1
|
Tan R, Cass JK, Lincoln IG, Wideen LE, Nicholl MJ, Molnar TJ, Gough LA, Bailey SJ, Pennell A. Effects of Dietary Nitrate Supplementation on High-Intensity Cycling Sprint Performance in Recreationally Active Adults: A Systematic Review and Meta-Analysis. Nutrients 2024; 16:2764. [PMID: 39203900 PMCID: PMC11357493 DOI: 10.3390/nu16162764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
This systematic review and meta-analysis investigated the influence of dietary nitrate supplementation on performance metrics during cycling sprint exercise according to the PRISMA guidelines. Searches were conducted on MEDLINE, PubMed, ScienceDirect, Scopus, and SPORTDiscus databases up to September 2023. Inclusion criteria were healthy recreationally active men and women who consumed nitrate-rich and nitrate-deficient beetroot juice to assess performance outcomes of mean power, peak power, time-to-peak power, and minimum power during 30-s cycling sprints. Risk of bias was assessed using the Cochrane Risk of Bias 2 and TESTEX tools and funnel plots. A random effects model was performed on six studies and showed that dietary nitrate had significant effects on time-to-peak power (SMD: -0.66, 95% CI: -1.127 to -0.192, p = 0.006) but not on mean power, peak power, or minimum power. Subgroup analysis revealed that an acute low nitrate dose improved time-to-peak power (SMD: -0.977, 95% CI: -1.524 to -0.430, p < 0.001) but not after a multiday moderate nitrate dose (SMD: -0.177, 95% CI: -0.619 to -0.264, p = 0.431). These data suggest that acute nitrate supplementation can benefit time-to-peak power during 30-s cycling sprints, but due to the limited availability of data and heterogeneity in methodology, these results should be interpreted with caution. There was insufficient data on women to analyze sex-based differences. Future studies are required to provide insight on how supplementation regimen and population impact the effects of dietary nitrate for enhancing cycling sprint performance.
Collapse
Affiliation(s)
- Rachel Tan
- Natural Sciences Division, Pepperdine University, Malibu, CA 90263, USA; (J.K.C.)
| | - Jordan K. Cass
- Natural Sciences Division, Pepperdine University, Malibu, CA 90263, USA; (J.K.C.)
| | - Isabella G. Lincoln
- Natural Sciences Division, Pepperdine University, Malibu, CA 90263, USA; (J.K.C.)
| | - Lauren E. Wideen
- Natural Sciences Division, Pepperdine University, Malibu, CA 90263, USA; (J.K.C.)
| | - Madelyn J. Nicholl
- Natural Sciences Division, Pepperdine University, Malibu, CA 90263, USA; (J.K.C.)
| | - Trevor J. Molnar
- Natural Sciences Division, Pepperdine University, Malibu, CA 90263, USA; (J.K.C.)
| | - Lewis A. Gough
- Human Performance and Health Laboratory, Centre for Life and Sport Sciences (CLaSS), Birmingham City University, Birmingham B5 5JU, UK;
| | - Stephen J. Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK;
| | - Adam Pennell
- Natural Sciences Division, Pepperdine University, Malibu, CA 90263, USA; (J.K.C.)
