1
|
Zhao L, Sun L, Li X, Lu T, Pan Y, Du P. POTENTIAL CARDIOPROTECTIVE EFFECT OF GENIPIN VIA CYCLOOXIDASE 2 SUPPRESSION AND P53 SIGNAL PATHWAY ATTENUATION IN INDUCED MYOCARDIAL INFARCTION IN RATS. Shock 2022; 58:457-463. [PMID: 36445232 DOI: 10.1097/shk.0000000000002001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
ABSTRACT Background and aims: Genipin, an iridoid derived from geniposide by β-glucosidase hydrolysis, has shown potential benefit in the treatment of heart function insufficiency despite its unclear therapeutic mechanism. This study aimed to investigate the primary cardioprotective mechanism of genipin. We hypothesized that genipin demonstrated the antiapoptosis and anti-inflammation for cardiac protection by inhibiting the cyclooxidase 2 (COX2)-prostaglandin D2 (PGD2) and murine double minute 2 (MDM2)-p53 pathways. Methods: The normal Sprague-Dawley rats were made into myocardial infarction models by conventional methods. Animals were treated with genipin for 5 weeks after myocardial infarction (MI). Morphometric and hemodynamic measurements were performed 5 weeks post-MI. Biological and molecular experiments were performed after the termination. Results: Both morphometry and hemodynamics in systole and diastole were significantly impaired in the model group but restored close to basal level after treatment with genipin. Genipin also restored the post-MI upregulated expressions of cytochrome c, p53, COX2, and PGD2 and downregulated expression of MDM2 to the approximate baseline. Genipin inhibited apoptotic and inflammatory pathways to prevent post-MI structure-function remodeling. Conclusions: This study showed the cardioprotective mechanism of genipin and implied its potential clinical application for the treatment of ischemic heart failure.
Collapse
Affiliation(s)
- Liang Zhao
- College of Life Science and Technology, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Lulu Sun
- College of Life Science and Technology, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Xiafei Li
- College of Medical Engineering, Xinxiang Medical University, Xinxiang, China
| | | | - Yuxue Pan
- College of Life Science and Technology, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Pengchong Du
- College of Life Science and Technology, First Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
2
|
Heusch G. Coronary blood flow in heart failure: cause, consequence and bystander. Basic Res Cardiol 2022; 117:1. [PMID: 35024969 PMCID: PMC8758654 DOI: 10.1007/s00395-022-00909-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/31/2023]
Abstract
Heart failure is a clinical syndrome where cardiac output is not sufficient to sustain adequate perfusion and normal bodily functions, initially during exercise and in more severe forms also at rest. The two most frequent forms are heart failure of ischemic origin and of non-ischemic origin. In heart failure of ischemic origin, reduced coronary blood flow is causal to cardiac contractile dysfunction, and this is true for stunned and hibernating myocardium, coronary microembolization, myocardial infarction and post-infarct remodeling, possibly also for the takotsubo syndrome. The most frequent form of non-ischemic heart failure is dilated cardiomyopathy, caused by genetic mutations, myocarditis, toxic agents or sustained tachyarrhythmias, where alterations in coronary blood flow result from and contribute to cardiac contractile dysfunction. Hypertrophic cardiomyopathy is caused by genetic mutations but can also result from increased pressure and volume overload (hypertension, valve disease). Heart failure with preserved ejection fraction is characterized by pronounced coronary microvascular dysfunction, the causal contribution of which is however not clear. The present review characterizes the alterations of coronary blood flow which are causes or consequences of heart failure in its different manifestations. Apart from any potentially accompanying coronary atherosclerosis, all heart failure entities share common features of impaired coronary blood flow, but to a different extent: enhanced extravascular compression, impaired nitric oxide-mediated, endothelium-dependent vasodilation and enhanced vasoconstriction to mediators of neurohumoral activation. Impaired coronary blood flow contributes to the progression of heart failure and is thus a valid target for established and novel treatment regimens.
