1
|
Lin L, Li S, Liu Q, Zhang X, Xiong Y, Zhao S, Cao L, Gong J, Liu Y, Wu R. Traditional pediatric massage enhanced the skeletal muscle mass in OVA-exposed adolescent rats via regulating SCFAs-FFAR2-IGF-1/AKT pathway. Front Microbiol 2025; 15:1492783. [PMID: 39831118 PMCID: PMC11739148 DOI: 10.3389/fmicb.2024.1492783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Objective This study aimed to investigate the potential relation between the retarded growth of skeletal muscle (SM) and dysbiosis of gut microbiota (GM) in children with asthma, and to explore the potential action mechanisms of traditional pediatric massage (TPM) from the perspective of regulating GM and short-chain fatty acids (SCFAs) production by using an adolescent rat model of asthma. Methods Male Sprague-Dawley rats aged 3weeks were divided randomly into the 5 groups (n=6~7) of control, ovalbumin (OVA), OVA + TPM, OVA + methylprednisolone sodium succinate (MP) and OVA + SCFAs. Pulmonary function (PF) was detected by whole body plethysmograph, including enhanced pause and minute ventilation. Airway allergic inflammation (AAI) status was assessed by concentrations of OVA-specific immunoglobulin E in plasma, interleukin (IL)-4 and IL-1β in bronchoalveolar lavage fluid via ELISA assay. SM mass was assessed by using cross-sectional areas of diaphragm muscle and gastrocnemius via hematoxylin and eosin staining. GM and SCFAs production were detected by 16S rDNA sequencing and GC-MS, respectively. The protein and gene expressions of free fatty acid receptor 2 in SM were detected by using immunohistochemical staining and qRT-PCR, respectively. qRT-PCR was used to detect other relative gene expressions that were closely related with SM mass. The activity of insulin-like growth factor-1 (IGF-1)/protein kinase B (PKB/AKT) pathway in SM was detected by western blotting test. Results OVA exposure caused obvious AAI and poor PF in adolescent rats. OVA-exposed adolescent rats had a retarded growth of SM mass and inhibited activity of IGF-1/AKT pathway, which was related with GM dysbiosis, reduced SCFAs production and FFAR2 expressions in SM. TPM efficiently enhanced the SM mass, along with alleviating AAI and improving PF. TPM activated IGF-1/AKT pathway in SM, which was closely related with correcting GM dysbiosis, enhanced SCFAs production and FFAR2 expressions. Conclusion The retarded growth of SM mass and inhibition of IGF-1/AKT pathway existed in OVA-exposed adolescent rats, which was related with GM dysbiosis, reduced SCFAs production and FFAR2 expressions in SM. TPM efficiently enhanced the SM mass, at least, partially via regulating GM, enhancing SCFAs production and activating FFAR2-IGF-1/AKT pathway.
Collapse
Affiliation(s)
- Lin Lin
- Department of Traditional Chinese Medicine, Shijiazhuang Medical College, Shijiazhuang, Hebei, China
| | - Siyuan Li
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Que Liu
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xingxing Zhang
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ying Xiong
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shaoyun Zhao
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Liyue Cao
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiaxuan Gong
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yaping Liu
- Department of Acupuncture Moxibustion, Nantong First People's Hospital, Nantong, Jiangsu, China
| | - Rong Wu
- Department of Medicine, Qinghai University, Xining, Qinghai, China
| |
Collapse
|
2
|
Brandenburg JE, Fogarty MJ, Zhan WZ, Kopper LA, Sieck GC. Postnatal survival of phrenic motor neurons is promoted by BDNF/TrkB.FL signaling. J Appl Physiol (1985) 2024; 136:1113-1121. [PMID: 38511211 PMCID: PMC11368516 DOI: 10.1152/japplphysiol.00911.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
The number of motor neurons (MNs) declines precipitously during the final trimester before birth. Thereafter, the number of MNs remains relatively stable, with their connections to skeletal muscle dependent on neurotrophins, including brain-derived neurotrophic factor (BDNF) signaling through its high-affinity full-length tropomyosin-related kinase receptor subtype B (TrkB.FL) receptor. As a genetic knockout of BDNF leads to extensive MN loss and postnatal death within 1-2 days after birth, we tested the hypothesis that postnatal inhibition of BDNF/TrkB.FL signaling is important for postnatal phrenic MN (PhMN) survival. In the present study, we used a 1NMPP1-sensitive TrkBF616A mutant mouse to evaluate the effects of inhibition of TrkB kinase activity on phrenic MN (PhMN) numbers and diaphragm muscle (DIAm) fiber cross-sectional area (CSA). Pups were exposed to 1NMPP1 or vehicle (DMSO) from birth to 21 days old (weaning) via the mother's ingestion in the drinking water. Following weaning, the right phrenic nerve was exposed in the neck and the proximal end dipped in a rhodamine solution to retrogradely label PhMNs. After 24 h, the cervical spinal cord and DIAm were excised. Labeled PhMNs were imaged using confocal microscopy, whereas DIAm strips were frozen at ∼1.5× resting length, cryosectioned, and stained with hematoxylin and eosin to assess CSA. We observed an ∼34% reduction in PhMN numbers and increased primary dendrite numbers in 1NMPP1-treated TrkBF616A mice. The distribution of PhMN size (somal surface area) DIAm fiber cross-sectional areas did not differ. We conclude that survival of PhMNs during early postnatal development is sensitive to BDNF/TrkB.FL signaling.NEW & NOTEWORTHY During early postnatal development, BDNF/TrkB signaling promotes PhMN survival. Inhibition of BDNF/TrkB signaling in early postnatal development does not impact PhMN size. Inhibition of BDNF/TrkB signaling in early postnatal development does not impact the number or CSA of DIAm fibers.