| |
Collapse
|
2
|
Hogwood AC, Anderson KC, Ortiz de Zevallos J, Paterson C, Weltman A, Allen JD. Limited Effects of Inorganic Nitrate Supplementation on Exercise Training Responses: A Systematic Review and Meta-analysis. SPORTS MEDICINE - OPEN 2023; 9:84. [PMID: 37697072 PMCID: PMC10495291 DOI: 10.1186/s40798-023-00632-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/26/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Inorganic nitrate (NO3-) supplementation is purported to benefit short-term exercise performance, but it is unclear whether NO3- improves longer-term exercise training responses (such as improvements in VO2peak or time to exhaustion (TTE)) versus exercise training alone. The purpose of this systematic review and meta-analysis was to determine the effects of NO3- supplementation combined with exercise training on VO2peak and TTE, and to identify potential factors that may impact outcomes. METHODS Electronic databases (PubMed, Medscape, and Web of Science) were searched for articles published through June 2022 with article inclusion determined a priori as: (1) randomized placebo-controlled trials, (2) exercise training lasted at least three weeks, (3) treatment groups received identical exercise training, (4) treatment groups had matched VO2peak at baseline. Study quality was assessed using the Cochrane Risk-of-Bias 2 tool. Standardized mean difference (SMD) with 95% confidence intervals (CI) were calculated using restricted maximum likelihood estimation between pre- and post-training differences in outcomes. Moderator subgroup and meta-regression analyses were completed to determine whether the overall effect was influenced by age, sex, NO3- dosage, baseline VO2peak, health status, NO3- administration route, and training conditions. RESULTS Nine studies consisting of eleven trials were included: n = 228 (72 females); age = 37.7 ± 21 years; VO2peak: 40 ± 18 ml/kg/min. NO3- supplementation did not enhance exercise training with respect to VO2peak (SMD: 0.18; 95% CI: -0.09, 0.44; p = 0.19) or TTE (SMD: 0.08; 95% CI: - 0.21, 0.37; p = 0.58). No significant moderators were revealed on either outcome. Subset analysis on healthy participants who consumed beetroot juice (BRJ) revealed stronger trends for NO3- improving VO2peak (p = 0.08) compared with TTE (p = 0.19), with no significant moderators. Sunset funnel plot revealed low statistical power in all trials. CONCLUSIONS NO3- supplementation combined with exercise training may not enhance exercise outcomes such as VO2peak or TTE. A trend for greater improvement in VO2peak in healthy participants supplemented with BRJ may exist (p = 0.08). Overall, future studies in this area need increased sample sizes, more unified methodologies, longer training interventions, and examination of sex as a biological variable to strengthen conclusions.
Collapse
Affiliation(s)
- Austin C Hogwood
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, VA, 22904, USA.
| | - Kara C Anderson
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, VA, 22904, USA
| | - Joaquin Ortiz de Zevallos
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, VA, 22904, USA
| | - Craig Paterson
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Arthur Weltman
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, VA, 22904, USA
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22904, USA
| | - Jason D Allen
- Department of Kinesiology, School of Education and Human Development, University of Virginia, Charlottesville, VA, 22904, USA
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22904, USA
| |
Collapse
|
3
|
Short-Term Supplementation of Sodium Nitrate vs. Sodium Chloride Increases Homoarginine Synthesis in Young Men Independent of Exercise. Int J Mol Sci 2022; 23:ijms231810649. [PMID: 36142560 PMCID: PMC9504822 DOI: 10.3390/ijms231810649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 02/07/2023] Open
Abstract
