1
|
Ruggiero L, Gruber M. Neuromuscular mechanisms for the fast decline in rate of force development with muscle disuse - a narrative review. J Physiol 2024. [PMID: 39467095 DOI: 10.1113/jp285667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
The removal of skeletal muscle tension (unloading or disuse) is followed by many changes in the neuromuscular system, including muscle atrophy and loss of isometric maximal strength (measured by maximal force, Fmax). Explosive strength, i.e. the ability to develop the highest force in the shortest possible time, to maximise rate of force development (RFD), is a fundamental neuromuscular capability, often more functionally relevant than maximal muscle strength. In the present review, we discuss data from studies that looked at the effect of muscle unloading on isometric maximal versus explosive strength. We present evidence that muscle unloading yields a greater decline in explosive relative to maximal strength. The longer the unloading duration, the smaller the difference between the decline in the two measures. Potential mechanisms that may explain the greater decline in measures of RFD relative to Fmax after unloading are higher recruitment thresholds and lower firing rates of motor units, slower twitch kinetics, impaired excitation-contraction coupling, and decreased tendon stiffness. Using a Hill-type force model, we showed that this ensemble of adaptations minimises the loss of force production at submaximal contraction intensities, at the expense of a disproportionately lower RFD. With regard to the high functional relevance of RFD on one hand, and the boosted detrimental effects of inactivity on RFD on the other hand, it seems crucial to implement specific exercises targeting explosive strength in populations that experience muscle disuse over a longer time.
Collapse
Affiliation(s)
- Luca Ruggiero
- Human Performance Research Centre, Department of Sports Science, University of Konstanz, Konstanz, Germany
| | - Markus Gruber
- Human Performance Research Centre, Department of Sports Science, University of Konstanz, Konstanz, Germany
| |
Collapse
|
2
|
Ando R. Association of the rate of torque development and joint angle with passive muscle stiffness. Eur J Appl Physiol 2024; 124:2665-2673. [PMID: 38630263 DOI: 10.1007/s00421-024-05483-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/03/2024] [Indexed: 09/02/2024]
Abstract
PURPOSE The purpose of this study was to statistically compare the rate of torque development normalized by maximal strength (relative RTD) across ankle angles. Additionally, this study was aimed at exploring the correlation coefficients between relative RTD and passive stiffness of the medial gastrocnemius (MG) at different ankle angles. METHODS Twenty-two healthy men and women (age: 31 ± 4 years) performed randomly-ordered explosive isometric plantar flexions at plantarflexed (15°), neutral (0°), and dorsiflexed (- 15°) angles; relative RTD comprised the slope of the time-torque curve normalized to maximal torque. The shear wave velocity (SWV; index of stiffness) of the MG at rest was measured at each angle using ultrasound shear wave elastography. RESULTS The relative RTD was greater at 15° than - 15° for 0-50, 0-100, and 0-150 ms time-windows and at 15° than 0° for the 0-150 ms time-window (P < 0.05), although peak torque was lower at 15° than 0° and - 15° (P < 0.05). The relative RTD for the 0-50 ms time-window correlated with SWV at - 15° (rs = 0.475, P < 0.05), but not at 15º and 0º. Furthermore, the correlation coefficient of RTD for the 0-100 ms time-window with SWV was significantly greater at - 15° (rs = 0.420) than 0 ° (rs = - 0.109). CONCLUSIONS A greater relative RTD occurs at plantarflexed angles (i.e., the ascending limb of the force-length curve) in the triceps surae, and relative RTD is strongly related to passive MG stiffness at dorsiflexed angles (i.e., longer muscle lengths).
Collapse
Affiliation(s)
- Ryosuke Ando
- Department of Sport Science and Research, Japan Institute of Sports Sciences (JISS), 3-15-1, Nishigaoka, Kita-Ku, Tokyo, 115-0056, Japan.
