells during apoptosis.
Collapse
Affiliation(s)
- Jie Zhang
- Division of Preventive Medicine, Ministry of Education, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Rui Song
- Division of Preventive Medicine, Ministry of Education, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Yanfei Li
- Division of Preventive Medicine, Ministry of Education, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Jian Feng
- Division of Preventive Medicine, Ministry of Education, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education, Tongji University School of Medicine, Shanghai 200092, P.R. China
| | - Jue Li
- Division of Preventive Medicine, Ministry of Education, Tongji University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
6
|
Cui W, Maimaitiyiming H, Qi X, Norman H, Wang S. Thrombospondin 1 mediates renal dysfunction in a mouse model of high-fat diet-induced obesity. Am J Physiol Renal Physiol 2013; 305:F871-80. [PMID: 23863467 PMCID: PMC3761287 DOI: 10.1152/ajprenal.00209.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/04/2013] [Indexed: 11/22/2022] Open
Abstract
Obesity is prevalent worldwide and is a major risk factor for many diseases including renal complications. Thrombospondin 1 (TSP1), a multifunctional extracellular matrix protein, plays an important role in diabetic kidney diseases. However, whether TSP1 plays a role in obesity-related kidney disease is unknown. In the present studies, the role of TSP1 in obesity-induced renal dysfunction was determined by using a diet-induced obese mouse model. The results demonstrated that TSP1 was significantly upregulated in the kidney from obese mice. The increased TSP1 was localized in the glomerular mesangium as well as in the tubular system from obese wild-type mice. Obese wild-type mice developed renal hypertrophy and albuminuria, which was associated with increased kidney macrophage infiltration, augmented kidney inflammation, and activated transforming growth factor (TGF)-β signaling and renal fibrosis. In contrast, obese TSP1-deficient mice did not develop these kidney damages. Furthermore, in vitro studies demonstrated that leptin treatment stimulated the expression of TSP1, TGF-β1, fibronectin, and collagen type IV in mesangial cells isolated from wild-type mice. These leptin-stimulated effects were abolished in TSP1-deficient mesangial cells. Taken together, these data suggest that TSP1 is an important mediator for obesity- or hyperleptinemia-induced kidney dysfunction.
Collapse
Affiliation(s)
- Wenpeng Cui
- Graduate Center for Nutritional Sciences, Univ. of Kentucky, Wethington Bldg. Rm. 583, 900 S. Limestone St., Lexington, KY 40536.
| | | | | | | | | |
Collapse
|
7
|
Matsuda M, Tamura K, Wakui H, Maeda A, Ohsawa M, Kanaoka T, Azushima K, Uneda K, Haku S, Tsurumi-Ikeya Y, Toya Y, Maeshima Y, Yamashita A, Umemura S. Upstream stimulatory factors 1 and 2 mediate the transcription of angiotensin II binding and inhibitory protein. J Biol Chem 2013; 288:19238-49. [PMID: 23653383 PMCID: PMC3696694 DOI: 10.1074/jbc.m113.451054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The angiotensin II type 1 receptor (AT1R)-associated protein (ATRAP/Agtrap) promotes constitutive internalization of the AT1R so as to specifically inhibit the pathological activation of its downstream signaling yet preserve the base-line physiological signaling activity of the AT1R. Thus, tissue-specific regulation of Agtrap expression is relevant to the pathophysiology of cardiovascular and renal disease. However, the regulatory mechanism of Agtrap gene expression has not yet been fully elucidated. In this study, we show that the proximal promoter region from −150 to +72 of the mouse Agtrap promoter, which contains the X-box, E-box, and GC-box consensus motifs, is able to elicit substantial transcription of the Agtrap gene. Among these binding motifs, we showed that the E-box specifically binds upstream stimulatory factor (Usf) 1 and Usf2, which are known E-box-binding transcription factors. It is indicated that the E-box-Usf1/Usf2 binding regulates Agtrap expression because of the following: 1) mutation of the E-box to prevent Usf1/Usf2 binding reduces Agtrap promoter activity; 2) knockdown of Usf1 or Usf2 affects both endogenous Agtrap mRNA and Agtrap protein expression, and 3) the decrease in Agtrap mRNA expression in the afflicted kidney by unilateral ureteral obstruction is accompanied by changes in Usf1 and Usf2 mRNA. Furthermore, the results of siRNA transfection in mouse distal convoluted tubule cells and those of unilateral ureteral obstruction in the afflicted mouse kidney suggest that Usf1 decreases but Usf2 increases the Agtrap gene expression by binding to the E-box. The results also demonstrate a functional E-box-USF1/USF2 interaction in the human AGTRAP promoter, thereby suggesting that a strategy of modulating the E-box-USF1/USF2 binding has novel therapeutic potential.