Collapse
Affiliation(s)
- Gerd Heusch
- grid.5718.b0000 0001 2187 5445Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
3
|
Sun G, Liu F, Xiu C. High thoracic sympathetic block improves coronary microcirculation disturbance in rats with chronic heart failure. Microvasc Res 2019; 122:94-100. [DOI: 10.1016/j.mvr.2018.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 11/17/2022]
|
4
|
Huo Y, Chen H, Kassab GS. Acute Tachycardia Increases Aortic Distensibility, but Reduces Total Arterial Compliance Up to a Moderate Heart Rate. Front Physiol 2018; 9:1634. [PMID: 30510518 PMCID: PMC6252350 DOI: 10.3389/fphys.2018.01634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 10/29/2018] [Indexed: 12/02/2022] Open
Abstract
Background: The differential effects of rapid cardiac pacing on small and large vessels have not been well-established. The objective of this study was to investigate the effect of pacing-induced acute tachycardia on hemodynamics and arterial stiffness. Methods: The pressure and flow waves in ascending aorta and femoral artery of six domestic swine were recorded simultaneously at baseline and heart rates (HR) of 135 and 155 beats per minutes (bpm) and analyzed by the models of Windkessel and Womersley types. Accordingly, the flow waves were simultaneously measured at carotid and femoral arteries to quantify aortic pulse wave velocity (PWV). The arterial distensibility was identified in small branches of coronary, carotid and femoral arteries with diameters of 300–600 μm by ex vivo experiments. Results: The rapid pacing in HR up to 135 bpm reduced the total arterial compliance, stroke volume, systemic pulse pressure, and central systolic pressure by 36 ± 17, 38 ± 26, 29 ± 16, and 23 ± 12%, respectively, despite no statistical difference of mean aortic pressure, cardiac output, peripheral resistance, and vascular flow patterns. The pacing also resulted in a decrease of distensibility of small muscular arteries, but an increase of aortic distensibility. Pacing from 135 to 155 bpm had negligible effects on systemic and local hemodynamics and arterial stiffness. Conclusions: There is an acute mismatch in the response of aorta and small arteries to pacing from basal HR to 135 bpm, which may have important pathological implications under chronic tachycardia conditions.
Collapse
Affiliation(s)
- Yunlong Huo
- PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, China.,Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Huan Chen
- California Medical Innovations Institute, San Diego, CA, United States
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, CA, United States
| |
Collapse
|
5
|
Wu H, Li L, Niu P, Huang X, Liu J, Zhang F, Shen W, Tan W, Wu Y, Huo Y. The Structure-function remodeling in rabbit hearts of myocardial infarction. Physiol Rep 2018. [PMID: 28637704 PMCID: PMC5492201 DOI: 10.14814/phy2.13311] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Animal models are of importance to investigate basic mechanisms for ischemic heart failure (HF). The objective of the study was to create a rabbit model through multiple coronary artery ligations to investigate the postoperative structure‐function remodeling of the left ventricle (LV) and coronary arterial trees. Here, we hypothesize that the interplay of the degenerated coronary vasculature and increased ventricle wall stress relevant to cardiac fibrosis in vicinity of myocardial infarction (MI) precipitates the incidence and progression of ischemic HF. Echocardiographic measurements showed an approximately monotonic drop of fractional shortening and ejection fraction from 40% and 73% down to 28% and 58% as well as persistent enlargement of LV cavity and slight mitral regurgitation at postoperative 12 weeks. Micro‐CT and histological measurements showed that coronary vascular rarefaction and cardiac fibrosis relevant to inflammation occurred concurrently in vicinity of MI at postoperative 12 weeks albeit there was compensatory vascular growth at postoperative 6 weeks. These findings validate the proposed rabbit model and prove the hypothesis. The post‐MI rabbit model can serve as a reference to test various drugs for treatment of ischemic HF.