| |
Collapse
|
3
|
Mornas A, Brocherie F, Hollville E, Derouck T, Racinais S, Guilhem G. Running 40 Minutes under Temperate or Hot Environment Does Not Affect Operating Fascicle Length. Med Sci Sports Exerc 2024; 56:1140-1150. [PMID: 38233977 DOI: 10.1249/mss.0000000000003387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
PURPOSE Muscle mechanics is paramount in our understanding of motor performance. However, little is known regarding the sensitivity of fascicle dynamics and connective tissues stiffness to exercise duration and ambient temperature during running, both increasing muscle temperature. This study aimed to determine gastrocnemius medialis (GM) fascicle dynamics in vivo during running in temperate and hot conditions, as well as muscle-tendon unit responses. METHODS Using ultrafast ultrasound, 15 participants (8 men, 7 women; 26 ± 3 yr) were tested before, during (2 and 40 min), and after a running task (40 min at 10 km·h -1 ) in temperate (TEMP; ~23°C) and hot (HOT: ~38°C) conditions. RESULTS Although core, skin temperatures, and heart rate increased from the beginning to the end of the exercise and in a larger extent in HOT than TEMP ( P < 0.001), the physiological stress elicited did not alter running temporal parameters and GM fascicle operating lengths, with similar behavior of the fascicles on their force-length relationship, over time (2 vs 40 min) or across condition (TEMP vs HOT; P ≥ 0.248). Maximal voluntary force production did not reported statistical changes after exercise ( P = 0.060), and the connective tissues stiffness measured (i.e., passive muscle and stiffness of the series-elastic elements) did not show neither time ( P ≥ 0.281), condition ( P ≥ 0.256) nor time-condition interaction ( P ≥ 0.465) effect. CONCLUSIONS This study revealed that prolonged running exercise does not alter muscle-tendon unit properties and interplay, which are not influenced by ambient temperature. These findings may rule out potential detrimental effects of heat on muscle properties and encourage further investigations on longer and more intense running exercise.
Collapse
Affiliation(s)
| | - Franck Brocherie
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, FRANCE
| | - Enzo Hollville
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, FRANCE
| | | | | | - GaËL Guilhem
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, FRANCE
| |
Collapse
|
4
|
Mornas A, Hollville E, Brocherie F, Derouck T, Racinais S, Guilhem G. Test-retest reliability of gastrocnemius medialis fascicle force-length relationship. J Biomech 2024; 171:112170. [PMID: 38870569 DOI: 10.1016/j.jbiomech.2024.112170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 05/06/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Fascicle force-length relationship is one major basic mechanical property of skeletal muscle, subsequently influencing movement mechanics. While force-length properties are increasingly described through ultrafast ultrasound imaging, their test-retest reliability remains unknown. Using ultrafast ultrasound, and electrically evoked contractions at various ankle angles, gastrocnemius medialis fascicle force-length relationship was assessed twice, few days apart, in sixteen participants. The test-retest reliability of the resulting fascicle force-length relationship key parameters - i.e., maximal force (Fmax), and optimal fascicle length (L0) - was evaluated considering (i) all the trials obtained at each ankle joint and (ii) the mean of the two trials obtained at each tested angle. Considering all trials, L0 indicated a 'high' test-retest reliability, with intra-class correlation coefficients (ICC) of 0.89 and Fmax a 'moderate' reliability (ICC = 0.71), while when averaging the two trials L0 reliability was 'very-high' (ICC = 0.91), and Fmax reliability 'moderate' (ICC = 0.73). All values of coefficient of variation and standard error of measurement were low, i.e., ≤7.7 % and ≤0.35 cm for L0 and ≤3.4 N for Fmax, respectively. Higher absolute reliability was reported for L0 than Fmax, with better reliability when averaging the two trials at each angle. All these parameters, in accordance with the limit of agreement, demonstrated that L0 and Fmax test-retest reliability is acceptable, particularly when averaging multiple points obtained at a given angle. Interestingly, the shape of the fascicle force-length relationship is more variable. Therefore, L0 and Fmax can be used to compare between days-effects following an intervention, while a comparison of fascicle operating lengths may require more precautions.
Collapse
Affiliation(s)
- Adèle Mornas
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France; University Paris Cité, Paris, France; Montreal Heart Institute, Montréal, QC, Canada.