Collapse
Affiliation(s)
- Miyuki Matsuda
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kagami S. Involvement of glomerular renin-angiotensin system (RAS) activation in the development and progression of glomerular injury. Clin Exp Nephrol 2012; 16:214-20. [PMID: 22134870 PMCID: PMC3328682 DOI: 10.1007/s10157-011-0568-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/11/2011] [Indexed: 12/20/2022]
Abstract
Recently, there has been a paradigm shift away from an emphasis on the role of the endocrine (circulating) renin-angiotensin system (RAS) in the regulation of the sodium and extracellular fluid balance, blood pressure, and the pathophysiology of hypertensive organ damage toward a focus on the role of tissue RAS found in many organs, including kidney. A tissue RAS implies that RAS components necessary for the production of angiotensin II (Ang II) reside within the tissue and its production is regulated within the tissue, independent of the circulating RAS. Locally produced Ang II plays a role in many physiological and pathophysiological processes such as hypertension, inflammation, oxidative stress, and tissue fibrosis. Both glomerular and tubular compartments of the kidney have the characteristics of a tissue RAS. The purpose of this article is to review the recent advances in tissue RAS research with a particular focus on the role of the glomerular RAS in the progression of renal disease.
Collapse
Affiliation(s)
- Shoji Kagami
- Department of Pediatrics, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto-cho-3-chome, Tokushima, 770-8503, Japan.
| |
Collapse
|
9
|
Samarakoon R, Overstreet JM, Higgins SP, Higgins PJ. TGF-β1 → SMAD/p53/USF2 → PAI-1 transcriptional axis in ureteral obstruction-induced renal fibrosis. Cell Tissue Res 2012; 347:117-28. [PMID: 21638209 PMCID: PMC3188682 DOI: 10.1007/s00441-011-1181-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 04/15/2011] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease constitutes an increasing medical burden affecting 26 million people in the United States alone. Diabetes, hypertension, ischemia, acute injury, and urological obstruction contribute to renal fibrosis, a common pathological hallmark of chronic kidney disease. Regardless of etiology, elevated TGF-β1 levels are causatively linked to the activation of profibrotic signaling pathways initiated by angiotensin, glucose, and oxidative stress. Unilateral ureteral obstruction (UUO) is a useful and accessible model to identify mechanisms underlying the progression of renal fibrosis. Plasminogen activator inhibitor-1 (PAI-1), a major effector and downstream target of TGF-β1 in the progression of several clinically important fibrotic disorders, is highly up-regulated in UUO and causatively linked to disease severity. SMAD and non-SMAD pathways (pp60(c-src), epidermal growth factor receptor [EGFR], mitogen-activated protein kinase, p53) are required for PAI-1 induction by TGF-β1. SMAD2/3, pp60(c-src), EGFR, and p53 activation are each increased in the obstructed kidney. This review summarizes the molecular basis and translational significance of TGF-β1-stimulated PAI-1 expression in the progression of kidney disease induced by ureteral obstruction. Mechanisms discussed here appear to be operative in other renal fibrotic disorders and are relevant to the global issue of tissue fibrosis, regardless of organ site.
Collapse
Affiliation(s)
- Rohan Samarakoon
- Center for Cell Biology and Cancer Research (MC-165), Albany Medical College, 47 New Scotland Avenue, Albany NY 12208, USA
| | - Jessica M. Overstreet
- Center for Cell Biology and Cancer Research (MC-165), Albany Medical College, 47 New Scotland Avenue, Albany NY 12208, USA
| | - Stephen P. Higgins
- Center for Cell Biology and Cancer Research (MC-165), Albany Medical College, 47 New Scotland Avenue, Albany NY 12208, USA
| | - Paul J. Higgins
- Center for Cell Biology and Cancer Research (MC-165), Albany Medical College, 47 New Scotland Avenue, Albany NY 12208, USA
| |
Collapse
|
10
|
Sato AYS, Antonioli E, Tambellini R, Campos AH. ID1 inhibits USF2 and blocks TGF-β-induced apoptosis in mesangial cells. Am J Physiol Renal Physiol 2011; 301:F1260-9. [PMID: 21921026 DOI: 10.1152/ajprenal.00128.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mesangial cells (MC) play an essential role in normal function of the glomerulus. Phenotypic changes in MC lead to the development of glomerular diseases such as diabetic nephropathy and glomerulosclerosis. The late phase of diabetic glomerulopathy is characterized by MC death and fibrosis. Current data highlight the transforming growth factor (TGF)-β as a trigger of the pathological changes observed in MC, including death by apoptosis. However, the mechanisms and mediators involved in this process are still poorly understood. Identification of novel elements involved in MC death may provide a better understanding of the pathophysiology of glomerular diseases. Here, we show that bone morphogenetic proteins (BMPs; known antagonists of the profibrotic effects of TGF-β in the kidney) strongly induce inhibitor of DNA binding (ID1) mRNA transcription and protein expression in human MC. ID genes have been implicated in cell survival control and are constitutively expressed in MC. We show that BMPs and ID1 exert an anti-apoptotic effect in MC by inhibition of USF2 transcriptional activity. On the other hand, TGF-β upregulates USF2, increasing BAX (proapoptotic gene) levels and apoptosis rates. Taken together, our results point to a novel molecular pathway that modulates MC apoptosis, which is potentially involved in the pathogenesis of glomerular diseases.