Collapse
Affiliation(s)
- Haotian Wu
- School of Basic Medical Sciences, Nanjing University of Traditional Chinese Medicine, Nanjing, China.,Hebei Yiling Pharmaceutical Research Institute, Shijiazhuang, China
| | - Li Li
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Pei Niu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China.,College of Medicine, Hebei University, Baoding, China
| | - Xu Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Jinyi Liu
- College of Medicine, Hebei University, Baoding, China
| | | | - Wenzeng Shen
- College of Medicine, Hebei University, Baoding, China
| | - Wenchang Tan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China.,Shenzhen Graduate School, Peking University, Shenzhen, China.,PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, China
| | - Yiling Wu
- School of Basic Medical Sciences, Nanjing University of Traditional Chinese Medicine, Nanjing, China .,Hebei Yiling Pharmaceutical Research Institute, Shijiazhuang, China.,Key Laboratory, State Administration of Traditional Chinese Medicine (Cardiovascular and cerebrovascular collateral diseases), Shijiazhuang, China.,Hebei Province Key Laboratory of Collateral Diseases, Shijiazhuang, China
| | - Yunlong Huo
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China .,PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, China
| |
Collapse
|
6
|
Wu H, Kassab GS, Tan W, Huo Y. Flow velocity is relatively uniform in the coronary sinusal venous tree: structure-function relation. J Appl Physiol (1985) 2017; 122:60-67. [PMID: 27789767 DOI: 10.1152/japplphysiol.00295.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 10/06/2016] [Accepted: 10/23/2016] [Indexed: 11/22/2022] Open
Abstract
The structure and function of coronary venous vessels are different from those of coronary arteries and are much less understood despite the therapeutic significance of coronary sinus interventions. Here we aimed to perform a hemodynamic analysis in the entire coronary sinusal venous tree, which enhances the understanding of coronary venous circulation. A hemodynamic model was developed in the entire coronary sinusal venous tree reconstructed from casts and histological data of five swine hearts. Various morphometric and hemodynamic parameters were determined in each vessel and analyzed in the diameter-defined Strahler system. The findings demonstrate an area preservation between the branches of the coronary venous system that leads to relatively uniform flow velocity in different orders of the venous tree. Pressure and circumferential and wall shear stresses decreased abruptly from the smallest venules toward vessels of order -5 (80.4 ± 39.1 µm) but showed a more modest change toward the coronary sinus. The results suggest that vessels of order -5 denote a hemodynamic transition from the venular bed to the transmural subnetwork. In contrast with the coronary arterial tree, which obeys the minimum energy hypothesis, the coronary sinusal venous system complies with the area-preserving rule for efficient venous return, i.e., da Vinci's rule. The morphometric and hemodynamic model serves as a physiological reference state to test various therapeutic rationales through the venous route. NEW & NOTEWORTHY A hemodynamic model is developed in the entire coronary sinusal venous tree of the swine heart. A key finding is that the coronary sinusal venous system complies with the area preservation rule for efficient venous return while the coronary arterial tree obeys the minimum energy hypothesis. This model can also serve as a physiological reference state to test various therapeutic rationales through the venous route.
Collapse
Affiliation(s)
- Hao Wu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, People's Republic of China.,State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, People's Republic of China
| | | | - Wenchang Tan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, People's Republic of China; .,State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, People's Republic of China.,Shenzhen Graduate School, Peking University, Shenzhen, People's Republic of China; and
| | - Yunlong Huo
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, People's Republic of China.,State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, People's Republic of China.,College of Medicine, Hebei University, Baoding, People's Republic of China
| |
Collapse
|
7
|
Gong Y, Feng Y, Chen X, Tan W, Huo Y, Kassab GS. Intraspecific scaling laws are preserved in ventricular hypertrophy but not in heart failure. Am J Physiol Heart Circ Physiol 2016; 311:H1108-H1117. [PMID: 27542405 PMCID: PMC6347071 DOI: 10.1152/ajpheart.00084.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/17/2016] [Indexed: 11/22/2022]
Abstract
It is scientifically and clinically important to understand the structure-function scaling of coronary arterial trees in compensatory (e.g., left and right ventricular hypertrophy, LVH and RVH) and decompensatory vascular remodeling (e.g., congestive heart failure, CHF). This study hypothesizes that intraspecific scaling power laws of vascular trees are preserved in hypertrophic hearts but not in CHF swine hearts. To test the hypothesis, we carried out the scaling analysis based on morphometry and hemodynamics of coronary arterial trees in moderate LVH, severe RVH, and CHF compared with age-matched respective control hearts. The scaling exponents of volume-diameter, length-volume, and flow-diameter power laws in control hearts were consistent with the theoretical predictions (i.e., 3, 7/9, and 7/3, respectively), which remained unchanged in LVH and RVH hearts. The scaling exponents were also preserved with an increase of body weight during normal growth of control animals. In contrast, CHF increased the exponents of volume-diameter and flow-diameter scaling laws to 4.25 ± 1.50 and 3.15 ± 1.49, respectively, in the epicardial arterial trees. This study validates the predictive utility of the scaling laws to diagnose vascular structure and function in CHF hearts to identify the borderline between compensatory and decompensatory remodeling.