| | - Enzo Hollville
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France
| | - Franck Brocherie
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France
| | - Thomas Derouck
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France; University Paris Cité, Paris, France
| | - Sébastien Racinais
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France; Aspetar Orthopaedic and Sports Medicine Hospital, Research and Scientific Support, Doha, Qatar
| | - Gaël Guilhem
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France
| |
Collapse
|
5
|
Jeon W, Dong XN, Dalby A, Goh CH. The influence of smoothness and speed of stand-to-sit movement on joint kinematics, kinetics, and muscle activation patterns. Front Hum Neurosci 2024; 18:1399179. [PMID: 38784522 PMCID: PMC11112120 DOI: 10.3389/fnhum.2024.1399179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Background Stand-to-sit (StandTS) is an important daily activity widely used in rehabilitation settings to improve strength, postural stability, and mobility. Modifications in movement smoothness and speed significantly influence the kinematics, kinetics, and muscle activation patterns of the movement. Understanding the impact of StandTS speed and smoothness on movement control can provide valuable insights for designing effective and personalized rehabilitation training programs. Research question How do the smoothness and speed of StandTS movement affect joint kinematics, kinetics, muscle activation patterns, and postural stability during StandTS? Methods Twelve healthy younger adults participated in this study. There were two StandTS conditions. In the reference condition, participants stood in an upright position with their feet positioned shoulder-width apart on the force plate. Upon receiving a visual cue, participants performed StandTS at their preferred speed. In the smooth condition, participants were instructed to perform StandTS as smoothly as possible, aiming to minimize contact pressure on the seat. Lower leg kinetics, kinematics, and coordination patterns of muscle activation during StandTS were measured: (1) angular displacement of the trunk, knee, and hip flexion; (2) knee and hip extensor eccentric work; (3) muscle synergy pattern derived from electromyography (EMG) activity of the leg muscles; and (4) postural sway in the anterior-posterior (A-P), medio-lateral (M-L), and vertical directions. Results Compared to the reference condition, the smooth condition demonstrated greater eccentric knee extensor flexion and increased joint work in both the knee and hip joints. Analysis of specific muscle synergy from EMG activity revealed a significant increase in the relative contribution of hip joint muscles during the smooth condition. Additionally, a negative correlation was observed between knee extensor and vertical postural sway, as well as hip extensor work and M-L postural sway. Conclusion Smooth StandTS facilitates enhanced knee eccentric control and increased joint work at both the hip and knee joints, along with increased involvement of hip joint muscles to effectively manage falling momentum during StandTS. Furthermore, the increased contributions of knee and hip joint work reduced postural sway in the vertical and M-L directions, respectively. These findings provide valuable insights for the development of targeted StandTS rehabilitation training.
Collapse
Affiliation(s)
- Woohyoung Jeon
- Department of Kinesiology, University of Texas at Tyler, Tyler, TX, United States
| | - Xuanliang Neil Dong
- Department of Kinesiology, University of Texas at Tyler, Tyler, TX, United States
| | - Ashley Dalby
- Department of Kinesiology, University of Texas at Tyler, Tyler, TX, United States
| | - Chung-Hyun Goh
- Department of Mechanical Engineering, University of Texas at Tyler, Tyler, TX, United States
| |
Collapse
|
6
|
Crotty ED, Furlong LAM, Harrison AJ. Neuromuscular Plantar Flexor Performance of Sprinters versus Physically Active Individuals. Med Sci Sports Exerc 2024; 56:82-91. [PMID: 37718513 DOI: 10.1249/mss.0000000000003288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
INTRODUCTION Comparison of the neuromuscular performance of different athlete types may give insight into the in vivo variability of these measures and their underpinning mechanisms. The study aims to compare the neuromuscular function of the plantar flexors of sprinters and physically active individuals to assess any differences in explosive force performance. METHODS Neuromuscular performance of a group of sprinters (highly trained/national level, n = 12; elite/international level, n = 2) and physically active individuals ( n = 14) were assessed during involuntary, explosive, and maximum voluntary isometric plantar flexions, across different muscle-tendon unit (MTU) lengths (10° plantarflexion, 0° (anatomical zero/neutral), and 10° dorsiflexion). Plantarflexion rate of torque development (RTD) was measured in three 50-ms time windows from their onset. The synchronous activation of the plantar flexor agonist muscles was calculated as the time difference between 1) the first and last muscle onset and 2) the onsets of the two gastrocnemii muscles. Muscle size and MTU stiffness were assessed using sonograms of the medial gastrocnemius and myotendinous junction. RESULTS Sprinters exhibited greater involuntary RTD across time points (0-50 ms, 50-100 ms) and MTU lengths. In addition, sprinters demonstrated greater early phase voluntary RTD (0-50 ms, 50-100 ms) across MTU lengths. Sprinters also demonstrated greater late-phase RTD (100-150 ms), and relative maximal voluntary torque at the DF angle only. The sprinters demonstrated a more synchronous activation of the gastrocnemii muscles. There were no observable differences in muscle size and MTU stiffness between groups. CONCLUSIONS These findings suggest sprint-specific training could be a contributing factor toward improved explosive performance of the plantar flexors, particularly in the early phase of muscular contraction, evidenced by the greater explosive torque producing capabilities of sprinters.
