1
|
Meyerholz DK, Burrough ER, Kirchhof N, Anderson DJ, Helke KL. Swine models in translational research and medicine. Vet Pathol 2024; 61:512-523. [PMID: 38197394 DOI: 10.1177/03009858231222235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Swine are increasingly studied as animal models of human disease. The anatomy, size, longevity, physiology, immune system, and metabolism of swine are more like humans than traditional rodent models. In addition, the size of swine is preferred for surgical placement and testing of medical devices destined for humans. These features make swine useful for biomedical, pharmacological, and toxicological research. With recent advances in gene-editing technologies, genetic modifications can readily and efficiently be made in swine to study genetic disorders. In addition, gene-edited swine tissues are necessary for studies testing and validating xenotransplantation into humans to meet the critical shortfall of viable organs versus need. Underlying all of these biomedical applications, the knowledge of husbandry, background diseases and lesions, and biosecurity needs are important for productive, efficient, and reproducible research when using swine as a human disease model for basic research, preclinical testing, and translational studies.
Collapse
|
2
|
Zhou YH, Gallins PJ, Pace RG, Dang H, Aksit MA, Blue EE, Buckingham KJ, Collaco JM, Faino AV, Gordon WW, Hetrick KN, Ling H, Liu W, Onchiri FM, Pagel K, Pugh EW, Raraigh KS, Rosenfeld M, Sun Q, Wen J, Li Y, Corvol H, Strug LJ, Bamshad MJ, Blackman SM, Cutting GR, Gibson RL, O’Neal WK, Wright FA, Knowles MR. Genetic Modifiers of Cystic Fibrosis Lung Disease Severity: Whole-Genome Analysis of 7,840 Patients. Am J Respir Crit Care Med 2023; 207:1324-1333. [PMID: 36921087 PMCID: PMC10595435 DOI: 10.1164/rccm.202209-1653oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/27/2023] [Indexed: 03/17/2023] Open
Abstract
Rationale: Lung disease is the major cause of morbidity and mortality in persons with cystic fibrosis (pwCF). Variability in CF lung disease has substantial non-CFTR (CF transmembrane conductance regulator) genetic influence. Identification of genetic modifiers has prognostic and therapeutic importance. Objectives: Identify genetic modifier loci and genes/pathways associated with pulmonary disease severity. Methods: Whole-genome sequencing data on 4,248 unique pwCF with pancreatic insufficiency and lung function measures were combined with imputed genotypes from an additional 3,592 patients with pancreatic insufficiency from the United States, Canada, and France. This report describes association of approximately 15.9 million SNPs using the quantitative Kulich normal residual mortality-adjusted (KNoRMA) lung disease phenotype in 7,840 pwCF using premodulator lung function data. Measurements and Main Results: Testing included common and rare SNPs, transcriptome-wide association, gene-level, and pathway analyses. Pathway analyses identified novel associations with genes that have key roles in organ development, and we hypothesize that these genes may relate to dysanapsis and/or variability in lung repair. Results confirmed and extended previous genome-wide association study findings. These whole-genome sequencing data provide finely mapped genetic information to support mechanistic studies. No novel primary associations with common single variants or rare variants were found. Multilocus effects at chr5p13 (SLC9A3/CEP72) and chr11p13 (EHF/APIP) were identified. Variant effect size estimates at associated loci were consistently ordered across the cohorts, indicating possible age or birth cohort effects. Conclusions: This premodulator genomic, transcriptomic, and pathway association study of 7,840 pwCF will facilitate mechanistic and postmodulator genetic studies and the development of novel therapeutics for CF lung disease.