Collapse
Affiliation(s)
- Joline E Brandenburg
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, United States
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Wen-Zhi Zhan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Leo A Kopper
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
3
|
Reis NG, Assis AP, Lautherbach N, Gonçalves DA, Silveira WA, Morgan HJN, Valentim RR, Almeida LF, Heck LC, Zanon NM, Koike TE, Santos AR, Miyabara EH, Kettelhut IC, Navegantes LC. Maternal vitamin D deficiency affects the morphology and function of glycolytic muscle in adult offspring rats. J Cachexia Sarcopenia Muscle 2022; 13:2175-2187. [PMID: 35582969 PMCID: PMC9398225 DOI: 10.1002/jcsm.12986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Fetal stage is a critical developmental window for the skeletal muscle, but little information is available about the impact of maternal vitamin D (Vit. D) deficiency (VDD) on offspring lean mass development in the adult life of male and female animals. METHODS Female rats (Wistar Hannover) were fed either a control (1000 IU Vit. D3/kg) or a VDD diet (0 IU Vit. D3/kg) for 6 weeks and during gestation and lactation. At weaning, male and female offspring were randomly separated and received a standard diet up to 180 days old. RESULTS Vitamin D deficiency induced muscle atrophy in the male (M-VDD) offspring at the end of weaning, an effect that was reverted along the time. Following 180 days, fast-twitch skeletal muscles [extensor digitorum longus (EDL)] from the M-VDD showed a decrease (20%; P < 0.05) in the number of total fibres but an increase in the cross-sectional area of IIB (17%; P < 0.05), IIA (19%; P < 0.05) and IIAX (21%; P < 0.05) fibres. The fibre hypertrophy was associated with the higher protein levels of MyoD (73%; P < 0.05) and myogenin (55% %; P < 0.05) and in the number of satellite cells (128.8 ± 14 vs. 91 ± 7.6 nuclei Pax7 + in the M-CTRL; P < 0.05). M-VDD increased time to fatigue during ex vivo contractions of EDL muscles and showed an increase in the phosphorylation levels of IGF-1/insulin receptor and their downstream targets related to anabolic processes and myogenic activation, including Ser 473 Akt and Ser 21/9 GSK-3β. In such muscles, maternal VDD induced a compensatory increase in the content of calcitriol (two-fold; P < 0.05) and CYP27B1 (58%; P < 0.05), a metabolizing enzyme that converts calcidiol to calcitriol. Interestingly, most morphological and biochemical changes found in EDL were not observed in slow-twitch skeletal muscles (soleus) from the M-VDD group as well as in both EDL and soleus muscles from the female offspring. CONCLUSIONS These data show that maternal VDD selectively affects the development of type-II muscle fibres in male offspring rats but not in female offspring rats and suggest that the enhancement of their size and fatigue resistance in fast-twitch skeletal muscle (EDL) is probably due to a compensatory increase in the muscle content of Vit. D in the adult age.
