1
|
Histochemical study of rabbit medial pterygoid muscle during postnatal development. Odontology 2016; 105:141-149. [PMID: 27456682 DOI: 10.1007/s10266-016-0262-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/19/2016] [Indexed: 10/21/2022]
Abstract
The medial pterygoid muscle is a layered structure like the masseter muscle. This study aimed at investigating the regional differences in fiber type composition and fiber diameter of the medial pterygoid muscle in the rabbit from birth until 33 weeks of age. Histochemical analysis of the medial pterygoid muscle was performed during five developmental stages (4, 9, 12, 18, and 33 weeks after birth) in 30 male Japanese white rabbits. Six fiber types (I, IC, IIC, IIA, IIAB, and IIB) were identified by mATPase staining. An increase in diameter was observed in fiber types I and IC until 9 weeks of age, and in fiber types IIC, IIA, IIAB, and IIB until 33 weeks of age. No significant differences in fiber diameter were noted in the different regions of the pterygoid muscle. Moderate fast to slow fiber type shifts occurred from weeks 4-12; thereafter, a rapid slow to fast fiber type shift was observed. Significant differences in fiber type composition based on regional differences were noted at 4 weeks of age. However, there was no difference in fiber type composition between regions at 33 weeks. In conclusion, it was clear that the diameter and proportion of fast fibers had increased even after reaching sexual maturity in rabbits. In addition, the medial pterygoid muscle tissues appeared to be homogenous at 33 weeks of age with very few differences between regions.
Collapse
|
2
|
Terzis G, Spengos K, Methenitis S, Aagaard P, Karandreas N, Bogdanis G. Early phase interference between low-intensity running and power training in moderately trained females. Eur J Appl Physiol 2016; 116:1063-73. [PMID: 27040693 DOI: 10.1007/s00421-016-3369-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/19/2016] [Indexed: 12/12/2022]
Abstract
PURPOSE The aim of the study was to investigate the effects of low-intensity running performed immediately after lower-body power-training sessions on power development. METHODS Twenty young females participated in 6 weeks, 3/week, of either lower body power training (PT) or lower body power training followed by 30 min of low-intensity running (PET) eliciting 60-70 % of maximal heart rate. The following were measured before and after the training period: counter-movement jump, isometric leg press force and rate of force development (RFD), half squat 1-RM, vastus lateralis fiber type composition and cross sectional area, resting intramuscular fiber conduction velocity (MFCV), and heart rate during the modified Bruce treadmill test. RESULTS Counter-movement jump height and peak power increased after PT (10.7 ± 6.2 and 12.9 ± 18.7 %, p < 0.05) but not after PET (3.4 ± 7.6 and 5.11 ± 10.94 %, p > 0.05). Maximum isometric force, RFD, and half squat 1-RM increased similarly in both groups. Muscle fiber type composition was not altered in either group. Muscle fiber cross sectional area increased only after PT (17.5 ± 17.4, 14.5 ± 10.4, 20.36 ± 11.3 %, in type I, IIA, and IIX fibers, respectively, p < 0.05). Likewise, mean MFCV increased with PT only (before: 4.53 ± 0.38 m s(-1), after: 5.09 ± 0.39 m s(-1), p = 0.027). Submaximal heart rate during the Bruce treadmill test remained unchanged after PT but decreased after PET. CONCLUSION These results suggest that low-intensity running performed after lower-body power training impairs the exercise-induced adaptation in stretch-shortening cycle jumping performance (vertical jump height, peak power), during the first 6 weeks of training, which may be partially linked to inhibited muscle fiber hypertrophy and muscle fiber conduction velocity.
Collapse
Affiliation(s)
- Gerasimos Terzis
- Athletics Laboratory, School of Physical Education and Sport Science, University of Athens, Ethnikis Antistassis 41, 172 37, Daphne, Athens, Greece.