Collapse
Affiliation(s)
- Yanjun Gong
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yundi Feng
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Xudong Chen
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Wenchang Tan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
- State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, China
- Shenzhen Graduate School, Peking University, Shenzhen, China
- PKU-HKUST Shenzhen-Hongkong Institute, Shenzhen, China; and
| | - Yunlong Huo
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China;
- College of Medicine, Hebei University, Baoding, China
- PKU-HKUST Shenzhen-Hongkong Institute, Shenzhen, China; and
| | | |
Collapse
|
8
|
Chen X, Niu P, Niu X, Shen W, Duan F, Ding L, Wei X, Gong Y, Huo Y, Kassab GS, Tan W, Huo Y. Growth, ageing and scaling laws of coronary arterial trees. J R Soc Interface 2015; 12:20150830. [PMID: 26701881 PMCID: PMC4707856 DOI: 10.1098/rsif.2015.0830] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 11/30/2015] [Indexed: 11/12/2022] Open
Abstract
Despite the well-known design principles of vascular systems, it is unclear whether the vascular arterial tree obeys some scaling constraints during normal growth and ageing in a given species. Based on the micro-computed tomography measurements of coronary arterial trees in mice at different ages (one week to more than eight months), we show a constant exponent of 3/4, but age-dependent scaling coefficients in a length-volume scaling law (Lc=K(length-volume) · Vc³/⁴; Lc is the crown length, Vc is the crown volume, K(length-volume) is the age-dependent scaling coefficient) during normal growth and ageing. The constant 3/4 exponent represents the self-similar fractal-like branching pattern (i.e. basic mechanism to regulate the development of vascular trees within a species), whereas the age-dependent scaling coefficients characterize the structural growth or resorption of vascular trees during normal growth or ageing, respectively. This study enhances the understanding of age-associated changes in vascular structure and function.
Collapse
Affiliation(s)
- Xi Chen
- Department of Mechanics and Engineering Science, Peking University, Beijing, People's Republic of China State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Pei Niu
- College of Medicine, Hebei University, Baoding, People's Republic of China
| | - Xiaolong Niu
- College of Medicine, Hebei University, Baoding, People's Republic of China
| | - Wenzeng Shen
- College of Medicine, Hebei University, Baoding, People's Republic of China
| | - Fei Duan
- College of Medicine, Hebei University, Baoding, People's Republic of China
| | - Liang Ding
- College of Medicine, Hebei University, Baoding, People's Republic of China
| | - Xiliang Wei
- College of Medicine, Hebei University, Baoding, People's Republic of China
| | - Yanjun Gong
- Department of Cardiology, Peking University First Hospital, Beijing, People's Republic of China
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, People's Republic of China
| | - Ghassan S Kassab
- California Medical Innovations Institute, San Diego, CA 92121, USA
| | - Wenchang Tan
- Department of Mechanics and Engineering Science, Peking University, Beijing, People's Republic of China State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, People's Republic of China Shenzhen Graduate School, Peking University, Shenzhen, People's Republic of China
| | - Yunlong Huo
- Department of Mechanics and Engineering Science, Peking University, Beijing, People's Republic of China State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, People's Republic of China
| |
Collapse
|