Collapse
Affiliation(s)
- Yi-Hui Zhou
- Bioinformatics Research Center
- Department of Biological Sciences, and
| | | | - Rhonda G. Pace
- Marsico Lung Institute/UNC CF Research Center, School of Medicine
| | - Hong Dang
- Marsico Lung Institute/UNC CF Research Center, School of Medicine
| | | | - Elizabeth E. Blue
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
- Division of Medical Genetics, Department of Medicine
| | | | | | - Anna V. Faino
- Children’s Core for Biostatistics, Epidemiology and Analytics in Research and
| | | | - Kurt N. Hetrick
- Department of Genetic Medicine, Center for Inherited Disease Research, and
| | - Hua Ling
- Department of Genetic Medicine, Center for Inherited Disease Research, and
| | | | | | - Kymberleigh Pagel
- The Institute for Computational Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth W. Pugh
- Department of Genetic Medicine, Center for Inherited Disease Research, and
| | | | - Margaret Rosenfeld
- Department of Pediatrics, and
- Center for Clinical and Translational Research, Seattle Children’s Research Institute, Seattle, Washington
| | | | | | - Yun Li
- Department of Biostatistics
- Department of Genetics, and
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Harriet Corvol
- Pediatric Pulmonary Department, Assistance Publique-Hôpitaux de Paris, Hôpital Trousseau, Paris, France
- Centre de Recherche Saint Antoine, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Lisa J. Strug
- Division of Biostatistics, Dalla Lana School of Public Health
- Department of Statistical Sciences, and
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada; and
- Program in Genetics and Genome Biology and
- The Center for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael J. Bamshad
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
- Division of Genetic Medicine, Department of Pediatrics
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Scott M. Blackman
- McKusick-Nathans Department of Genetic Medicine
- Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Ronald L. Gibson
- Department of Pediatrics, and
- Center for Clinical and Translational Research, Seattle Children’s Research Institute, Seattle, Washington
| | - Wanda K. O’Neal
- Marsico Lung Institute/UNC CF Research Center, School of Medicine
| | - Fred A. Wright
- Bioinformatics Research Center
- Department of Biological Sciences, and
- Department of Statistics, North Carolina State University, Raleigh, North Carolina
| | | |
Collapse
|
3
|
Januska MN, Walsh MJ. Single-Cell RNA Sequencing Reveals New Basic and Translational Insights in the Cystic Fibrosis Lung. Am J Respir Cell Mol Biol 2023; 68:131-139. [PMID: 36194688 PMCID: PMC9986558 DOI: 10.1165/rcmb.2022-0038tr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 10/04/2022] [Indexed: 02/03/2023] Open
Abstract
Cystic fibrosis (CF) is a multisystemic, autosomal recessive disorder caused by mutations in the CFTR (cystic fibrosis transmembrane conductance regulator) gene, with the majority of morbidity and mortality extending from lung disease. Single-cell RNA sequencing (scRNA-seq) has been leveraged in the lung and elsewhere in the body to articulate discrete cell populations, describing cell types, states, and lineages as well as their roles in health and disease. In this translational review, we provide an overview of the current applications of scRNA-seq to the study of the normal and CF lungs, allowing the beginning of a new cellular and molecular narrative of CF lung disease, and we highlight some of the future opportunities to further leverage scRNA-seq and complementary single-cell technologies in the study of CF as we bridge from scientific understanding to clinical application.