| | - Kostas Spengos
- Division of Public Health, Psychiatry and Neurology, 1st Department of Neurology, Aiginition Hospital, Medical School, University of Athens, Athens, Greece
| | - Spyros Methenitis
- Athletics Laboratory, School of Physical Education and Sport Science, University of Athens, Ethnikis Antistassis 41, 172 37, Daphne, Athens, Greece
| | - Per Aagaard
- Muscle Physiology and Biomechanics Research Unit, Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Nikos Karandreas
- Division of Public Health, Psychiatry and Neurology, 1st Department of Neurology, Aiginition Hospital, Medical School, University of Athens, Athens, Greece
| | - Gregory Bogdanis
- Athletics Laboratory, School of Physical Education and Sport Science, University of Athens, Ethnikis Antistassis 41, 172 37, Daphne, Athens, Greece
| |
Collapse
|
3
|
Moderate physical training attenuates muscle-specific effects on fibre type composition in adult rats submitted to a perinatal maternal low-protein diet. Eur J Nutr 2011; 51:807-15. [DOI: 10.1007/s00394-011-0259-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 10/06/2011] [Indexed: 01/10/2023]
|
4
|
Zwetsloot KA, Laye MJ, Booth FW. Novel epigenetic regulation of skeletal muscle myosin heavy chain genes. Focus on "Differential epigenetic modifications of histones at the myosin heavy chain genes in fast and slow skeletal muscle fibers and in response to muscle unloading". Am J Physiol Cell Physiol 2009; 297:C1-3. [PMID: 19403799 DOI: 10.1152/ajpcell.00176.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Hypolite JA, Chang S, LaBelle E, Babu GJ, Periasamy M, Wein AJ, Chacko S. Deletion of SM-B, the high ATPase isoform of myosin, upregulates the PKC-mediated signal transduction pathway in murine urinary bladder smooth muscle. Am J Physiol Renal Physiol 2008; 296:F658-65. [PMID: 19052105 DOI: 10.1152/ajprenal.90221.2008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Detrusor smooth muscle (DSM) hypertrophy induced by partial bladder outlet obstruction (PBOO) is associated with changes in the NH2-terminal myosin heavy chain isoform from predominantly SM-B to SM-A, alteration in the Ca2+ sensitization pathway, and the contractile characteristics from phasic to tonic in rabbits. We utilized the SM-B knockout (KO) mouse to determine whether a shift from SM-B to SM-A without PBOO is associated with changes in the signal transduction pathway mediated via PKC and CPI-17, which keeps the myosin phosphorylation (MLC20) level high by inhibiting the myosin phosphatase. DSM strips from SM-B KO mice generated more force in response to electrical field stimulation, KCl, carbachol, and phorbol 12,13-dibutyrate than that of age-matched wild-type mice. There was no difference in the ED50 for carbachol but the maximum response was greater for the SM-B KO mice. DSM from SM-B KO mice revealed increased mass and hypertrophy. The KO mice also showed an overexpression of PKC-alpha, increased levels of phospho-CPI-17, and an elevated level of IP3 and DAG upon stimulation with carbachol. Two-dimensional gel electrophoresis revealed an increased level of MLC20 phosphorylation in response to carbachol. Together, these changes may be responsible for the higher level of force generation and maintenance by the DSM from the SM-B KO bladders. In conclusion, our data show that ablation of SM-B is associated with alteration of PKC-mediated signal transduction and CPI-17-mediated Ca2+ sensitization pathway that regulate smooth muscle contraction. Interestingly, similar changes are also present in PBOO-induced DSM compensatory response in the rabbit model in which SM-B is downregulated.
Collapse
Affiliation(s)
- Joseph A Hypolite
- Division of Urology and Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Skeletal muscle is a malleable tissue capable of altering the type and amount of protein in response to disruptions to cellular homeostasis. The process of exercise-induced adaptation in skeletal muscle involves a multitude of signalling mechanisms initiating replication of specific DNA genetic sequences, enabling subsequent translation of the genetic message and ultimately generating a series of amino acids that form new proteins. The functional consequences of these adaptations are determined by training volume, intensity and frequency, and the half-life of the protein. Moreover, many features of the training adaptation are specific to the type of stimulus, such as the mode of exercise. Prolonged endurance training elicits a variety of metabolic and morphological changes, including mitochondrial biogenesis, fast-to-slow fibre-type transformation and substrate metabolism. In contrast, heavy resistance exercise stimulates synthesis of contractile proteins responsible for muscle hypertrophy and increases in maximal contractile force output. Concomitant with the vastly different functional outcomes induced by these diverse exercise modes, the genetic and molecular mechanisms of adaptation are distinct. With recent advances in technology, it is now possible to study the effects of various training interventions on a variety of signalling proteins and early-response genes in skeletal muscle. Although it cannot presently be claimed that such scientific endeavours have influenced the training practices of elite athletes, these new and exciting technologies have provided insight into how current training techniques result in specific muscular adaptations, and may ultimately provide clues for future and novel training methodologies. Greater knowledge of the mechanisms and interaction of exercise-induced adaptive pathways in skeletal muscle is important for our understanding of the aetiology of disease, maintenance of metabolic and functional capacity with aging, and training for athletic performance. This article highlights the effects of exercise on molecular and genetic mechanisms of training adaptation in skeletal muscle.
