1
|
Li M, Guo X, Verma A, Rudkouskaya A, McKenna AM, Intes X, Wang G, Barroso M. Contrast-enhanced photon-counting micro-CT of tumor xenograft models. Phys Med Biol 2024; 69:155011. [PMID: 38670143 PMCID: PMC11258216 DOI: 10.1088/1361-6560/ad4447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 04/28/2024]
Abstract
Objective. Photon-counting micro-computed tomography (micro-CT) is a major advance in small animal preclinical imaging. Small molecule- and nanoparticle-based contrast agents have been widely used to enable the differentiation of liver tumors from surrounding tissues using photon-counting micro-CT. However, there is a notable gap in the application of these market-available agents to the imaging of breast and ovarian tumors using photon-counting micro-CT. Herein, we have used photon-counting micro-CT to determine the effectiveness of these contrast agents in differentiating ovarian and breast tumor xenografts in live, intact mice.Approach. Nude mice carrying different types of breast and ovarian tumor xenografts (AU565, MDA-MB-231 and SKOV-3 human cancer cells) were injected with ISOVUE-370 (a small molecule-based agent) or Exitron Nano 12000 (a nanoparticle-based agent) and subjected to photon-counting micro-CT. To improve tumor visualization using photon-counting micro-CT, we developed a novel color visualization method, which changes color tones to highlight contrast media distribution, offering a robust alternative to traditional material decomposition methods with less computational demand.Main results. Ourin vivoexperiments confirm the effectiveness of this color visualization approach, showing distinct enhancement characteristics for each contrast agent. Qualitative and quantitative analyses suggest that Exitron Nano 12000 provides superior vasculature enhancement and better quantitative consistency across scans, while ISOVUE-370 delivers a more comprehensive tumor enhancement but with significant variance between scans due to its short blood half-time. Further, a paired t-test on mean and standard deviation values within tumor volumes showed significant differences between the AU565 and SKOV-3 tumor models with the nanoparticle-based contrast agent (p-values < 0.02), attributable to their distinct vascularity, as confirmed by immunohistochemical analysis.Significance. These findings underscore the utility of photon-counting micro-CT in non-invasively assessing the morphology and anatomy of different tumor xenografts, which is crucial for tumor characterization and longitudinal monitoring of tumor progression and response to treatments.
Collapse
Affiliation(s)
- Mengzhou Li
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America
| | - Xiaodong Guo
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America
| | - Amit Verma
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, United States of America
| | - Alena Rudkouskaya
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, United States of America
| | - Antigone M McKenna
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America
| | - Xavier Intes
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America
| | - Ge Wang
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America
| | - Margarida Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, United States of America
| |
Collapse
|
2
|
Torsani V, Cardoso PFG, Borges JB, Gomes S, Moriya HT, Cruz AFD, Santiago RRDS, Nagao CK, Fitipaldi MF, Beraldo MDA, Junior MHV, Mlček M, Pego-Fernandes PM, Amato MBP. First real-time imaging of bronchoscopic lung volume reduction by electrical impedance tomography. Respir Res 2024; 25:264. [PMID: 38965590 PMCID: PMC11225379 DOI: 10.1186/s12931-024-02877-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Bronchoscopic lung volume reduction (BLVR) with one-way endobronchial valves (EBV) has better outcomes when the target lobe has poor collateral ventilation, resulting in complete lobe atelectasis. High-inspired oxygen fraction (FIO2) promotes atelectasis through faster gas absorption after airway occlusion, but its application during BLVR with EBV has been poorly understood. We aimed to investigate the real-time effects of FIO2 on regional lung volumes and regional ventilation/perfusion by electrical impedance tomography (EIT) during BLVR with EBV. METHODS Six piglets were submitted to left lower lobe occlusion by a balloon-catheter and EBV valves with FIO2 0.5 and 1.0. Regional end-expiratory lung impedances (EELI) and regional ventilation/perfusion were monitored. Local pocket pressure measurements were obtained (balloon occlusion method). One animal underwent simultaneous acquisitions of computed tomography (CT) and EIT. Regions-of-interest (ROIs) were right and left hemithoraces. RESULTS Following balloon occlusion, a steep decrease in left ROI-EELI with FIO2 1.0 occurred, 3-fold greater than with 0.5 (p < 0.001). Higher FIO2 also enhanced the final volume reduction (ROI-EELI) achieved by each valve (p < 0.01). CT analysis confirmed the denser atelectasis and greater volume reduction achieved by higher FIO2 (1.0) during balloon occlusion or during valve placement. CT and pocket pressure data agreed well with EIT findings, indicating greater strain redistribution with higher FIO2. CONCLUSIONS EIT demonstrated in real-time a faster and more complete volume reduction in the occluded lung regions under high FIO2 (1.0), as compared to 0.5. Immediate changes in the ventilation and perfusion of ipsilateral non-target lung regions were also detected, providing better estimates of the full impact of each valve in place. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Vinicius Torsani
- Divisao de Pneumologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brasil
| | - Paulo Francisco Guerreiro Cardoso
- Division of Thoracic Surgery, Thoracic Surgery Research Laboratory (LIM 61), Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brasil
| | - João Batista Borges
- Institute of Physiology, First Faculty of Medicine, Charles University, Albertov 5, Prague, 128 00, Czech Republic.
