1
|
Muanjai P, Mickevicius M, Sniečkus A, Sipavičienė S, Satkunskiene D, Kamandulis S, Jones DA. Low frequency fatigue and changes in muscle fascicle length following eccentric exercise of the knee extensors. Exp Physiol 2020; 105:502-510. [PMID: 31908058 DOI: 10.1113/ep088237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/01/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDING What is the central question of this study? Does low frequency muscle fatigue indicate a failure of excitation-contraction coupling after eccentric exercise, or is it simply due to a change in muscle length? What is the main finding and its importance? The low to high frequency muscle fatigue ratio was relatively insensitive to changes in muscle length, and any changes in length following eccentric exercise were far too small to account for the high degree of low frequency fatigue. The results strengthen the suggestion that the early loss of force following eccentric exercise is due to a deficit of excitation-contraction coupling. ABSTRACT Development of long lasting fatigue (low frequency fatigue; LFF), assessed as the ratio of forces at 20 and 100 Hz stimulation, suggests the early phase of muscle damage caused by eccentric exercise is due to a deficit of excitation-contraction coupling. However, this could be caused by a change of muscle length. Eleven men (21.3 ± 2.0 years) performed 200 maximum eccentric knee extensions (30-110 deg flexion). Force generated by 20 and 100 Hz stimulation and maximum isometric force (MIF) were determined at knee angles 50, 70 and 90 deg before and immediately after the exercise. Vastus lateralis fascicle length (FL) was measured by ultrasound of resting and contracting muscle. Peak MIF (829 ± 119 N) was at 70 deg knee flexion, falling to 486 ± 180 N (P < 0.001) after exercise, but with no change in optimum angle. FLs at rest were unaffected by eccentric exercise, but during contraction they were on average 8.8% (95% CI: 4.1, 13.5%, P = 0.002) longer after exercise. Before exercise, the 20/100 ratio increased with muscle length, from 0.69 ± 0.09 at 50 deg, 0.72 ± 0.05 at 70 deg and 0.80 ± 0.08 at knee angle 90 deg (P < 0.001). After eccentric exercise the 20/100 ratio was reduced to 0.29 ± 0.08 at 50 deg, 0.27 ± 0.04 at 70 deg and 0.34 ± 0.04 at 90 deg (P < 0.001). The 20/100 ratio was relatively insensitive to changes in muscle length and the decrease following eccentric exercise was far greater than might be caused by any changes in muscle length after eccentric exercise. The results show that LFF following eccentric exercise is not due to change in muscle length and strengthen the suggestion that it represents a deficit in excitation-contraction coupling.
Collapse
Affiliation(s)
- Pornpimol Muanjai
- Department of Physical Therapy, Allied Health Sciences Faculty, Burapha University, Chonburi, Thailand
| | - Mantas Mickevicius
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Audrius Sniečkus
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Saulė Sipavičienė
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Danguole Satkunskiene
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Sigitas Kamandulis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - David A Jones
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
2
|
Kamandulis S, Muanjai P, Skurvydas A, Brazaitis M, Sniečkus A, Venckūnas T, Streckis V, Mickeviciene D, Jones DA. The contribution of low-frequency fatigue to the loss of quadriceps contractile function following repeated drop jumps. Exp Physiol 2019; 104:1701-1710. [PMID: 31420978 DOI: 10.1113/ep087914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/15/2019] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Why do some subjects recover slowly following a bout of eccentric exercise and why is recovery faster following a repeated bout? What is the main finding and its importance? The results are consistent with two major causes of the reduction of quadriceps torque, the onset of low-frequency fatigue which recovered relatively fast and a second, delayed form of damage. Differences in the delayed damage process largely accounted for the differences in the rate of torque recovery between subjects after a first bout and it was suppression of the delayed damage which accounted for the faster recovery following a repeated bout of eccentric exercise. ABSTRACT The purpose of this study was to determine the extent to which low-frequency fatigue (LFF) accounts for the loss of quadriceps strength and time course of recovery following a series of drop jumps (DJs). Seventeen female subjects (20.8 ± 1.4 years) undertook 100 DJs, which were repeated 4 weeks later. Maximum isometric torque (MIT) and the ratio of torque generated by 20 and 100 Hz electrical stimulation (20/100), as a measure of LFF, were measured over 7 days following each series of DJs. After the first series the 20/100 ratio fell to a greater extent than MIT (to 35 ± 8.7% and 69 ± 11%, respectively) but recovered over 2-3 days, while MIT showed little recovery over this time. Changes of the 20/100 ratio were similar between subjects with fast or slow MIT recovery. Following the second series of DJs, changes in the 20/100 ratio were similar to those of the first bout and there were no differences between fast and slow recovering subjects. MIT, however, recovered more rapidly than after the first bout; the faster recovery was confined to the subjects who recovered slowly following the first bout. The results are consistent with two major causes of the reduction of quadriceps torque, the onset of low-frequency fatigue which recovered relatively fast and a second, delayed, form of damage. The latter largely accounted for the differences in MIT recovery between subjects after the first bout, while suppression of the delayed damage accounted for the faster recovery following the repeated bout.