Collapse
Affiliation(s)
- Alex Yuri Simões Sato
- Department of Physiology and Biophysics, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Albert Einstein, 627 Morumbi, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
11
|
Sanchez AP, Zhao J, You Y, Declèves AE, Diamond-Stanic M, Sharma K. Role of the USF1 transcription factor in diabetic kidney disease. Am J Physiol Renal Physiol 2011; 301:F271-9. [PMID: 21543418 PMCID: PMC3154594 DOI: 10.1152/ajprenal.00221.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 04/28/2011] [Indexed: 01/07/2023] Open
Abstract
The predominant transcription factors regulating key genes in diabetic kidney disease have not been established. The transcription factor upstream stimulatory factor 1 (USF1) is an important regulator of glucose-mediated transforming growth factor (TGF)-β1 expression in mesangial cells; however, its role in the development of diabetic kidney disease has not been evaluated. In the present study, wild-type (WT; USF1 +/+), heterozygous (USF1 +/-), and homozygous (USF1 -/-) knockout mice were intercrossed with Akita mice (Ins2/Akita) to induce type 1 diabetes. Mice were studied up to 36 wk of age. The degree of hyperglycemia and kidney hypertrophy were similar in all groups of diabetic mice; however, the USF1 -/- diabetic mice had significantly less albuminuria and mesangial matrix expansion than the WT diabetic mice. TGF-β1 and renin gene expression and protein were substantially increased in the WT diabetic mice but not in USF1 -/- diabetic mice. The underlying pathway by which USF1 is regulated by high glucose was investigated in mesangial cell culture. High glucose inhibited AMP-activated protein kinase (AMPK) activity and increased USF1 nuclear translocation. Activation of AMPK with AICAR stimulated AMPK activity and reduced nuclear accumulation of USF1. We thus conclude that USF1 is a critical transcription factor regulating diabetic kidney disease and plays a critical role in albuminuria, mesangial matrix accumulation, and TGF-β1 and renin stimulation in diabetic kidney disease. AMPK activity may play a key role in high glucose-induced regulation of USF1.
Collapse
Affiliation(s)
- Amber P Sanchez
- Center for Renal Translational Medicine, Division of Nephrology-Hypertension, Department of Medicine, University of California, Veterans Administration San Diego HealthCare System, La Jolla, 92093, USA
| | | | | | | | | | | |
Collapse
|
12
|
Nikolic DM, Li Y, Liu S, Wang S. Overexpression of constitutively active PKG-I protects female, but not male mice from diet-induced obesity. Obesity (Silver Spring) 2011; 19:784-91. [PMID: 20930715 PMCID: PMC9125568 DOI: 10.1038/oby.2010.223] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclic guanosine monophosphate (cGMP)-dependent protein kinase I (PKG-I) is a multifunctional protein. The direct effects of PKG-I activation on energy homeostasis and obesity development are not well understood. Herein, we generated transgenic mice with expression of the constitutively active PKG-I in adipose tissue as well as in other tissues. Male and female PKG-I overexpressing mice were fed a low-fat (LF) or high-fat (HF) diet for 16 weeks. HF-fed female PKG-I transgenic mice had decreased body weight gain, lower percentage of body fat, and improved glucose tolerance compared to HF-fed wild-type (WT) controls. In contrast, male transgenic PKG-I mice were not resistant to the development of HF-diet-induced obesity, and exhibited similar levels of adiposity and glucose intolerance as HF-fed WT controls. Furthermore, we found that HF-fed female transgenic PKG-I mice had increased energy expenditure and cold-induced adaptive thermogenesis compared to HF-fed WT controls, which was associated with increased expression of uncoupling protein-1 (UCP1) in brown adipose tissue (BAT). In addition, the rates of lipolysis in white adipose tissue (WAT) were also increased in female transgenic PKG-I mice compared to WT controls due to increased phosphorylation of hormone-sensitive lipase (HSL). However, in male mice, adaptive thermogenesis or WAT lipolysis was similar between transgenic PKG-I mice and WT controls. Together, these data demonstrate sex differences in effects of PKG-I activation on the regulation of adipose tissue function and its contribution to diet induced obesity.