Collapse
Affiliation(s)
- Vernon G Coffey
- School of Medical Sciences, Exercise Metabolism Group, RMIT University, Melbourne, Victoria, Australia
| | | |
Collapse
|
7
|
Coffey VG, Hawley JA. The molecular bases of training adaptation. SPORTS MEDICINE (AUCKLAND, N.Z.) 2007. [PMID: 17722947 DOI: 10.2165/00007256-200737090-00001.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Skeletal muscle is a malleable tissue capable of altering the type and amount of protein in response to disruptions to cellular homeostasis. The process of exercise-induced adaptation in skeletal muscle involves a multitude of signalling mechanisms initiating replication of specific DNA genetic sequences, enabling subsequent translation of the genetic message and ultimately generating a series of amino acids that form new proteins. The functional consequences of these adaptations are determined by training volume, intensity and frequency, and the half-life of the protein. Moreover, many features of the training adaptation are specific to the type of stimulus, such as the mode of exercise. Prolonged endurance training elicits a variety of metabolic and morphological changes, including mitochondrial biogenesis, fast-to-slow fibre-type transformation and substrate metabolism. In contrast, heavy resistance exercise stimulates synthesis of contractile proteins responsible for muscle hypertrophy and increases in maximal contractile force output. Concomitant with the vastly different functional outcomes induced by these diverse exercise modes, the genetic and molecular mechanisms of adaptation are distinct. With recent advances in technology, it is now possible to study the effects of various training interventions on a variety of signalling proteins and early-response genes in skeletal muscle. Although it cannot presently be claimed that such scientific endeavours have influenced the training practices of elite athletes, these new and exciting technologies have provided insight into how current training techniques result in specific muscular adaptations, and may ultimately provide clues for future and novel training methodologies. Greater knowledge of the mechanisms and interaction of exercise-induced adaptive pathways in skeletal muscle is important for our understanding of the aetiology of disease, maintenance of metabolic and functional capacity with aging, and training for athletic performance. This article highlights the effects of exercise on molecular and genetic mechanisms of training adaptation in skeletal muscle.
Collapse
Affiliation(s)
- Vernon G Coffey
- School of Medical Sciences, Exercise Metabolism Group, RMIT University, Melbourne, Victoria, Australia
| | | |
Collapse
|
8
|
Hug F, Marqueste T, Le Fur Y, Cozzone PJ, Grélot L, Bendahan D. Selective training-induced thigh muscles hypertrophy in professional road cyclists. Eur J Appl Physiol 2006; 97:591-7. [PMID: 16767441 DOI: 10.1007/s00421-006-0218-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2006] [Indexed: 11/25/2022]
Abstract
Muscular adaptations linked to a high volume and intensity of training have been scarcely reported. We aimed at documenting, using MRI, the cross-sectional area changes associated with a high volume and intensity of training in 11 thigh muscles of a population of professional road cyclists as compared with sport science students. We were also interested in determining, whether selective muscle hypertrophy in professional road cyclists, if any, was correlated to selective exercise-induced T (2) changes during a pedaling exercise on a cycloergometer. Cross-sectional area of 11 thigh muscles was quantified in sixteen subjects (i.e. eight professional road cyclists and eight sport science students) using MRI. In addition, transverse relaxation times (T (2)) were measured before and just after a maximal standardized constant-load exercise in order to investigate exercise-related T (2) changes in these muscles. Professional road cyclists had a significantly higher relative amount of muscle (including the whole set of thigh muscles, 90.5+/-3.3%) as compared to controls (81.6+/-7.3%). Regarding relative values expressed with respect to the total thigh muscles CSA, Vastus lateralis and Biceps femoris CSA were significantly larger in cyclists whereas CSA of the Vastus intermedius was smaller. However, this selective hypertrophy was not correlated to the exercise-induced T (2)-increase. We have reported, for the first time, a selective hypertrophy of Vastus lateralis and Biceps femoris in professional road cyclists confirming their involvement in pedaling task and suggesting a possible cause-effect relationship between muscle activation and hypertrophy, associated with a specific pedaling skill.