Collapse
Affiliation(s)
- Sigitas Kamandulis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Pornpimol Muanjai
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.,Department of Physical Therapy, Allied Health Sciences Faculty, Burapha University, Chonburi, Thailand
| | - Albertas Skurvydas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Marius Brazaitis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Audrius Sniečkus
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Tomas Venckūnas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Vytautas Streckis
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Dalia Mickeviciene
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - David A Jones
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
3
|
Váczi M, Río-Rodríguez D, Négyesi J, Fernández Del Olmo M. Acute neuromechanical modifications and 24-h recovery in quadriceps muscle after maximal stretch-shortening cycle exercise. J Electromyogr Kinesiol 2018; 40:64-71. [PMID: 29631118 DOI: 10.1016/j.jelekin.2018.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/07/2018] [Accepted: 03/19/2018] [Indexed: 02/04/2023] Open
Abstract
In the present study we investigated the acute and the delayed changes in corticospinal excitability and in the neuromechanical properties of the quadriceps muscle after maximal intensity stretch-shortening cycle exercise. Ten young males performed 150 jumps to provoke fatigue and muscle damage. Voluntary force, various electrically evoked force variables, and corticospinal excitability were measured at baseline, immediately (IP) and at 24 h post-exercise. Voluntary force, single twitch force, and low frequency force decreased at IP (p < 0.05) but recovered at 24 h, although mild soreness developed in the quadriceps. High frequency force, voluntary activation, and corticospinal excitability remained unchanged. However, vastus lateralis myoelectric activity increased from baseline to IP (p < 0.05). The jumps selectively induced low frequency peripheral fatigue, and central mechanisms did not mediate the acute loss of voluntary force. Because soreness developed at 24 h post-exercise, all force variables recovered, and vastus lateralis electric activity increased, we argue that a dual process of muscle damage, and early neural adaptation as a compensation mechanism took place after the maximal stretch-shortening cycle exercise.
Collapse
Affiliation(s)
- Márk Váczi
- Institute of Sport Sciences and Physical Education, University of Pécs, Pécs, Hungary.