The aim of the study was to investigate the effects of short-term oral administration of inorganic nitrate (NaNO3; n = 8) or placebo (NaCl; n = 9) (each 0.1 mmol/kg body weight/d for 9 days) on plasma amino acids, creatinine, and oxidative stress in healthy young men. At baseline, the plasma concentrations of amino acids did not differ between the groups. At the end of the study, the plasma concentrations of homoarginine (hArg; by 24%, p = 0.0001), citrulline and ornithine (Cit/Orn; by 16%, p = 0.015), and glutamine/glutamate (Gln/Glu; by 6%, p = 0.0003) were higher in the NaNO3 group compared to the NaCl group. The plasma concentrations of sarcosine (Sarc; by 28%, p < 0.0001), tyrosine (by 14%, p = 0.0051), phenylalanine (by 8%, p = 0.0026), and tryptophan (by 8%, p = 0.0047) were lower in the NaNO3 group compared to the NaCl group. These results suggest that nitrate administration affects amino-acid metabolism. The arginine/glycine amidinotransferase (AGAT) catalyzes two reactions: (1) the formation of l-homoarginine (hArg) and l-ornithine (Orn) from l-arginine (Arg) and l-lysine (Lys): Arg + Lys <−> hArg + Orn, with equilibrium constant Kharg; (2) the formation of guanidinoacetate (GAA) and Orn from Arg and glycine (Gly): Arg + Gly <−> GAA + Orn, with equilibrium constant Kgaa. The plasma Kgaa/KhArg ratio was lower in the NaNO3 group compared to the NaCl group (1.57 vs. 2.02, p = 0.0034). Our study suggests that supplementation of inorganic nitrate increases the AGAT-catalyzed synthesis of hArg and decreases the N-methyltransferase-catalyzed synthesis of GAA, the precursor of creatine. To our knowledge, this is the first study to demonstrate elevation of hArg synthesis by inorganic nitrate supplementation. Remarkably, an increase of 24% corresponds to the synthesis capacity of one kidney in healthy humans. Differences in the association between plasma concentrations of amino acids in the NaNO3 and NaCl groups suggest changes in amino-acid homeostasis. Plasma concentrations of the oxidative stress marker malondialdehyde (MDA) did not change after supplementation of NaNO3 or NaCl over the whole exercise time range. Plasma nitrite concentration turned out to be a more discriminant marker of NaNO3 ingestion than plasma nitrate (area under the receiver operating characteristic curve: 0.951 vs. 0.866, p < 0.0001 each).
Collapse
|
4
|
Acute Effects of Inorganic Nitrate Intake on Brachial and Femoral Flow-Mediated Vasodilation, and on Carotid Artery Reactivity Responses: Results of a Randomized, Double-Blinded, Placebo-Controlled Cross-Over Study in Abdominally Obese Men. Nutrients 2022; 14:nu14173560. [PMID: 36079817 PMCID: PMC9460748 DOI: 10.3390/nu14173560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/26/2022] Open
Abstract
Most trials on the effects of inorganic nitrate intake have focused on only one specific aspect of the endothelial cell response to a stimulus, thereby possibly missing other important effects. The aim of the present randomized, double-blinded, placebo-controlled cross-over study was therefore to investigate in eighteen healthy abdominally obese men (18–60 years, waist circumference ≥ 102 cm) acute effects of potassium nitrate on brachial and femoral flow-mediated vasodilation (FMD), and on carotid artery reactivity (CAR) to a cold pressure test. Participants received in random order a drink providing 10 mmol potassium nitrate (i.e., 625 mg of nitrate) or an iso-molar placebo drink with potassium chloride. Fasted and 4 h post-drink FMD and blood pressure measurements were performed. CAR responses were assessed at 4 h. Circulating nitrate plus nitrite concentration increased following nitrate intake (p = 0.003). Compared with placebo, potassium nitrate did not affect brachial (mean [95% confidence interval]: −0.2% [−2.5, 2.1], p = 0.86) and femoral FMD responses (−0.6% [−3.0; 1.7], p = 0.54). CAR responses were also not different (−0.8% [−2.5, 0.9], p = 0.32). Finally, changes in blood pressure and heart rate did not differ. No adverse events were observed. In conclusion, this trial did not provide evidence for effects of a single dose of inorganic nitrate on 4 h vascular endothelial function in abdominally obese men.