Collapse
Affiliation(s)
- Evan D Crotty
- Sport and Human Performance Research Centre, University of Limerick, Limerick, IRELAND
| | | | | |
Collapse
|
7
|
Roberts TJ, Dick TJM. What good is a measure of muscle length? The how and why of direct measurements of skeletal muscle motion. J Biomech 2023; 157:111709. [PMID: 37437458 PMCID: PMC10530376 DOI: 10.1016/j.jbiomech.2023.111709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/05/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
Over the past 50 years our understanding of the central role that muscle motion has in powering movement has accelerated significantly. Fundamental to this progress has been the development of methods for measuring the length of muscles and muscle fibers in vivo. A measurement of muscle fiber length might seem a trivial piece of information on its own. Yet when combined with knowledge of the properties of skeletal muscle it has proven a powerful tool for understanding the mechanics and energetics of locomotion and informing models of motor control. In this perspective we showcase the value of direct measurements of muscle fiber length from four different techniques: sonomicrometry, fluoromicrometry, magnetomicrometry, and ultrasound. For each method, we review its history and provide a high-level user's guide for researchers choosing tools for measuring muscle length in vivo. We highlight key insights that these measurements have provided, including the importance of passive elastic mechanisms and how skeletal muscle properties govern locomotor performance. The diversity of locomotor behaviors revealed across comparative studies has provided an important tool for discovering the rules for muscle function that span vertebrate locomotion more broadly, including in humans.
Collapse
Affiliation(s)
- Thomas J Roberts
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI, United States.
| | - Taylor J M Dick
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Crotty ED, Furlong LAM, Harrison AJ. Reliability of mechanical properties of the plantar flexor muscle tendon unit with consideration to joint angle and sex. PLoS One 2023; 18:e0287431. [PMID: 37352329 PMCID: PMC10289375 DOI: 10.1371/journal.pone.0287431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/05/2023] [Indexed: 06/25/2023] Open
Abstract
The reliability of mechanical measures can be impacted by the protocol used, including factors such as joint angle and the sex of participants. This study aimed to determine the inter-day reliability of plantar flexor mechanical measures across ankle joint angles and contraction types and consider potential sex-specific effects. 14 physically-active individuals participated in two identical measurement sessions involving involuntary and voluntary plantar flexor contractions, at three ankle angles (10° plantarflexion (PF), 0° (anatomical zero (AZ)), and 10° dorsiflexion (DF)), while torque and surface EMG were recorded. The reliability of mechanical parameters of maximal voluntary torque (MVT), rate of torque development (RTD), electromechanical delay, and tendon stiffness were assessed using absolute and relative reliability measures. MVT measures were reliable across ankle angles. RTD measures showed good group level reliability and moderate reliability for an individual during the early phase of contraction across ankle angles. Explosive voluntary torque measures tended to be less reliable from 50 ms onward, with varied reliability across angles for late-phase RTD. Tendon stiffness demonstrated the best reliability at the DF angle. Sex-based differences in the reliability of tendon measures found that females had significantly different initial tendon length between testing sessions. Despite this, tendon excursion, force, and stiffness measures demonstrated similar reliability compared to males. Ankle angle changes influence the reliability of plantar flexor mechanical measurements across contraction types, particularly for voluntary contractions. These results highlight the importance of establishing potential protocol effects on measurement reliability prior to quantifying plantar flexor mechanical measures.
Collapse
Affiliation(s)
- Evan D. Crotty
- Sport and Human Performance Research Centre, University of Limerick, Limerick, Ireland
| | - Laura-Anne M. Furlong
- Sport and Human Performance Research Centre, University of Limerick, Limerick, Ireland
| | - Andrew J. Harrison
- Sport and Human Performance Research Centre, University of Limerick, Limerick, Ireland
| |
Collapse
|
9
|
Mornas A, Brocherie F, Guilhem G, Guillotel A, LE Garrec S, Gouwy R, Gennisson JL, Beuve S, Racinais S. Active Heat Acclimation Does Not Alter Muscle-Tendon Unit Properties. Med Sci Sports Exerc 2023; 55:1076-1086. [PMID: 36719653 DOI: 10.1249/mss.0000000000003129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE Heat acclimation (HA) is recommended before competing in hot and humid conditions. HA has also been recently suggested to increase muscle strength, but its effects on human's muscle and tendon mechanical properties are not yet fully understood. This study investigated the effect of active HA on gastrocnemius medialis (GM) muscle-tendon properties. METHODS Thirty recreationally active participants performed 13 low-intensity cycling sessions, distributed over a 17-d period in hot (HA = ~38°C, ~58% relative humidity; n = 15) or in temperate environment (CON = ~23°C, ~35% relative humidity; n = 15). Mechanical data and high-frame rate ultrasound images were collected during electrically evoked and voluntary contractions pre- and postintervention. Shear modulus was measured at rest in GM, and vertical jump performance was assessed. RESULTS Core temperature decreased from the first to the last session in HA (-0.4°C ± 0.3°C; P = 0.015), while sweat rate increased (+0.4 ± 0.3 L·h -1 ; P = 0.010), suggesting effective HA, whereas no changes were observed in CON (both P ≥ 0.877). Heart rate was higher in HA versus CON and decreased throughout intervention in groups (both P ≤ 0.008), without an interaction effect ( P = 0.733). Muscle-tendon unit properties (i.e., maximal and explosive isometric torque production, contractile properties, voluntary activation, joint and fascicular force-velocity relationship, passive muscle, and active tendon stiffness) and vertical jump performance did not show training ( P ≥ 0.067) or group-training interaction ( P ≥ 0.232) effects. CONCLUSIONS Effective active HA does not alter muscle-tendon properties. Preparing hot and humid conditions with active HA can be envisaged in all sporting disciplines without the risk of impairing muscle performance.