| | - Susimeire Gomes
- Divisao de Pneumologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brasil
| | - Henrique Takachi Moriya
- Biomedical Engineering Laboratory, Escola Politecnica da Universidade de Sao Paulo, Sao Paulo, Brasil
| | - Andrea Fonseca da Cruz
- Biomedical Engineering Laboratory, Escola Politecnica da Universidade de Sao Paulo, Sao Paulo, Brasil
| | | | - Cristopher Kengo Nagao
- Division of Thoracic Surgery, Thoracic Surgery Research Laboratory (LIM 61), Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brasil
| | - Mariana Fernandes Fitipaldi
- Division of Thoracic Surgery, Thoracic Surgery Research Laboratory (LIM 61), Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brasil
| | - Marcelo do Amaral Beraldo
- Divisao de Pneumologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brasil
| | - Marcus Henrique Victor Junior
- Divisao de Pneumologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brasil
| | - Mikuláš Mlček
- Institute of Physiology, First Faculty of Medicine, Charles University, Albertov 5, Prague, 128 00, Czech Republic
| | - Paulo Manuel Pego-Fernandes
- Division of Thoracic Surgery, Thoracic Surgery Research Laboratory (LIM 61), Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brasil
| | - Marcelo Britto Passos Amato
- Divisao de Pneumologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brasil
| |
Collapse
|
3
|
Gaulton TG, Xin Y, Victor M, Nova A, Cereda M. Imaging the pulmonary vasculature in acute respiratory distress syndrome. Nitric Oxide 2024; 147:6-12. [PMID: 38588918 PMCID: PMC11253040 DOI: 10.1016/j.niox.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by a redistribution of regional lung perfusion that impairs gas exchange. While speculative, experimental evidence suggests that perfusion redistribution may contribute to regional inflammation and modify disease progression. Unfortunately, tools to visualize and quantify lung perfusion in patients with ARDS are lacking. This review explores recent advances in perfusion imaging techniques that aim to understand the pulmonary circulation in ARDS. Dynamic contrast-enhanced computed tomography captures first-pass kinetics of intravenously injected dye during continuous scan acquisitions. Different contrast characteristics and kinetic modeling have improved its topographic measurement of pulmonary perfusion with high spatial and temporal resolution. Dual-energy computed tomography can map the pulmonary blood volume of the whole lung with limited radiation exposure, enabling its application in clinical research. Electrical impedance tomography can obtain serial topographic assessments of perfusion at the bedside in response to treatments such as inhaled nitric oxide and prone position. Ongoing technological improvements and emerging techniques will enhance lung perfusion imaging and aid its incorporation into the care of patients with ARDS.
Collapse
Affiliation(s)
- Timothy G Gaulton
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA.
| | - Yi Xin
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Marcus Victor
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA; Electronics Engineering Division, Aeronautics Institute of Technology, Sao Paulo, Brazil
| | - Alice Nova
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Maurizio Cereda
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Martin KT, Xin Y, Gaulton TG, Victor M, Santiago RR, Kim T, Morais CCA, Kazimi AA, Connell M, Gerard SE, Herrmann J, Mueller AL, Lenart A, Shen J, Khan SS, Petrov M, Reutlinger K, Rozenberg K, Amato M, Berra L, Cereda M. Electrical Impedance Tomography Identifies Evolution of Regional Perfusion in a Porcine Model of Acute Respiratory Distress Syndrome. Anesthesiology 2023; 139:815-826. [PMID: 37566686 PMCID: PMC10840641 DOI: 10.1097/aln.0000000000004731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
BACKGROUND Bedside electrical impedance tomography could be useful to visualize evolving pulmonary perfusion distributions when acute respiratory distress syndrome worsens or in response to ventilatory and positional therapies. In experimental acute respiratory distress syndrome, this study evaluated the agreement of electrical impedance tomography and dynamic contrast-enhanced computed tomography perfusion distributions at two injury time points and in response to increased positive end-expiratory pressure (PEEP) and prone position. METHODS Eleven mechanically ventilated (VT 8 ml · kg-1) Yorkshire pigs (five male, six female) received bronchial hydrochloric acid (3.5 ml · kg-1) to invoke lung injury. Electrical impedance tomography and computed tomography perfusion images were obtained at 2 h (early injury) and 24 h (late injury) after injury in supine position with PEEP 5 and 10 cm H2O. In eight animals, electrical impedance tomography and computed tomography perfusion imaging were also conducted in the prone position. Electrical impedance tomography perfusion (QEIT) and computed tomography perfusion (QCT) values (as percentages of image total) were compared in eight vertical regions across injury stages, levels of PEEP, and body positions using mixed-effects linear regression. The primary outcome was agreement between QEIT and QCT, defined using limits of agreement and Pearson correlation coefficient. RESULTS Pao2/Fio2 decreased over the course of the experiment (healthy to early injury, -253 [95% CI, -317 to -189]; early to late injury, -88 [95% CI, -151 to -24]). The limits of agreement between QEIT and QCT were -4.66% and 4.73% for the middle 50% quantile of average regional perfusion, and the correlation coefficient was 0.88 (95% CI, 0.86 to 0.90]; P < 0.001). Electrical impedance tomography and computed tomography showed similar perfusion redistributions over injury stages and in response to increased PEEP. QEIT redistributions after positional therapy underestimated QCT in ventral regions and overestimated QCT in dorsal regions. CONCLUSIONS Electrical impedance tomography closely approximated computed tomography perfusion measures in experimental acute respiratory distress syndrome, in the supine position, over injury progression and with increased PEEP. Further validation is needed to determine the accuracy of electrical impedance tomography in measuring perfusion redistributions after positional changes. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Kevin T Martin