Collapse
Affiliation(s)
- François Hug
- Laboratory of Biomechanics and Physiology, INSEP, National Institute for Sports and Physical Education, 11 Avenue du Tremblay, 75012 Paris, France.
| | | | | | | | | | | |
Collapse
|
9
|
Huijing PA, Jaspers RT. Adaptation of muscle size and myofascial force transmission: a review and some new experimental results. Scand J Med Sci Sports 2005; 15:349-80. [PMID: 16293149 DOI: 10.1111/j.1600-0838.2005.00457.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This paper considers the literature and some new experimental results important for adaptation of muscle fiber cross-sectional area and serial sarcomere number. Two major points emerge: (1) general rules for the regulation of adaptation (for in vivo immobilization, low gravity conditions, synergist ablation, tenotomy and retinaculum trans-section experiments) cannot be derived. As a consequence, paradoxes are reported in the literature. Some paradoxes are resolved by considering the interaction between different levels of organization (e.g. muscle geometrical effects), but others cannot. (2) An inventory of signal transduction pathways affecting rates of muscle protein synthesis and/or degradation reveals controversy concerning the pathways and their relative contributions. A major explanation for the above is not only the inherently limited control of the experimental conditions in vivo, but also of in situ experiments. Culturing of mature single Xenopus muscle fibers at high and low lengths (allowing longitudinal study of adaptation for periods up to 3 months) did not yield major changes in the fiber cross-sectional area or the serial sarcomere number. This is very different from substantial effects (within days) of immobilization in vivo. It is concluded that overall strain does not uniquely regulate muscle fiber size. Force transmission, via pathways other than the myotendinous junctions, may contribute to the discrepancies reported: because of substantial serial heterogeneity of sarcomere lengths within muscle fibers creating local variations in the mechanical stimuli for adaptation. For the single muscle fiber, mechanical signalling is quite different from the in vivo or in vitro condition. Removal of tensile and shear effects of neighboring tissues (even of antagonistic muscle) modifies or removes mechanical stimuli for adaptation. It is concluded that the study of adaptation of muscle size requires an integrative approach taking into account fundamental mechanisms of adaptation, as well as effects of higher levels of organization. More attention should be paid to adaptation of connective tissues within and surrounding the muscle and their effects on muscular properties.
Collapse
Affiliation(s)
- P A Huijing
- Instituut voor Fundamentele en Klinische Bewegingswetenschappen, Faculteit Bewegingswetenschappen, Vrije Universiteit, Amsterdam, The Netherlands.
| | | |
Collapse
|
10
|
Fuller PM, Baldwin KM, Fuller CA. Parallel and divergent adaptations of rat soleus and plantaris to chronic exercise and hypergravity. Am J Physiol Regul Integr Comp Physiol 2005; 290:R442-8. [PMID: 16179485 DOI: 10.1152/ajpregu.00578.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been demonstrated that endurance exercise and chronic acceleration, i.e., hypergravity, produce comparable adaptations in a variety of physiological systems, including decreased adiposity, increased energy metabolism, and altered intermediary metabolism. Similar adaptations have not been demonstrated for skeletal muscle per se. To further differentiate between these general responses with respect to gravity and exercise, this study tested the hypothesis that chronic exercise (voluntary wheel running) and chronic acceleration (2 G via centrifugation) will induce similar changes in muscle myosin heavy chain (MHC) isoform expression in rat plantaris, a fast extensor, and in rat soleus, a slow "antigravity" extensor. The experimental design involved four groups of mature male rats (n = 8/group): 1 G and 2 G with running wheels, and 1 G and 2 G controls without running wheels. The primary observations from the study were as follows: 1) 8 wk of 2 G are an adequate stimulus for MHC compositional changes in rat plantaris and soleus muscle; 2) both exercise and +G caused an increase in the slow MHC1 isoform in soleus muscle, suggesting that loading is a primary stimulus for this shift; and 3) 2 G and exercise appeared to have differential effects on the plantaris muscle MHC isoforms, with 2 G causing an increase in MHC2b, and exercise causing a decrease in MHC2b with a concomitant increase in MHC1, suggesting that factors other than enhanced loading, possibly locomotor activity levels, are the primary stimulus for this shift.