| | - Dan Río-Rodríguez
- Faculty of Sciences of Sport and Physical Education, University of A Coruña, A Coruña, Spain
| | - János Négyesi
- Department of Medicine and Science in Sports and Exercise, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | |
Collapse
|
4
|
Dargeviciute G, Masiulis N, Kamandulis S, Skurvydas A, Westerblad H. Residual force depression following muscle shortening is exaggerated by prior eccentric drop jump exercise. J Appl Physiol (1985) 2013; 115:1191-5. [DOI: 10.1152/japplphysiol.00686.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied the relation between two common force modifications in skeletal muscle: the prolonged force depression induced by unaccustomed eccentric contractions, and the residual force depression (rFD) observed immediately after active shortening. We hypothesized that rFD originates from distortion within the sarcomeres and the extent of rFD: 1) correlates to the force and work performed during the shortening steps, which depend on sarcomeric integrity; and 2) is increased by sarcomeric disorganization induced by eccentric contractions. Nine healthy untrained men (mean age 26 yr) participated in the study. rFD was studied in electrically stimulated knee extensor muscles. rFD was defined as the reduction in isometric torque after active shortening compared with the torque in a purely isometric contraction. Eccentric contractions were performed as 50 repeated drop jumps with active deceleration to 90° knee angle, immediately followed by a maximal upward jump. rFD was assessed before and 5 min to 72 h after drop jumps. The series of drop jumps caused a prolonged force depression, which was about two times larger at 20-Hz than at 50-Hz stimulation. There was a significant correlation between increasing rFD and increasing mechanical work performed during active shortening both before and after drop jumps. In addition, a given rFD was obtained at a markedly lower mechanical work after drop jumps. In conclusion, the extent of rFD correlates to the mechanical work performed during active shortening. A series of eccentric contractions causes a prolonged reduction of isometric force. In addition, eccentric contractions exaggerate rFD, which further decreases muscle performance during dynamic contractions.
Collapse
Affiliation(s)
- Gintare Dargeviciute
- Centre for Fundamental and Clinical Movement Research, Lithuanian Sports University, Kaunas, Lithuania; and
| | - Nerijus Masiulis
- Centre for Fundamental and Clinical Movement Research, Lithuanian Sports University, Kaunas, Lithuania; and
| | - Sigitas Kamandulis
- Centre for Fundamental and Clinical Movement Research, Lithuanian Sports University, Kaunas, Lithuania; and
| | - Albertas Skurvydas
- Centre for Fundamental and Clinical Movement Research, Lithuanian Sports University, Kaunas, Lithuania; and
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Concentrically trained cyclists are not more susceptible to eccentric exercise-induced muscle damage than are stretch-shortening exercise-trained runners. Eur J Appl Physiol 2012; 113:621-8. [PMID: 22886189 DOI: 10.1007/s00421-012-2470-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/26/2012] [Indexed: 10/27/2022]
Abstract
Here, we test the hypothesis that continuous concentric exercise training renders skeletal muscles more susceptible to damage in response to eccentric exercise. Elite road cyclists (CYC; n = 10, training experience 8.1 ± 2.0 years, age 22.9 ± 3.7 years), long-distance runners (LDR; n = 10, 9.9 ± 2.3 years, 24.4 ± 2.5 years), and healthy untrained (UT) men (n = 10; 22.4 ± 1.7 years) performed 100 submaximal eccentric contractions at constant angular velocity of 60° s(-1). Concentric isokinetic peak torque, isometric maximal voluntary contraction (MVC), and electrically induced knee extension torque were measured at baseline and immediately and 48 h after an eccentric exercise bout. Muscle soreness was assessed and plasma creatine kinase (CK) activity was measured at baseline and 48 h after exercise. Voluntary and electrically stimulated knee extension torque reduction were significantly greater (p < 0.05) in UT than in LDR and CYC. Immediately and 48 h after exercise, MVC decreased by 32 % and 20 % in UT, 20 % and 5 % in LDR, and 25 % and 6 % in CYC. Electrically induced 20 Hz torque decreased at the same times by 61 and 29 % in UT, 40 and 17 % in LDR, and 26 and 14 % in CYC. Muscle soreness and plasma CK activity 48 h after exercise did not differ significantly between athletes and UT subjects. In conclusion, even though elite endurance athletes are more resistant to eccentric exercise-induced muscle damage than are UT people, stretch-shortening exercise-trained LDR have no advantage over concentrically trained CYC.