- Department of Anesthesia and Perioperative Care, University of California San Francisco, CA, USA
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi Xin
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Timothy G Gaulton
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Marcus Victor
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Electronics Engineering Division, Aeronautics Institute of Technology, São Paulo, Brazil
| | - Roberta R Santiago
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Taehwan Kim
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Caio C A Morais
- Department of Physical Therapy, Federal University of Pernambuco, Recife, Brazil
| | - Aubrey A Kazimi
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Marc Connell
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
- University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Sarah E Gerard
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Jacob Herrmann
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Ariel L Mueller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Austin Lenart
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Jiacheng Shen
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Sherbano S Khan
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Mihail Petrov
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristan Reutlinger
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Karina Rozenberg
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Marcelo Amato
- Department of Cardio-Pulmonary, University of São Paulo, São Paulo, Brazil
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Gaulton TG, Martin K, Xin Y, Victor M, Ribeiro De Santis Santiago R, Britto Passos Amato M, Berra L, Cereda M. Regional lung perfusion using different indicators in electrical impedance tomography. J Appl Physiol (1985) 2023; 135:500-507. [PMID: 37439236 PMCID: PMC10538981 DOI: 10.1152/japplphysiol.00130.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/19/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023] Open
Abstract
Management of acute respiratory distress syndrome (ARDS) is classically guided by protecting the injured lung and mitigating damage from mechanical ventilation. Yet the natural history of ARDS is also dictated by disruption in lung perfusion. Unfortunately, diagnosis and treatment are hampered by the lack of bedside perfusion monitoring. Electrical impedance tomography is a portable imaging technique that can estimate regional lung perfusion in experimental settings from the kinetic analysis of a bolus of an indicator with high conductivity. Hypertonic sodium chloride has been the standard indicator. However, hypertonic sodium chloride is often inaccessible in the hospital, limiting practical adoption. We investigated whether regional lung perfusion measured using electrical impedance tomography is comparable between indicators. Using a swine lung injury model, we determined regional lung perfusion (% of total perfusion) in five pigs, comparing 12% sodium chloride to 8.4% sodium bicarbonate across stages of lung injury and experimental conditions (body position, positive end-expiratory pressure). Regional lung perfusion for four lung regions was determined from maximum slope analysis of the indicator-based impedance signal. Estimates of regional lung perfusion between indicators were compared in the lung overall and within four lung regions. Regional lung perfusion estimated with a sodium bicarbonate indicator agreed with a hypertonic sodium chloride indicator overall (mean bias 0%, limits of agreement -8.43%, 8.43%) and within lung quadrants. The difference in regional lung perfusion between indicators did not change across experimental conditions. Sodium bicarbonate may be a comparable indicator to estimate regional lung perfusion using electrical impedance tomography.NEW & NOTEWORTHY Electrical impedance tomography is an emerging tool to measure regional lung perfusion using kinetic analysis of a conductive indicator. Hypertonic sodium chloride is the standard agent used. We measured regional lung perfusion using another indicator, comparing hypertonic sodium chloride to sodium bicarbonate in an experimental swine lung injury model. We found strong agreement between the two indicators. Sodium bicarbonate may be a comparable indicator to measure regional lung perfusion with electrical impedance tomography.
Collapse
Affiliation(s)
- Timothy G Gaulton
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kevin Martin
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Yi Xin
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Marcus Victor
- Pulmonary Division, Heart Institute (InCor), University of São Paulo, São Paulo, Brazil
- Medical Electrical Devices Laboratory (LabMed), Electronics Engineering, Aeronautics Institute of Technology, Sao Jose dos Campos, Brazil
| | - Roberta Ribeiro De Santis Santiago
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | | | - Lorenzo Berra
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Maurizio Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|