Collapse
Affiliation(s)
- Patrick M Fuller
- Section of Neurobiology, Physiology & Behavior, University of California, Davis, California 95616-8519, USA
| | | | | |
Collapse
|
11
|
Kim JS, Hinchcliff KW, Yamaguchi M, Beard LA, Markert CD, Devor ST. Exercise training increases oxidative capacity and attenuates exercise-induced ultrastructural damage in skeletal muscle of aged horses. J Appl Physiol (1985) 2005; 98:334-42. [PMID: 15377646 DOI: 10.1152/japplphysiol.00172.2003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise training improves functional capacity in aged individuals. Whether such training reduces the severity of exercise-induced muscle damage is unknown. The purpose of the present study was to determine the effect of 10 wk of treadmill exercise training on skeletal muscle oxidative capacity and exercise-induced ultrastructural damage in six aged female Quarter horses (>23 yr of age). The magnitude of ultrastructural muscle damage induced by an incremental exercise test before and after training was determined by electron microscopic examination of samples of triceps, semimembranosus, and masseter (control) muscles. Maximal aerobic capacity increased 22% after 10 wk of exercise training. The percentage of type IIa myosin heavy chain increased in semimembranosus muscle, whereas the percentage of type IIx myosin heavy chain decreased in triceps muscle. After training, triceps muscle showed significant increases in activities of both citrate synthase and 3-hydroxyacyl-CoA-dehydrogenase. Attenuation of exercise-induced ultrastructural muscle damage occurred in the semimembranosus muscle at both the same absolute and the same relative workloads after the 10-wk conditioning period. We conclude that aged horses adapt readily to intense aerobic exercise training with improvements in endurance, whole body aerobic capacity, and muscle oxidative capacity, and heightened resistance to exercise-induced ultrastructural muscle cell damage. However, adaptations may be muscle-group specific.
Collapse
Affiliation(s)
- Jeong-su Kim
- Sport and Exercise Science Program, The Ohio State University, 129C Larkins Hall, 337 West Seventeenth Ave., Columbus, OH 43210-1284, USA
| | | | | | | | | | | |
Collapse
|
12
|
Leszczynski JK, Esser KA. The MEF2 site is necessary for induction of the myosin light chain 2 slow promoter in overloaded regenerating plantaris muscle. Life Sci 2003; 73:3265-76. [PMID: 14561531 DOI: 10.1016/j.lfs.2003.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Functional overload (OV) of the rat plantaris muscle results in a fast to slow change in muscle phenotype with induction of the slow contractile protein genes including myosin light chain 2 slow (MLC2s). To identify potential cis-acting DNA sites regulating MLC2s following ablation, plasmid constructs were transfected in vivo into regenerating overloaded plantaris muscles. Activity of the 270bp promoter (-270MLC2s) was increased in OV muscles at 28 days. Mutation of the MEF2 site (-270MEF2) knocked out the overload-induced activity of the promoter. Mutation of the Ebox (-270Ebox) resulted in an earlier induction with OV and mutation of the CACC site (-270CACC) resulted in increased activity in the CON PLN with OV induction detected by 21 days. These results demonstrate that the -270MLC2s promoter contains the elements necessary for expression of MLC2s in regenerating OV PLN. More importantly, mutation analysis of -270MLC2s promoter demonstrates that mechanical loading induced expression shares some common molecular mechanisms with slow nerve dependent model regulation. In these two models of physiological induction of MLC2s, the CACC site acts as a repressor region (on/off switch) and the MEF2 site acts to modulate quantitative expression.