Collapse
|
5
|
Todorovic N, Stajer V, Ratgeber L, Betlehem J, Acs P, Maksimovic N, Ostojic SM. A single-dose nitrate-producing dietary supplement affects cardiorespiratory endurance and muscular fitness in healthy men: A randomized controlled pilot trial. SAGE Open Med 2021; 9:20503121211036119. [PMID: 34377472 PMCID: PMC8327001 DOI: 10.1177/20503121211036119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/09/2021] [Indexed: 12/04/2022] Open
Abstract
Introduction: The main aim of this pilot study was to examine the effects of a single-dose
intervention with a novel nitrate-producing formulation (MagNOVOx™) on
biomarkers of cardiorespiratory endurance and muscular fitness in 12 healthy
men. Methods: The study participants (age = 22.7 ± 2.8 years, height = 184.1 ± 5.7 cm, and
weight = 82.5 ± 8.4 kg) were randomly allocated to receive either a single
dose of MagNOVOx™ or a placebo (inulin) in a cross-over design. The primary
outcome for this study was the change in running time to exhaustion
evaluated at baseline (before supplementation) and post-intervention. Results: Time to exhaustion was improved after the intervention in 8 out of 11
participants (72.7%) who received MagNOVOx™, and in 1 out of 11 participants
(9.1%) who received placebo (p = 0.004), and MagNOVOx™
outcompeted placebo in terms of improving leg press performance
(p < 0.01). No significant differences between
MagNOVOx™ and placebo were found for blood pressure responses
(p > 0.05). Conclusion: These promising findings should be further corroborated in medium- and
long-term trials, and different populations, while the exact mechanism of
MagNOVOx™ requires additional physiological studies.
Collapse
Affiliation(s)
- Nikola Todorovic
- Faculty of Sport and Physical Education, University of Novi Sad, Applied Bioenergetics Lab, Novi Sad, Serbia
| | - Valdemar Stajer
- Faculty of Sport and Physical Education, University of Novi Sad, Applied Bioenergetics Lab, Novi Sad, Serbia
| | - Laszlo Ratgeber
- Faculty of Health Sciences, University of Pecs, Pecs, Hungary
| | - Jozsef Betlehem
- Faculty of Health Sciences, University of Pecs, Pecs, Hungary
| | - Pongrac Acs
- Faculty of Health Sciences, University of Pecs, Pecs, Hungary
| | - Nebojsa Maksimovic
- Faculty of Sport and Physical Education, University of Novi Sad, Applied Bioenergetics Lab, Novi Sad, Serbia
| | - Sergej M Ostojic
- Faculty of Sport and Physical Education, University of Novi Sad, Applied Bioenergetics Lab, Novi Sad, Serbia.,Faculty of Health Sciences, University of Pecs, Pecs, Hungary
| |
Collapse
|
6
|
Townsend JR, Hart TL, Haynes JT, Woods CA, Toy AM, Pihera BC, Aziz MA, Zimmerman GA, Jones MD, Vantrease WC, Gonzalez AM. Influence of Dietary Nitrate Supplementation on Physical Performance and Body Composition Following Offseason Training in Division I Athletes. J Diet Suppl 2021; 19:534-549. [PMID: 33754923 DOI: 10.1080/19390211.2021.1900482] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE To determine the effects of dietary nitrate supplementation, in the form of red spinach extract (RSE), on adaptations to offseason training in collegiate athletes. Methods: Sixteen Division I male baseball athletes (20.5 ± 1.7y, 90.4 ± 0.5 kg) enrolled in this study and were randomized into a RSE (n = 8) or placebo (n = 8; PL) group. Athletes completed an 11-week resistance training program during the offseason, which consisted of 2-3 workouts per week of upper and lower-body exercises and baseball-specific training. Athletes consumed a RSE (2 g; 180 mg nitrate) or PL supplement daily for the entire offseason training program. Pre and post-training, all athletes underwent one-repetition maximum (1RM) strength testing for the bench press and completed a Wingate anaerobic cycle test (WAnT). Body composition analysis was completed via a 4-compartment model, as well as muscle thickness (MT) measurement of the rectus femoris (RF) and vastus lateralis (VL) via ultrasonography. Resting heart rate and blood pressure (BP) were also obtained. Separate repeated measures analyses of variance were used to analyze all data. Results: Significant (p ≤ 0.05) main effects for time were observed for improved bench 1RM, fat-free mass, body fat percentage, RF MT, and VL MT. No significant group x time interactions (p > 0.05) were found for any measure of performance, body composition, or cardiovascular health. However, a trend for improved peak power in the WAnT was observed (p = 0.095; η2=0.200). Conclusions: These data suggest that daily RSE supplementation had no effect on performance, body composition, or cardiovascular measures in male Division I baseball players following offseason training.