Collapse
Affiliation(s)
| | - Franck Brocherie
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, FRANCE
| | - Gaël Guilhem
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, FRANCE
| | - Arthur Guillotel
- Laboratory Sport, Expertise and Performance (EA 7370), French Institute of Sport (INSEP), Paris, FRANCE
| | | | | | - Jean-Luc Gennisson
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, FRANCE
| | - Steve Beuve
- Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, FRANCE
| | | |
Collapse
|
10
|
Dick TJM, Hug F. Advances in imaging for assessing the design and mechanics of skeletal muscle in vivo. J Biomech 2023; 155:111640. [PMID: 37244210 DOI: 10.1016/j.jbiomech.2023.111640] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023]
Abstract
Skeletal muscle is the engine that powers what is arguably the most essential and defining feature of human and animal life-locomotion. Muscles function to change length and produce force to enable movement, posture, and balance. Despite this seemingly simple role, skeletal muscle displays a variety of phenomena that still remain poorly understood. These phenomena are complex-the result of interactions between active and passive machinery, as well as mechanical, chemical and electrical processes. The emergence of imaging technologies over the past several decades has led to considerable discoveries regarding how skeletal muscles function in vivo where activation levels are submaximal, and the length and velocity of contracting muscle fibres are transient. However, our knowledge of the mechanisms of muscle behaviour during everyday human movements remains far from complete. In this review, we discuss the principal advancements in imaging technology that have led to discoveries to improve our understanding of in vivo muscle function over the past 50 years. We highlight the knowledge that has emerged from the development and application of various techniques, including ultrasound imaging, magnetic resonance imaging, and elastography to characterise muscle design and mechanical properties. We emphasize that our inability to measure the forces produced by skeletal muscles still poses a significant challenge, and that future developments to accurately and reliably measure individual muscle forces will promote newfrontiers in biomechanics, physiology, motor control, and robotics. Finally, we identify critical gaps in our knowledge and future challenges that we hope can be solved as a biomechanics community in the next 50 years.
Collapse
Affiliation(s)
- Taylor J M Dick
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD, Australia.
| | - François Hug
- The University of Queensland, School of Biomedical Sciences, Brisbane, QLD, Australia; Université Côte d'Azur, LAMHESS, Nice, France
| |
Collapse
|
11
|
Lauber B, Taube W. Probing the link between cortical inhibitory and excitatory processes and muscle fascicle dynamics. Sci Rep 2023; 13:4577. [PMID: 36941367 PMCID: PMC10027726 DOI: 10.1038/s41598-023-31825-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
During movements, neural signals are translated into muscle fibre shortening, lengthening or they remain isometric. This study investigated cortical excitatory and inhibitory processes in relation to muscle fascicle dynamics during fixed-end rapid contractions. Fourteen adults performed submaximal and maximal ankle dorsiflexions. Single and paired pulse transcranial magnetic stimulation over the cortical representation projecting to the tibialis anterior (TA) was applied during rest, the activation and deactivation phase of contractions to test for short- (SICI) and long-interval intracortical inhibition (LICI) and intracortical facilitation (ICF). Ultrasound images were taken to measure muscle fascicle dynamics of the superficial (TASF) and deep (TADP) TA compartments. The results show significantly greater maximal shortening velocities (p = 0.003, d = 0.26, CI [4.89, 18.52]) and greater maximal fascicle shortening (p = 0.003, d = 0.86, CI [0.29, 3.13]) in TASF than TADP during submaximal dorsiflexions. Significantly lower SICI levels during activation compared to deactivation (p = 0.019, d = 1.12, CI [19.82, 1.76]) and at rest (p < 0.0001) were observed. ICF was significantly greater during activation (p = 0.03) than during rest while LICI did not modulate significantly. Maximal TASF but not TADP shortening velocity correlated with SICI levels at activation (p = 0.06) and with the rate of torque development (p = 0.02). The results suggest that SICI might be related to muscle fascicle behavior and that intracortical inhibition and excitation are phase-dependently modulated.