Collapse
Affiliation(s)
- J K Leszczynski
- Department of Biologic Resources Laboratory, University of Illinois at Chicago, Chicago, IL 60608, USA
| | | |
Collapse
|
13
|
Baldwin KM, Haddad F. Effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. J Appl Physiol (1985) 2001; 90:345-57. [PMID: 11133928 DOI: 10.1152/jappl.2001.90.1.345] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The goal of this mini-review is to summarize findings concerning the role that different models of muscular activity and inactivity play in altering gene expression of the myosin heavy chain (MHC) family of motor proteins in mammalian cardiac and skeletal muscle. This was done in the context of examining parallel findings concerning the role that thyroid hormone (T(3), 3,5,3'-triiodothyronine) plays in MHC expression. Findings show that both cardiac and skeletal muscles of experimental animals are initially undifferentiated at birth and then undergo a marked level of growth and differentiation in attaining the adult MHC phenotype in a T(3)/activity level-dependent fashion. Cardiac MHC expression in small mammals is highly sensitive to thyroid deficiency, diabetes, energy deprivation, and hypertension; each of these interventions induces upregulation of the beta-MHC isoform, which functions to economize circulatory function in the face of altered energy demand. In skeletal muscle, hyperthyroidism, as well as interventions that unload or reduce the weight-bearing activity of the muscle, causes slow to fast MHC conversions. Fast to slow conversions, however, are seen under hypothyroidism or when the muscles either become chronically overloaded or subjected to intermittent loading as occurs during resistance training and endurance exercise. The regulation of MHC gene expression by T(3) or mechanical stimuli appears to be strongly regulated by transcriptional events, based on recent findings on transgenic models and animals transfected with promoter-reporter constructs. However, the mechanisms by which T(3) and mechanical stimuli exert their control on transcriptional processes appear to be different. Additional findings show that individual skeletal muscle fibers have the genetic machinery to express simultaneously all of the adult MHCs, e.g., slow type I and fast IIa, IIx, and IIb, in unique combinations under certain experimental conditions. This degree of heterogeneity among the individual fibers would ensure a large functional diversity in performing complex movement patterns. Future studies must now focus on 1) the signaling pathways and the underlying mechanisms governing the transcriptional/translational machinery that control this marked degree of plasticity and 2) the morphological organization and functional implications of the muscle fiber's capacity to express such a diversity of motor proteins.
Collapse
Affiliation(s)
- K M Baldwin
- Department of Physiology and Biophysics, University of California, Irvine, California 92697, USA.
| | | |
Collapse
|
14
|
Weber PJ, Wulc AE, Moody BR, Dryden RM, Foster JA. Electrosurgical modification of orbicularis oculi hypertrophy. Ophthalmic Plast Reconstr Surg 2000; 16:407-16. [PMID: 11106184 DOI: 10.1097/00002341-200011000-00003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To assess two electrosurgical approaches for the modification of orbicularis hypertrophy that may be used in conjunction with, or separate from, lower lid blepharoplasty. The hypothesis to be tested is that purely electrosurgical nonexcisional techniques may be used to modify orbicularis oculi muscle. METHODS Electrosurgical techniques to treat orbicularis hypertrophy with an "open" and a "closed" technique are described. The open technique is performed in conjunction with transconjunctival blepharoplasty. The closed technique requires a 1-mm to 2-mm dermal incision, 2 minutes of surgical time per eyelid, and a specially insulated and formed electrosurgical needle. A review and case series are presented to illustrate and describe the techniques and results. RESULTS Results for both techniques were rated by both patients and surgeons using the categories of poor, fair, good, or excellent. The open technique was performed in conjunction with transconjunctival blepharoplasty on 23 patients during 2 years with a minimum follow-up of 6 months. Results for the open technique were considered "excellent" by 14 patients and "good" by 9 patients. The operating surgeons evaluated the improvement as "excellent" in 4, "good" in 11, and "fair" in 8 patients. The closed technique was performed on eight patients. Results for patient satisfaction for the closed technique were considered "good" by 4, "excellent" by 2, "fair" by 1, and the final patient abstained from categorization. Operating surgeon evaluation of the closed technique revealed "excellent" outcomes in 3, "good" in 3, and "fair" for 2 patients. CONCLUSION Electrosurgical techniques may be used to modify orbicularis hypertrophy. Drawbacks include a significant learning curve, potential cutaneous ulceration, and occasional temporary anatomic distortion as manifested by scleral show. Complications are minimal, and the technique was safe in all patients studied.
Collapse
Affiliation(s)
- P J Weber
- University of Pennsylvania, Philadelphia, USA
| | | | | | | | | |
Collapse
|