Collapse
Affiliation(s)
- Natany G Reis
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana P Assis
- Department of Biochemistry & Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Natália Lautherbach
- Department of Biochemistry & Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Dawit A Gonçalves
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Wilian A Silveira
- Institute of Biological and Natural Science, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Henrique J N Morgan
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafael R Valentim
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas F Almeida
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lilian C Heck
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Neusa M Zanon
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Tatiana E Koike
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, SP, Brazil
| | - Audrei R Santos
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, SP, Brazil
| | - Elen H Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, SP, Brazil
| | - Isis C Kettelhut
- Department of Biochemistry & Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz C Navegantes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
4
|
Brown AD, Fogarty MJ, Davis LA, Dasgupta D, Mantilla CB, Sieck GC. Mitochondrial adaptations to inactivity in diaphragm muscle fibers. J Appl Physiol (1985) 2022; 133:191-204. [PMID: 35678745 PMCID: PMC9291409 DOI: 10.1152/japplphysiol.00090.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Type I and IIa diaphragm muscle (DIAm) fibers comprise slow and fast fatigue-resistant motor units that are recruited to accomplish breathing and thus have a high duty cycle. In contrast, type IIx/IIb fibers comprise more fatigable fast motor units that are infrequently recruited for airway protective and straining behaviors. We hypothesize that mitochondrial structure and function in type I and IIa DIAm fibers adapt in response to inactivity imposed by spinal cord hemisection at C2 (C2SH). At 14 days after C2SH, the effect of inactivity on mitochondrial structure and function was assessed in DIAm fibers. Mitochondria in DIAm fibers were labeled using MitoTracker Green (Thermo Fisher Scientific), imaged in three-dimensions (3-D) by fluorescence confocal microscopy, and images were analyzed for mitochondrial volume density (MVD) and complexity. DIAm homogenate from either side was assessed for PGC1α, Parkin, MFN2, and DRP1 using Western blot. In alternate serial sections of the same DIAm fibers, the maximum velocity of the succinate dehydrogenase reaction (SDHmax) was determined using a quantitative histochemical technique. In all groups and both sides of the DIAm, type I and IIa DIAm fibers exhibited higher MVD, with more filamentous mitochondria and had higher SDHmax normalized to both fiber volume and mitochondrial volume compared with type IIx/IIb Diam fibers. In the inactive right side of the DIAm, mitochondria became fragmented and MVD decreased in all fiber types compared with the intact side and sham controls, consistent with the observed reduction in PGC1α and increased Parkin and DRP1 expression. In the inactive side of the DIAm, the reduction in SDHmax was found only for type I and IIa fibers. These results show that there are intrinsic fiber-type-dependent differences in the structure and function of mitochondria in DIAm fibers. Following C2SH-induced inactivity, mitochondrial structure (MVD and fragmentation) and function (SDHmax) were altered, indicating that inactivity influences all DIAm fiber types, but inactivity disproportionately affected SDHmax in the more intrinsically active type I and IIa fibers.NEW & NOTEWORTHY Two weeks of diaphragm (DIAm) inactivity imposed by C2SH caused reduced mitochondrial volume density, mitochondrial fragmentation, and a concomitant reduction of SDHmax in type I and IIa DIAm fibers on the lesioned side. Type I and IIa DIAm fibers were far more sensitive to inactivation than type IIx/IIb fibers, which exhibited little pathology. Our results indicate that mitochondria in DIAm fibers are plastic in response to varying levels of activity.
Collapse
|
5
|
Fogarty MJ, Brandenburg JE, Zhan WZ, Sieck GC. Diaphragm Muscle Function in a Mouse Model of Early Onset Spasticity. J Appl Physiol (1985) 2022; 133:60-68. [DOI: 10.1152/japplphysiol.00157.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spasticity is a common symptom in many developmental motor disorders, including spastic cerebral palsy (sCP). In sCP, respiratory dysfunction is a major contributor to morbidity and mortality, yet it is unknown how spasticity influences respiratory physiology or diaphragm muscle (DIAm) function. To investigate the influence of spasticity on DIAm function, we assessed in vivo transdiaphragmatic pressure (Pdi - measured using intra-esophageal and intragastric pressure catheters under conditions of eupnea, hypoxia/hypercapnia and occlusion) including maximum Pdi (Pdimax via bilateral phrenic nerve stimulation), ex vivo DIAm specific force and fatigue (using muscle strips stimulated with platinum plate electrodes) and type-specific characteristics of DIAm fiber cross-sections (using immunoreactivity against myosin heavy chain slow and 2A) in spa and wildtype mice. Spa mice show reduced Pdimax, reduced DIAm specific force, altered fatigability and atrophy of type IIx/IIb fibers. These findings suggest marked DIAm dysfunction may underlie the respiratory phenotype of sCP.
Collapse
Affiliation(s)
- Matthew J. Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Joline E. Brandenburg
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Wen-Zhi Zhan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Gary C. Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|