Collapse
Affiliation(s)
- Benedikt Lauber
- Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland.
| | - Wolfgang Taube
- Department of Neurosciences and Movement Sciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
12
|
Kubo K. Maximal fascicle shortening velocity measurements in human medial gastrocnemius muscle in vivo. Physiol Rep 2023; 11:e15541. [PMID: 36597209 PMCID: PMC9810790 DOI: 10.14814/phy2.15541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023] Open
Abstract
This study evaluated the maximal fascicle shortening velocity under near-no-load conditions. In addition, we determined whether the rate of torque development during ballistic contraction was related to maximal fascicle shortening velocity. Under passive and active conditions, the medial gastrocnemius muscle fascicle shortening velocity was measured using ultrasonography at 300, 400, 500, 600, 700, 800, 900, and 1000 ° s-1 . The maximal fascicle shortening velocity was defined as the fascicle shortening velocity under the lowest angular velocity that satisfied the following two conditions; (1) the difference in torque values between passive and active conditions was below 2.4 Nm and (2) the difference in fascicle shortening velocities between passive and active conditions was below 10 mm s-1 . The rate of torque development was analyzed during the periods of 32, 48, 96, 152, and 200 ms after the onset of contraction during ballistic contraction. At the angular velocity (678.6 ± 147.7 ° s-1 ) that satisfied the two previously mentioned conditions, the exerted torque and the maximal fascicle shortening velocity were 1.4 ± 1.3 Nm and 251.0 ± 40.5 mm s-1 . No significant correlations were found between the maximal fascicle shortening velocity and the rate of torque development at each time point. In conclusion, the maximal fascicle shortening velocity was quantified when the angular velocity satisfied the two conditions. Furthermore, the rate of torque development, often used as an indicator of muscle velocity, did not represent the maximal fascicle shortening velocity.
Collapse
Affiliation(s)
- Keitaro Kubo
- Department of Life ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
13
|
Werkhausen A, Gløersen Ø, Nordez A, Paulsen G, Bojsen-Møller J, Seynnes OR. Rate of force development relationships to muscle architecture and contractile behavior in the human vastus lateralis. Sci Rep 2022; 12:21816. [PMID: 36528647 PMCID: PMC9759581 DOI: 10.1038/s41598-022-26379-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
In this study, we tested the hypotheses that (i) rate of force development (RFD) is correlated to muscle architecture and dynamics and that (ii) force-length-velocity properties limit knee extensor RFD. Twenty-one healthy participants were tested using ultrasonography and dynamometry. Vastus lateralis optimal fascicle length, fascicle velocity, change in pennation angle, change in muscle length, architectural gear ratio, and force were measured during rapid fixed-end contractions at 60° knee angle to determine RFD. Isokinetic and isometric tests were used to estimate individual force-length-velocity properties, to evaluate force production relative to maximal potential. Correlation analyses were performed between force and muscle parameters for the first three 50 ms intervals. RFD was not related to optimal fascicle length for any measured time interval, but RFD was positively correlated to fascicle shortening velocity during all intervals (r = 0.49-0.69). Except for the first interval, RFD was also related to trigonometry-based changes in muscle length and pennation angle (r = 0.45-0.63) but not to architectural gear ratio. Participants reached their individual vastus lateralis force-length-velocity potential (i.e. their theoretical maximal force at a given length and shortening velocity) after 62 ± 24 ms. Our results confirm the theoretical importance of fascicle shortening velocity and force-length-velocity properties for rapid force production and suggest a role of fascicle rotation.