Collapse
|
6
|
Skurvydas A, Brazaitis M, Venckūnas T, Kamandulis S, Stanislovaitis A, Zuoza A. The effect of sports specialization on musculus quadriceps function after exercise-induced muscle damage. Appl Physiol Nutr Metab 2011; 36:873-80. [PMID: 22050132 DOI: 10.1139/h11-112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The primary aim of the present study was to examine the effect of eccentric exercise-induced (100 submaximal eccentric contractions at an angular velocity of 60° s⁻¹, with 20-s rest intervals) muscle damage on peripheral and central fatigue of quadriceps muscle in well-trained long-distance runners, sprint runners, volleyball players, and untrained subjects. We found that (i) indirect symptoms of exercise-induced muscle damage (prolonged decrease in maximal voluntary contraction, isokinetic concentric torque, and electrically induced (20 Hz) torque) were most evident in untrained subjects, while there were no significant differences in changes of muscle soreness and plasma creatine kinase 48 h after eccentric exercise between athletes and untrained subjects; (ii) low-frequency fatigue was greater in untrained subjects and volleyball players than in sprint runners and long-distance runners; (iii) in all subjects, electrically induced (100 Hz) torque decreased significantly by about 20%, while central activation ratio decreased significantly by about 8% in untrained subjects and sprint runners, and by about 3%-5% in long-distance runners and volleyball players. Thus, trained subjects showed greater resistance to exercise-induced muscle damage for most markers, and long-distance runners had no advantage over sprint runners or volleyball players.
Collapse
|
7
|
Skurvydas A, Brazaitis M, Venckūnas T, Kamandulis S. Predictive value of strength loss as an indicator of muscle damage across multiple drop jumps. Appl Physiol Nutr Metab 2011; 36:353-60. [PMID: 21574783 DOI: 10.1139/h11-023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to compare the time-course of indirect symptoms of exercise-induced muscle damage after 50 and 100 drop jumps. A high-force, low intensity exercise protocol was used to avoid discrepancies regarding metabolic fatigue immediately after exercise. Healthy untrained men performed 50 ("50 group", n = 13) or 100 ("100 group", n = 13) intermittent (30-s interval between each jump) drop jumps, respectively, from the height of 0.5 m with a counter-movement to a 90° knee flexion angle and immediate maximal rebound. Voluntary and electrically evoked knee extensor strength was assessed using an isokinetic dynamometer immediately before and at 2 min after exercise, as well as 3, 7, and 14 days after exercise. Creatine kinase (CK) activity and muscle soreness within 7 days after exercise were also determined. The results showed that the decrease in voluntary isometric and isokinetic torque as well as 100 Hz stimulation torque at the end of the 50 and 100 drop jumps was very similar, while substantial differences were found in low-frequency fatigue, shift in optimal knee joint angle, muscle soreness, and CK activity. In addition, there was slower muscle strength recovery after the 100 drop jumps. It is concluded that the predictive value of strength loss immediately after exercise as an indicator of muscle damage decreases as the jump number increases. Still, stimuli must be large enough for muscle torque to reach the reduction plateau. Therefore, magnitude of exercise becomes a major factor in accuracy of muscle damage predictions.
Collapse
Affiliation(s)
- Albertas Skurvydas
- Sports and Movement Science Centre, Lithuanian Academy of Physical Education, Kaunas, Lithuania
| | | | | | | |
Collapse
|
8
|
Skurvydas A, Brazaitis M, Kamandulis S. Muscle-damaging exercise affects isokinetic torque more at short muscle length. J Strength Cond Res 2011; 25:1400-6. [PMID: 21273917 DOI: 10.1519/jsc.0b013e3181d685a0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this study was to investigate the differences in the length-dependent changes in quadriceps muscle torque during voluntary isometric and isokinetic contractions performed after severe muscle-damaging exercise. Thirteen physically active men (age = 23.8 ± 3.2 years, body weight = 77.2 ± 4.5 kg) performed stretch-shortening cycle (SSC) exercise comprising 100 drop jumps with 30-second intervals between each jump. Changes in the voluntary and electrically evoked torque in concentric and isometric conditions at different muscle lengths, muscle soreness, and plasma creatine kinase (CK) activity were assessed within 72 hours after SSC exercise. Isokinetic knee extension torque decreased significantly (p < 0.05) at all joint angles after SSC exercise. At 2 minutes and at 72 hours after SSC exercise, the changes in knee torque were significantly smaller at 80° (where 180° = full knee extension) than at 110-130°. At 2 minutes after SSC exercise, the optimal angle for isokinetic knee extension torque shifted by 9.5 ± 8.9° to a longer muscle length (p < 0.05). Electrically induced torque at low-frequency (20-Hz) stimulation decreased significantly more at a knee joint angle of 130° than at 90°. The subjects felt acute muscle pain and CK activity in the blood increased to 1,593.9 ± 536.2 IU·L⁻¹ within 72 hours after SSC exercise (p < 0.05). This study demonstrates that the effect of muscle-damaging exercise on isokinetic torque is greatest for contractions at short muscle lengths. These findings have practical importance because the movements in most physical activities are dynamic in nature, and the decrease in torque at various points in the range of motion during exercise might affect overall performance.