Collapse
Affiliation(s)
- Megan N. Januska
- Department of Pediatrics
- Department of Genetics and Genomic Sciences, and
| | - Martin J. Walsh
- Department of Pediatrics
- Department of Genetics and Genomic Sciences, and
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and
- Mount Sinai Center for RNA Biology and Medicine, New York, New York
| |
Collapse
|
4
|
Bouzek DC, Abou Alaiwa MH, Adam RJ, Pezzulo AA, Reznikov LR, Cook DP, Aguilar Pescozo MI, Ten Eyck P, Wu C, Gross TJ, Hornick DB, Hoffman EA, Meyerholz DK, Stoltz DA. Early Lung Disease Exhibits Bacterial-Dependent and -Independent Abnormalities in Cystic Fibrosis Pigs. Am J Respir Crit Care Med 2021; 204:692-702. [PMID: 34170795 DOI: 10.1164/rccm.202102-0451oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE While it is clear that cystic fibrosis airway disease begins at a very young age, the early and subsequent steps in disease pathogenesis and the relative contribution of infection, mucus, and inflammation are not well understood. OBJECTIVES As one approach to assessing the early contribution of infection, we tested the hypothesis that early and continuous antibiotics would decrease the airway bacterial burden. We thought that, if it does, it might reveal aspects of the disease that are more or less sensitive to decreasing infection. METHODS Three groups of pigs were studied from birth until ~3 weeks of age: 1) wild-type, 2) cystic fibrosis, and 3) cystic fibrosis pigs treated continuously with broad-spectrum antibiotics from birth until study completion. Disease was assessed with chest computed tomography, histopathology, microbiology, and bronchoalveolar lavage. MEASUREMENTS AND MAIN RESULTS Disease was present by 3 weeks of age in cystic fibrosis pigs. Continuous antibiotics from birth improved chest computed tomography imaging abnormalities and airway mucus accumulation, but not airway inflammation in the cystic fibrosis pig model. However, reducing bacterial infection did not improve two disease features already present at birth in cystic fibrosis pigs, air trapping and submucosal gland duct plugging. In the cystic fibrosis sinuses, antibiotics did not prevent the development of infection, disease, or the number of bacteria but did alter the bacterial species. CONCLUSIONS These findings suggest that cystic fibrosis airway disease begins immediately following birth, and that early and continuous antibiotics impact some, but not all, aspects of CF lung disease development.
Collapse
Affiliation(s)
- Drake C Bouzek
- The University of Iowa Roy J and Lucille A Carver College of Medicine, 12243, Iowa City, Iowa, United States
| | - Mahmoud H Abou Alaiwa
- The University of Iowa Roy J and Lucille A Carver College of Medicine, 12243, Internal Medicine, Iowa City, Iowa, United States
| | - Ryan J Adam
- The University of Iowa Roy J and Lucille A Carver College of Medicine, 12243, Iowa City, Iowa, United States
| | - Alejandro A Pezzulo
- The University of Iowa Roy J and Lucille A Carver College of Medicine, 12243, Internal Medicine, Iowa City, Iowa, United States
| | - Leah R Reznikov
- University of Florida, 3463, Physiological Sciences, Gainesville, Florida, United States
| | - Daniel P Cook
- Vanderbilt University Medical Center, 12328, Department of Medicine, Nashville, Tennessee, United States
| | - Maria I Aguilar Pescozo
- The University of Iowa Roy J and Lucille A Carver College of Medicine, 12243, Iowa City, Iowa, United States
| | - Patrick Ten Eyck
- The University of Iowa, 4083, Institute for Clinical and Translational Science, Iowa City, Iowa, United States
| | - Chaorong Wu
- The University of Iowa Roy J and Lucille A Carver College of Medicine, 12243, Iowa City, Iowa, United States
| | - Thomas J Gross
- The University of Iowa Roy J and Lucille A Carver College of Medicine, 12243, Iowa City, Iowa, United States
| | - Douglas B Hornick
- The University of Iowa Roy J and Lucille A Carver College of Medicine, 12243, Iowa City, Iowa, United States
| | - Eric A Hoffman
- The University of Iowa Roy J and Lucille A Carver College of Medicine, 12243, Radiology, Iowa City, Iowa, United States
| | - David K Meyerholz
- The University of Iowa Roy J and Lucille A Carver College of Medicine, 12243, Pathology, Iowa City, Iowa, United States
| | - David A Stoltz
- The University of Iowa Roy J and Lucille A Carver College of Medicine, 12243, Iowa City, Iowa, United States;
| |
Collapse
|
5
|
Liu X, Mustonen A, Zheng W, Sivasankar MP, Durkes AC. Cigarette Smoke Exposure to Pig Larynx in an Inhalation Chamber. J Voice 2019; 33:846-850. [PMID: 29983221 PMCID: PMC6320720 DOI: 10.1016/j.jvoice.2018.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/16/2018] [Indexed: 11/25/2022]
Abstract
OBJECTIVES This study investigated the effects of cigarette smoke exposure on the pig larynx using an inhalation chamber. Specifically, we compared the effects of cigarette smoke exposure from either 3 cigarettes per day (3cd) or 15 cigarettes per day (15cd) for 20 days. STUDY DESIGN In vivo prospective design. METHODS Female pigs were exposed via an inhalation chamber to cigarette smoke (3R4F research cigarettes) from 3cd (n = 6) or 15cd (n = 6) for 20 days. Outcomes included histopathology of vocal fold and airway tissues; gene expression of interleukins, TNF-α, and VEGF; protein levels of TNF-α and IL-6; and number of coughs recorded in the chamber. RESULTS Pigs exposed to cigarette smoke from 15cd exhibited mild vocal fold edema as compared to the 3cd group on histopathological evaluation. There was also minimal inflammation of nasal and tracheal tissue characterized by presence of more granulocytes in the 15cd group compared to the 3cd group. Cough frequency was significantly greater for the 15cd group compared to the 3cd group. CONCLUSIONS A custom-designed large animal inhalation chamber successfully challenged pigs repeatedly, to varying levels of cigarette smoke. Future studies will combine such low levels of smoke exposure with other common challenges such as acid reflux to understand the multifactorial causation of laryngeal pathologies.