Collapse
Affiliation(s)
| | - Tricia L Hart
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN
| | - James T Haynes
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN
| | - Clint A Woods
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN
| | - Ann M Toy
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN
| | - Bailey C Pihera
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN
| | - Marko A Aziz
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN
| | - Grace A Zimmerman
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN
| | - Megan D Jones
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN
| | - William C Vantrease
- Exercise and Nutrition Science Graduate Program, Lipscomb University, Nashville, TN
| | - Adam M Gonzalez
- Department of Health Professions, Hofstra University, Hempstead, NY
| |
Collapse
|
7
|
Rothschild JA, Bishop DJ. Effects of Dietary Supplements on Adaptations to Endurance Training. Sports Med 2020; 50:25-53. [PMID: 31531769 DOI: 10.1007/s40279-019-01185-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Endurance training leads to a variety of adaptations at the cellular and systemic levels that serve to minimise disruptions in whole-body homeostasis caused by exercise. These adaptations are differentially affected by training volume, training intensity, and training status, as well as by nutritional choices that can enhance or impair the response to training. A variety of supplements have been studied in the context of acute performance enhancement, but the effects of continued supplementation concurrent to endurance training programs are less well characterised. For example, supplements such as sodium bicarbonate and beta-alanine can improve endurance performance and possibly training adaptations during endurance training by affecting buffering capacity and/or allowing an increased training intensity, while antioxidants such as vitamin C and vitamin E may impair training adaptations by blunting cellular signalling but appear to have little effect on performance outcomes. Additionally, limited data suggest the potential for dietary nitrate (in the form of beetroot juice), creatine, and possibly caffeine, to further enhance endurance training adaptation. Therefore, the objective of this review is to examine the impact of dietary supplements on metabolic and physiological adaptations to endurance training.
Collapse
Affiliation(s)
- Jeffrey A Rothschild
- Sports Performance Research Institute New Zealand (SPRINZ), Auckland University of Technology, Auckland, New Zealand. .,TriFit Performance Center, Santa Monica, CA, USA.
| | - David J Bishop
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
8
|
Supplements and Nutritional Interventions to Augment High-Intensity Interval Training Physiological and Performance Adaptations-A Narrative Review. Nutrients 2020; 12:nu12020390. [PMID: 32024038 PMCID: PMC7071320 DOI: 10.3390/nu12020390] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
High-intensity interval training (HIIT) involves short bursts of intense activity interspersed by periods of low-intensity exercise or rest. HIIT is a viable alternative to traditional continuous moderate-intensity endurance training to enhance maximal oxygen uptake and endurance performance. Combining nutritional strategies with HIIT may result in more favorable outcomes. The purpose of this narrative review is to highlight key dietary interventions that may augment adaptations to HIIT, including creatine monohydrate, caffeine, nitrate, sodium bicarbonate, beta-alanine, protein, and essential amino acids, as well as manipulating carbohydrate availability. Nutrient timing and potential sex differences are also discussed. Overall, sodium bicarbonate and nitrates show promise for enhancing HIIT adaptations and performance. Beta-alanine has the potential to increase training volume and intensity and improve HIIT adaptations. Caffeine and creatine have potential benefits, however, longer-term studies are lacking. Presently, there is a lack of evidence supporting high protein diets to augment HIIT. Low carbohydrate training enhances the upregulation of mitochondrial enzymes, however, there does not seem to be a performance advantage, and a periodized approach may be warranted. Lastly, potential sex differences suggest the need for future research to examine sex-specific nutritional strategies in response to HIIT.
Collapse
|