Collapse
Affiliation(s)
- Albertas Skurvydas
- Department of Applied Physiology and Physiotherapy, Lithuanian Academy of Physical Education, Kaunas, Lithuania.
| | | | | |
Collapse
|
9
|
Skurvydas A, Brazaitis M, Kamandulis S, Sipaviciene S. Peripheral and central fatigue after muscle-damaging exercise is muscle length dependent and inversely related. J Electromyogr Kinesiol 2010; 20:655-60. [DOI: 10.1016/j.jelekin.2010.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 02/19/2010] [Accepted: 02/22/2010] [Indexed: 12/01/2022] Open
|
10
|
Kamandulis S, Skurvydas A, Masiulis N, Mamkus G, Westerblad H. The decrease in electrically evoked force production is delayed by a previous bout of stretch-shortening cycle exercise. Acta Physiol (Oxf) 2010; 198:91-8. [PMID: 19769636 DOI: 10.1111/j.1748-1716.2009.02041.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Unaccustomed physical exercise with a large eccentric component is accompanied by muscle damage and impaired contractile function, especially at low stimulation frequencies. A repeated bout of eccentric exercise results in less damage and improved recovery of contractile function. Here we test the hypotheses that (1) a prior stretch-shortening cycle (SSC) exercise protects against impaired muscle function during a subsequent bout of SSC exercise and (2) the protection during exercise is transient and becomes less effective as the exercise progresses. METHODS Healthy untrained men (n = 7) performed SSC exercise consisting of 100 maximal drop jumps at 30 s intervals. The same exercise was repeated 4 weeks later. Peak quadriceps muscle force evoked by electrical stimulation at 15 (P15) and 50 (P50) Hz was measured before exercise, after 10, 25, 50 and 100 jumps as well as 1 and 24 h after exercise. RESULTS P15 and P50 were higher during the initial phase of the repeated bout compared with the first exercise bout, but there was no difference between the bouts at the end of the exercise periods. P15 and P50 were again larger 24 h after the repeated bout. The P15/P50 ratio during exercise was not different between the two bouts, but it was higher after the repeated bout. CONCLUSION A prior bout of SSC exercise temporarily protects against impaired contractile function during a repeated exercise bout. The protection can again be seen after exercise, but the underlying mechanism then seems to be different.
Collapse
Affiliation(s)
- S Kamandulis
- Human Motorics Laboratory, Lithuanian Academy of Physical Education, Sporto 6, LT-44221 Kaunas, Lithuania.