Collapse
Affiliation(s)
- Xinxin Liu
- School of Health Sciences, Purdue University, West Lafayette, Indiana; Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana
| | - Allison Mustonen
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, Indiana
| | - M Preeti Sivasankar
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, Indiana
| | - Abigail C Durkes
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
6
|
Meyerholz DK, Stoltz DA, Gansemer ND, Ernst SE, Cook DP, Strub MD, LeClair EN, Barker CK, Adam RJ, Leidinger MR, Gibson-Corley KN, Karp PH, Welsh MJ, McCray PB. Lack of cystic fibrosis transmembrane conductance regulator disrupts fetal airway development in pigs. J Transl Med 2018; 98:825-838. [PMID: 29467455 PMCID: PMC6019641 DOI: 10.1038/s41374-018-0026-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/16/2017] [Accepted: 01/10/2018] [Indexed: 11/15/2022] Open
Abstract
Loss of cystic fibrosis transmembrane conductance regulator (CFTR) function causes cystic fibrosis (CF), predisposing the lungs to chronic infection and inflammation. In young infants with CF, structural airway defects are increasingly recognized before the onset of significant lung disease, which suggests a developmental origin and a possible role in lung disease pathogenesis. The role(s) of CFTR in lung development is unclear and developmental studies in humans with CF are not feasible. Young CF pigs have structural airway changes and develop spontaneous postnatal lung disease similar to humans; therefore, we studied lung development in the pig model (non-CF and CF). CF trachea and proximal airways had structural lesions detectable as early as pseudoglandular development. At this early developmental stage, budding CF airways had smaller, hypo-distended lumens compared to non-CF airways. Non-CF lung explants exhibited airway lumen distension in response to forskolin/IBMX as well as to fibroblast growth factor (FGF)-10, consistent with CFTR-dependent anion transport/secretion, but this was lacking in CF airways. We studied primary pig airway epithelial cell cultures and found that FGF10 increased cellular proliferation (non-CF and CF) and CFTR expression/function (in non-CF only). In pseudoglandular stage lung tissue, CFTR protein was exclusively localized to the leading edges of budding airways in non-CF (but not CF) lungs. This discreet microanatomic localization of CFTR is consistent with the site, during branching morphogenesis, where airway epithelia are responsive to FGF10 regulation. In summary, our results suggest that the CF proximal airway defects originate during branching morphogenesis and that the lack of CFTR-dependent anion transport/liquid secretion likely contributes to these hypo-distended airways.
Collapse
Affiliation(s)
- David K Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| | - David A Stoltz
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Nick D Gansemer
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sarah E Ernst
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Daniel P Cook
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Matthew D Strub
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Erica N LeClair
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Carrie K Barker
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ryan J Adam
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Mariah R Leidinger
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Katherine N Gibson-Corley
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Philip H Karp
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael J Welsh
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Paul B McCray
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|