Collapse
Affiliation(s)
- Amelie Werkhausen
- grid.412285.80000 0000 8567 2092Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Øyvind Gløersen
- grid.4319.f0000 0004 0448 3150SINTEF Digital, Smart Sensors and Microsystems, Oslo, Norway
| | - Antoine Nordez
- grid.4817.a0000 0001 2189 0784Movement-Interactions-Performance, MIP, UR 4334, Nantes Université, 44000 Nantes, France ,grid.440891.00000 0001 1931 4817Institut Universitaire de France (IUF), Paris, France
| | - Gøran Paulsen
- grid.412285.80000 0000 8567 2092Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Jens Bojsen-Møller
- grid.10825.3e0000 0001 0728 0170Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Olivier R. Seynnes
- grid.412285.80000 0000 8567 2092Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
14
|
Mornas A, Racinais S, Brocherie F, Alhammoud M, Hager R, Desmedt Y, Guilhem G. Faster early rate of force development in a warmer muscle: an in vivo exploration of fascicle dynamics and muscle-tendon mechanical properties. Am J Physiol Regul Integr Comp Physiol 2022; 323:R123-R132. [PMID: 35579335 DOI: 10.1152/ajpregu.00280.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
While heat exposure has been shown to increase the rate of force development (RFD), the underlying processes remain unknown. This study investigated the effect of heat on gastrocnemius medialis (GM) muscle-tendon properties and interactions. Sixteen participants performed electrically-evoked and voluntary contractions combined with ultrafast ultrasound under thermoneutral (CON: 26°C, core temperature 37.0±0.3°C, muscle temperature 34.0±1.1°C) and passive heat exposure (HOT: 47°C, core temperature 38.4±0.3°C, muscle temperature 37.0±0.8°C) conditions. Maximal voluntary force was unchanged while voluntary activation decreased (-4.6±8.7%, P=0.038) in HOT. Heat exposure increased RFD before 100 ms from contraction onset (+48.2±62.7%; P=0.013), without further changes after 100 ms. GM fascicle dynamics during electrically-evoked and voluntary contractions remained unchanged between conditions. Joint velocity at a given force was higher in HOT (+7.1±6.6%; P=0.004), while the fascicle force-velocity relationship was unchanged. Passive muscle stiffness and active tendon stiffness were lower in HOT than CON (P≤0.030). This study showed that heat-induced increases in early RFD may not be attributed to changes in contractile properties. Late RFD was unaltered, probably explained by decreased soft tissues' stiffness in heat. Investigations are required to explore the possible influence of neural drive and motor unit recruitment in the enhancement of explosive strength elicited by heat exposure.
Collapse
Affiliation(s)
- Adèle Mornas
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France.,University of Paris, Paris, France
| | - Sebastien Racinais
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France.,Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Franck Brocherie
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France
| | | | - Robin Hager
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France
| | - Yanis Desmedt
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France
| | - Gaël Guilhem
- French Institute of Sport (INSEP), Laboratory Sport, Expertise and Performance (EA 7370), Paris, France
| |
Collapse
|
15
|
Hamard R, Hug F, Kelp NY, Feigean R, Aeles J, J. M. Dick T. Inclusion of image-based in-vivo experimental data into the Hill-type muscle model affects the estimation of individual force-sharing strategies during walking. J Biomech 2022; 135:111033. [DOI: 10.1016/j.jbiomech.2022.111033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 10/18/2022]
|
16
|
The force-generation capacity of the tibialis anterior muscle at different muscle-tendon lengths depends on its motor unit contractile properties. Eur J Appl Physiol 2021; 122:317-330. [PMID: 34677625 PMCID: PMC8783895 DOI: 10.1007/s00421-021-04829-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022]
Abstract
Purpose Muscle–tendon length can influence central and peripheral motor unit (MU) characteristics, but their interplay is unknown. This study aims to explain the effect of muscle length on MU firing and contractile properties by applying deconvolution of high-density surface EMG (HDEMG), and torque signals on the same MUs followed at different lengths during voluntary contractions. Methods Fourteen participants performed isometric ankle dorsiflexion at 10% and 20% of the maximal voluntary torque (MVC) at short, optimal, and long muscle lengths (90°, 110°, and 130° ankle angles, respectively). HDEMG signals were recorded from the tibialis anterior, and MUs were tracked by cross-correlation of MU action potentials across ankle angles and torques. Torque twitch profiles were estimated using model-based deconvolution of the torque signal based on composite MU spike trains. Results Mean discharge rate of matched motor units was similar across all muscle lengths (P = 0.975). Interestingly, the increase in mean discharge rate of MUs matched from 10 to 20% MVC force levels at the same ankle angle was smaller at 110° compared with the other two ankle positions (P = 0.003), and the phenomenon was explained by a greater increase in twitch torque at 110° compared to the shortened and lengthened positions (P = 0.002). This result was confirmed by the deconvolution of electrically evoked contractions at different stimulation frequencies and muscle–tendon lengths. Conclusion Higher variations in MU twitch torque at optimal muscle lengths likely explain the greater force-generation capacity of muscles in this position.