| | | | | | | | | |
Collapse
|
11
|
Baptista RR, Scheeren EM, Macintosh BR, Vaz MA. Low-frequency fatigue at maximal and submaximal muscle contractions. Braz J Med Biol Res 2009; 42:380-5. [PMID: 19330267 DOI: 10.1590/s0100-879x2009000400011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Accepted: 01/19/2009] [Indexed: 11/21/2022] Open
Abstract
Skeletal muscle force production following repetitive contractions is preferentially reduced when muscle is evaluated with low-frequency stimulation. This selective impairment in force generation is called low-frequency fatigue (LFF) and could be dependent on the contraction type. The purpose of this study was to compare LFF after concentric and eccentric maximal and submaximal contractions of knee extensor muscles. Ten healthy male subjects (age: 23.6 +/- 4.2 years; weight: 73.8 +/- 7.7 kg; height: 1.79 +/- 0.05 m) executed maximal voluntary contractions that were measured before a fatigue test (pre-exercise), immediately after (after-exercise) and after 1 h of recovery (after-recovery). The fatigue test consisted of 60 maximal (100%) or submaximal (40%) dynamic concentric or eccentric knee extensions at an angular velocity of 60 degrees /s. The isometric torque produced by low- (20 Hz) and high- (100 Hz) frequency stimulation was also measured at these times and the 20:100 Hz ratio was calculated to assess LFF. One-way ANOVA for repeated measures followed by the Newman-Keuls post hoc test was used to determine significant (P < 0.05) differences. LFF was evident after-recovery in all trials except following submaximal eccentric contractions. LFF was not evident after-exercise, regardless of exercise intensity or contraction type. Our results suggest that low-frequency fatigue was evident after submaximal concentric but not submaximal eccentric contractions and was more pronounced after 1-h of recovery.
Collapse
Affiliation(s)
- R R Baptista
- Escola de Educação Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | | | | |
Collapse
|
12
|
Willems MET, Stauber WT. The effect of number of lengthening contractions on rat isometric force production at different frequencies of nerve stimulation. Acta Physiol (Oxf) 2009; 196:351-6. [PMID: 19053963 DOI: 10.1111/j.1748-1716.2008.01947.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIM To test the effect of 3, 10, 60 and 240 lengthening contractions (LC) on maximal isometric force of rat plantar flexor muscles at different stimulation frequencies. METHODS Using a dynamometer and electrical nerve stimulation, maximally active skeletal muscles were stretched by ankle rotation to produce LC of the plantar flexor muscles in intact female rats. After the lengthening contraction protocols, maximal isometric force was measured at different frequencies of nerve activation to obtain frequency-dependent force deficits (weakness). RESULTS The magnitude of the force deficit, measured 1 h after the protocols at 80 Hz, increased as a function of repetition number (three LC, 33.3 +/- 1.7%; 10 LC, 37.2 +/- 2.3%; 60 LC, 67.6 +/- 1.5%; 240 LC, 77.7 +/- 1.2%). Force deficits were also measured at each stimulation frequency tested (5:120 Hz). Using a ratio of isometric force at 20:100 Hz stimulation, the relative depression of force at low frequency was determined. The relative depression of isometric force at low frequency was most prominent during the early repetitions. CONCLUSION As low-frequency force depression appears to result primarily from excitation-contraction (E-C) coupling failure, the early LC in a series of repeated contractions probably contribute most to damage of the cellular components involved in E-C coupling.
Collapse
Affiliation(s)
- M E T Willems
- Faculty of Sport, Exercise and Health Sciences, University of Chichester, Chichester, UK
| | | |
Collapse
|
13
|
Semmler JG, Tucker KJ, Allen TJ, Proske U. Eccentric exercise increases EMG amplitude and force fluctuations during submaximal contractions of elbow flexor muscles. J Appl Physiol (1985) 2007; 103:979-89. [PMID: 17600154 DOI: 10.1152/japplphysiol.01310.2006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine the effect of eccentric exercise on the ability to exert steady submaximal forces with muscles that cross the elbow joint. Eight subjects performed two tasks requiring isometric contraction of the right elbow flexors: a maximum voluntary contraction (MVC) and a constant-force task at four submaximal target forces (5, 20, 35, 50% MVC) while electromyography (EMG) was recorded from elbow flexor and extensor muscles. These tasks were performed before, after, and 24 h after a period of eccentric (fatigue and muscle damage) or concentric exercise (fatigue only). MVC force declined after eccentric exercise (45% decline) and remained depressed 24 h later (24%), whereas the reduced force after concentric exercise (22%) fully recovered the following day. EMG amplitude during the submaximal contractions increased in all elbow flexor muscles after eccentric exercise, with the greatest change in the biceps brachii at low forces (3–4 times larger at 5 and 20% MVC) and in the brachialis muscle at moderate forces (2 times larger at 35 and 50% MVC). Eccentric exercise resulted in a twofold increase in coactivation of the triceps brachii muscle during all submaximal contractions. Force fluctuations were larger after eccentric exercise, particularly at low forces (3–4 times larger at 5% MVC, 2 times larger at 50% MVC), with a twofold increase in physiological tremor at 8–12 Hz. These data indicate that eccentric exercise results in impaired motor control and altered neural drive to elbow flexor muscles, particularly at low forces, suggesting altered motor unit activation after eccentric exercise.