Collapse
Affiliation(s)
- Dejan M. Nikolic
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Yanzhang Li
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Shu Liu
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Shuxia Wang
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
13
|
Visavadiya NP, Li Y, Wang S. High glucose upregulates upstream stimulatory factor 2 in human renal proximal tubular cells through angiotensin II-dependent activation of CREB. Nephron Clin Pract 2010; 117:e62-70. [PMID: 20814220 DOI: 10.1159/000320593] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 06/30/2010] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND/AIMS We have previously demonstrated that a transcription factor, upstream stimulatory factor 2 (USF2), regulates glucose-induced thrombospondin 1 expression and transforming growth factor-β activity in mesangial cells, and plays an important role in diabetic glomerulopathy. In this study, we determined whether USF2 expression in renal proximal tubular cells is regulated by glucose and contributes to diabetic tubulointerstitial fibrosis. METHODS Human renal proximal tubular cells (HK-2 cells) were treated with normal- or high-glucose medium for 24 h. After treatment, real-time PCR or immunoblotting was used to determine the expression of USF2 and other components of the renin-angiotensin system in HK-2 cells. RESULTS High glucose upregulated USF2 expression and increased extracellular matrix accumulation in HK-2 cells; both were inhibited by siRNA-mediated USF2 knockdown. In addition, high glucose stimulated angiotensinogen and renin expression, increased renin activity, and resulted in increased angiotensin II formation. Treatment of HK-2 cells with an angiotensin II receptor 1 (AT1) blocker--losartan--prevented high-glucose-induced USF2 expression and high-glucose-enhanced phosphorylation of CREB (cAMP response element-binding protein). CONCLUSION Our data established that high glucose stimulated USF2 expression in HK-2 cells, at least in part, through angiotensin II-AT1-dependent activation of CREB, which can contribute to diabetic tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Nishant P Visavadiya
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY 40536-0200, USA
| | | | | |
Collapse
|
14
|
Kato M, Wang L, Putta S, Wang M, Yuan H, Sun G, Lanting L, Todorov I, Rossi JJ, Natarajan R. Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-{beta}-induced collagen expression in kidney cells. J Biol Chem 2010; 285:34004-15. [PMID: 20713358 DOI: 10.1074/jbc.m110.165027] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Increased accumulation of extracellular matrix proteins and hypertrophy induced by transforming growth factor-β1 (TGF-β) in renal mesangial cells (MC) are hallmark features of diabetic nephropathy. Although the post-transcriptional regulation of key genes has been implicated in these events, details are not fully understood. Here we show that TGF-β increased microRNA-216a (miR-216a) levels in mouse MC, with parallel down-regulation of Ybx1, a miR-216a target and RNA-binding protein. TGF-β also enhanced protein levels of Tsc-22 (TGF-β-stimulated clone 22) and collagen type I α-2 (Col1a2) expression in MC through far upstream enhancer E-boxes by interaction of Tsc-22 with an E-box regulator, Tfe3. Ybx1 colocalized with processing bodies in MC and formed a ribonucleoprotein complex with Tsc-22 mRNA, and this complex formation was reduced by TGF-β, miR-216a mimics, or Ybx1 shRNA to increase Tsc-22 protein levels but enhanced by miR-216a inhibitor oligonucleotides. Chromatin immunoprecipitation (ChIP) assays revealed that TGF-β could increase the occupancies of Tsc-22 and Tfe3 on enhancer E-boxes of Col1a2. Co-immunoprecipitation assays revealed that TGF-β promoted the interaction of Tsc-22 with Tfe3. These results demonstrate that post-transcriptional regulation of Tsc-22 mediated through Ybx1, a miR-216a target, plays a key role in TGF-β-induced Col1a2 in MC related to the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Mitsuo Kato
- Gonda Diabetes Center, Beckman Research Institute of City of Hope, Duarte, California 91010, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Journal Club. Kidney Int 2009. [DOI: 10.1038/ki.2009.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|