Collapse
|
17
|
Mazzo MR, Weinman LE, Giustino V, Mclagan B, Maldonado J, Enoka RM. Changes in neural drive to calf muscles during steady submaximal contractions after repeated static stretches. J Physiol 2021; 599:4321-4336. [PMID: 34292610 DOI: 10.1113/jp281875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/19/2021] [Indexed: 01/27/2023] Open
Abstract
KEY POINTS Repeated static-stretching interventions consistently increase the range of motion about a joint and decrease total joint stiffness, but findings on the changes in muscle and connective-tissue properties are mixed. The influence of these stretch-induced changes on muscle function at submaximal forces is unknown. To address this gap in knowledge, the changes in neural drive to the plantar flexor muscles after a static-stretch intervention were estimated. Neural drive to the plantar flexor muscles during a low-force contraction increased after repeated static stretches. These findings suggest that adjustments in motor unit activity are necessary at low forces to accommodate reductions in the force-generating and transmission capabilities of the muscle-tendon unit after repeated static stretches of the calf muscles. ABSTRACT Static stretching decreases stiffness about a joint, but its influence on muscle-tendon unit function and muscle activation is unclear. We investigated the influence of three static stretches on changes in neural drive to the plantar flexor muscles, both after a stretch intervention and after a set of maximal voluntary contractions (MVCs). Estimates of neural drive were obtained during submaximal isometric contractions by decomposing high-density electromyographic signals into the activity of individual motor units from medial gastrocnemius, lateral gastrocnemius and soleus. Motor units were matched across contractions and an estimate of neural drive to the plantar flexors was calculated by normalizing the cumulative spike train to the number of active motor units (normalized neural drive). Mean discharge rate increased after the stretch intervention during the 10% MVC task for all recorded motor units and those matched across conditions (all, P = 0.0046; matched only, P = 0.002), recruitment threshold decreased for motor units matched across contractions (P = 0.022), and discharge rate at recruitment was elevated (P = 0.004). Similarly, the estimate of normalized neural drive was significantly greater after the stretch intervention at 10% MVC torque (P = 0.029), but not at 35% MVC torque. The adjustments in motor unit activity required to complete the 10% MVC task after stretch may have been partially attenuated by a set of plantar flexor MVCs. The increase in neural drive required to produce low plantar-flexion torques after repeated static stretches of the calf muscles suggests stretch-induced changes in muscle and connective tissue properties.
Collapse
Affiliation(s)
- Melissa R Mazzo
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Logan E Weinman
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Valerio Giustino
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Bailey Mclagan
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - John Maldonado
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - Roger M Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
18
|
Werkhausen A, E Solberg C, Paulsen G, Bojsen-Møller J, Seynnes OR. Adaptations to explosive resistance training with partial range of motion are not inferior to full range of motion. Scand J Med Sci Sports 2021; 31:1026-1035. [PMID: 33465838 DOI: 10.1111/sms.13921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/16/2020] [Accepted: 01/11/2021] [Indexed: 01/20/2023]
Abstract
We tested whether explosive resistance training with partial range of motion (ROM) would be as effective as full ROM training using a noninferiority trial design. Fifteen subjects with strength training experience took part in an explosive-concentric only-leg press training program, three times per week for 10 weeks. One leg was randomly assigned to exercise with partial ROM (ie, 9º) and the other leg to full ROM. Before and after training, we assessed leg press performance, isokinetic concentric and isometric knee extension torque, and vastus lateralis muscle architecture. Overall, both training modalities increased maximal strength and rate of force development. Training with partial ROM yielded noninferior results compared to full ROM for leg press peak power (+69 ± 47% vs. +61 ± 64%), isokinetic strength (4-6 ± 6%-12% vs. 1-6 ± 6%-10% at 30, 60, and 180˚s-1 ), and explosive torque after 100 (47 ± 24 vs. 35 ± 22) and 150 ms (57 ± 22% vs. 42 ± 25%). The comparison was inconclusive for other functional parameters (ie, isokinetic peak torque (300˚s-1 ), joint angle at isokinetic peak torque, explosive torque after 50 ms, and electrically evoked torque) and for muscle fascicle length and thickness, although noninferiority was established for pennation angle. However, partial ROM was not found statistically inferior to full ROM for any measured variable. Under the present conditions, the effects of explosive heavy resistance training were independent of joint ROM. Instead, these data suggest that the distinct timing of muscle work in explosive contractions confers more influence to the starting joint angle than ROM on adaptations to this type of training.
Collapse
Affiliation(s)
- Amelie Werkhausen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Christian E Solberg
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Gøran Paulsen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.,The Norwegian Olympic and Paralympic Committee and Confederation, Oslo, Norway
| | - Jens Bojsen-Møller
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.,Research Unit for Muscle Physiology and Biomechanics, University of Southern Denmark, Odense, Denmark
| | - Olivier R Seynnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|