Collapse
Affiliation(s)
- John G Semmler
- School of Molecular and Biomedical Science, Univ. of Adelaide, Adelaide, South Australia 5005, Australia.
| | | | | | | |
Collapse
|
14
|
Smith ICH, Newham DJ. Fatigue and functional performance of human biceps muscle following concentric or eccentric contractions. J Appl Physiol (1985) 2007; 102:207-13. [PMID: 16990506 DOI: 10.1152/japplphysiol.00571.2006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A long-lasting fatigue was measured in human biceps muscle, following 40 maximal isokinetic concentric or eccentric contractions of the forearm, as the response to single-shock stimuli every minute for 4 h. This protocol allowed new observations on the early time course of long-lasting fatigue. Concentric contractions induced a novel progressive decline to 30.2% (SE 7.8, n = 7) of control at 23 min with complete recovery by 120 min. Eccentric contractions lead initially to a smaller force reduction of similar time course followed by a slower decline to 40.0% (SE 5.1, n = 7) control at 120 min with recovery less than half complete at 4 h. A 50-Hz test stimuli overcame both fatigues, identifying low-frequency fatigue. EMG recordings from the biceps muscle showed moderate (<20%) changes during the fatigue. A visual-tracking task showed no decrement in performance at the time of maximal fatigue of the single-shock response. Because the eccentric contractions have a similar activation, a larger force, but much smaller metabolic usage than concentric contractions, it is concluded that the initial decline is related to the effects of metabolites, whereas the slower phase after eccentric contractions is associated with higher mechanical stress.
Collapse
Affiliation(s)
- I Christopher H Smith
- Division of Applied Biomedical Research, School of Biomedical and Health Sciences, King's College London, Guy's Campus, London Bridge, London SE1 1UL, UK.
| | | |
Collapse
|
15
|
Gregory JE, Morgan DL, Allen TJ, Proske U. The shift in muscle's length-tension relation after exercise attributed to increased series compliance. Eur J Appl Physiol 2006; 99:431-41. [PMID: 17186301 DOI: 10.1007/s00421-006-0363-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2006] [Indexed: 10/23/2022]
Abstract
Eccentric exercise can produce damage to muscle fibres. Here damage indicators are measured in the medial gastrocnemius muscle of the anaesthetised cat after eccentric contractions on the descending limb of the muscle's length-tension relation, compared with eccentric contractions on the ascending limb and concentric contractions on the descending limb. One damage indicator is a shift of the optimum length for peak active tension, in the direction of longer muscle lengths. The shift has been attributed to an increase in muscle compliance. It is a corollary of a current theory for the mechanism of the damage. With the intention of seeking further support for the theory, in these experiments we test the idea that other damage indicators, specifically the fall in twitch:tetanus ratio and in muscle force are due, in part, to such an increase in compliance. This was tested in an undamaged muscle by insertion of a compliant spring (0.19 mm N(-1)) in series with the muscle. This led to a fall in tetanic tension by 17%, a shift in optimum length of 1.7 mm in the direction of longer muscle lengths and a fall in twitch tetanus ratio by 15%. The fall in tension is postulated to be due to development of non-uniform sarcomere lengths within muscle fibres. It is concluded that after a series of eccentric contractions of a muscle, the fall in force is the result of a number of interdependent factors, not all of which are a direct consequence of the damage process.
Collapse
Affiliation(s)
- J E Gregory
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | | | | | | |
Collapse
|
16
|
Skurvydas A, Sipaviciene S, Krutulyte G, Gailiuniene A, Stasiulis A, Mamkus G, Stanislovaitis A. Dynamics of indirect symptoms of skeletal muscle damage after stretch-shortening exercise. J Electromyogr Kinesiol 2006; 16:629-36. [PMID: 16377212 DOI: 10.1016/j.jelekin.2005.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 09/15/2005] [Accepted: 11/07/2005] [Indexed: 11/21/2022] Open
Abstract
Healthy untrained men (age 20.4+/-1.7 years, n=20) volunteered to participate in an experiment in order to establish dynamics of indirect symptoms of skeletal muscle damage (ISMD) (decrease in maximal isometric voluntary contraction torque (MVCT) and torque evoked by electrostimulation at different frequencies and at different quadriceps muscle length, height (H) of drop jump (DJ), muscle soreness and creatine kinase (CK) activity in the blood) after 100 DJs from 0.75 m height performed with maximal intensity with an interval of 20s between the jumps (stretch-shortening exercise, SSE). All ISMDs remained even 72 h after SSE (P<0.01-0.001). The muscle experienced greater decrease (P<0.01) in torque evoked by electrostimulation (at low stimulation frequencies and at short muscle length in particular) after SSE than neuromuscular performance (MVCT and H of DJ) which demonstrated secondary decrease (P<0.01) in neuromuscular performance during the first 48 h after SSE. Within 24-72 h after the SSE the subjects felt an acute muscle pain (5-7 points approximately) and the CK activity in the blood was significantly increased up to 1200 IU/L (P<0.001). A significant correlation between decrease in MVCT and H of DJ 24-48 h after SSE on the one hand and muscle soreness registered within 24-48 h after SSE on the other was observed, whereas correlation between the other indirect symptoms of skeletal muscle damage was not significant.
Collapse
Affiliation(s)
- Albertas Skurvydas
- Laboratory of Human Motorics, Lithuanian Academy of Physical Education, Sporto 6, LT 44221 Kaunas, Lithuania.
| | | | | | | | | | | | | |
Collapse
|
17
|
MacIntosh BR, MacNaughton MB. The length dependence of muscle active force: considerations for parallel elastic properties. J Appl Physiol (1985) 2004; 98:1666-73. [PMID: 15591289 DOI: 10.1152/japplphysiol.01045.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to choose between two popular models of skeletal muscle: one with the parallel elastic component in parallel with both the contractile element and the series elastic component (model A), and the other in which it is in parallel with only the contractile element (model B). Passive and total forces were obtained at a variety of muscle lengths for the medial gastrocnemius muscle in anesthetized rats. Passive force was measured before the contraction (passive A) or was estimated for the fascicle length at which peak total force occurred (passive B). Fascicle length was measured with sonomicrometry. Active force was calculated by subtracting passive (A or B) force from peak total force at each fascicle or muscle length. Optimal length, that fascicle length at which active force is maximized, was 13.1 +/- 1.2 mm when passive A was subtracted and 14.0 +/- 1.1 mm with passive B (P < 0.01). Furthermore, the relationship between double-pulse contraction force and length was broader when calculated with passive B than with passive A. When the muscle was held at a long length, passive force decreased due to stress relaxation. This was accompanied by no change in fascicle length at the peak of the contraction and only a small corresponding decrease in peak total force. There is no explanation for the apparent increase in active force that would be obtained when subtracting passive A from the peak total force. Therefore, to calculate active force, it is appropriate to subtract passive force measured at the fascicle length corresponding to the length at which peak total force occurs, rather than passive force measured at the length at which the contraction begins.
Collapse
Affiliation(s)
- Brian R MacIntosh
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada T2N 1N4.
| | | |
Collapse
|