1
|
Hooijmans MT, Veeger TTJ, Mazzoli V, van Assen HC, de Groot JH, Gottwald LM, Nederveen AJ, Strijkers GJ, Kan HE. Muscle fiber strain rates in the lower leg during ankle dorsi-/plantarflexion exercise. NMR IN BIOMEDICINE 2024; 37:e5064. [PMID: 38062865 DOI: 10.1002/nbm.5064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 02/17/2024]
Abstract
Static quantitative magnetic resonance imaging (MRI) provides readouts of structural changes in diseased muscle, but current approaches lack the ability to fully explain the loss of contractile function. Muscle contractile function can be assessed using various techniques including phase-contrast MRI (PC-MRI), where strain rates are quantified. However, current two-dimensional implementations are limited in capturing the complex motion of contracting muscle in the context of its three-dimensional (3D) fiber architecture. The MR acquisitions (chemical shift-encoded water-fat separation scan, spin echo-echoplanar imaging with diffusion weighting, and two time-resolved 3D PC-MRI) wereperformed at 3 T. PC-MRI acquisitions and performed with and without load at 7.5% of the maximum voluntary dorsiflexion contraction force. Acquisitions (3 T, chemical shift-encoded water-fat separation scan, spin echo-echo planar imaging with diffusion weighting, and two time-resolved 3D PC-MRI) were performed with and without load at 7.5% of the maximum voluntary dorsiflexion contraction force. Strain rates and diffusion tensors were calculated and combined to obtain strain rates along and perpendicular to the muscle fibers in seven lower leg muscles during the dynamic dorsi-/plantarflexion movement cycle. To evaluate strain rates along the proximodistal muscle axis, muscles were divided into five equal segments. t-tests were used to test if cyclic strain rate patterns (amplitude > 0) were present along and perpendicular to the muscle fibers. The effects of proximal-distal location and load were evaluated using repeated measures ANOVAs. Cyclic temporal strain rate patterns along and perpendicular to the fiber were found in all muscles involved in dorsi-/plantarflexion movement (p < 0.0017). Strain rates along and perpendicular to the fiber were heterogeneously distributed over the length of most muscles (p < 0.003). Additional loading reduced strain rates of the extensor digitorum longus and gastrocnemius lateralis muscle (p < 0.001). In conclusion, the lower leg muscles involved in cyclic dorsi-/plantarflexion exercise showed cyclic fiber strain rate patterns with amplitudes that varied between muscles and between the proximodistal segments within the majority of muscles.
Collapse
Affiliation(s)
- Melissa T Hooijmans
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Thom T J Veeger
- C. J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Valentina Mazzoli
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Hans C van Assen
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jurriaan H de Groot
- Department of Rehabilitation Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lukas M Gottwald
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Hermien E Kan
- C. J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Duchenne Center Netherlands, Leiden, The Netherlands
| |
Collapse
|
2
|
Vinti M, Saikia MJ, Donoghue J, Mandigout S, Compagnat M, Kerman KL. Broader Estimates of Gastrocnemius Activity Generated a More Representative Cocontraction Index: A Study in Pediatric Population. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4382-4389. [PMID: 37910411 DOI: 10.1109/tnsre.2023.3329057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The electromyography (EMG) cocontraction index (CCI) given by the antagonistic/agonistic Root Mean Square (RMS) amplitude ratio of the same muscle is a qualified biomarker used for spastic cocontraction quantification and management in cerebral palsy children. However, this normative EMG ratio is likely subject to a potential source of errors with biased estimates when measuring the gastrocnemius plantar flexors activity. Due to the uneven distribution of electrical activity within the muscle volume, cocontraction levels can be misestimated, if EMGs are obtained from the sole traditional bipolar sensor location recommended by SENIAM. This preliminary study, on 10 healthy children (mean age 10 yr), investigated whether surface EMG detected proximally and distally via two pairs of bipolar electrodes, within the medial gastrocnemius (MG), provides a significant difference in CCI estimates during non-dynamic (isometric dorsiflexion) and dynamic (swing phases of gait) conditions. Gait cycles were extracted from Inertial Measurement Unit sensors. Medial gastrocnemius activity was greater distally than proximally during plantar flexion when it acts as an agonist (~24±18%) and it was greater proximally during dorsiflexion (~23±9%) when it is acting as an antagonist. As a direct consequence, CCI estimates from the conventional sensor location were significantly different (~36%) from the CCIs computed by considering broader MG regions. This difference arose in all subjects during isometric efforts and in two of 10 healthy children during the swing phase of gait who presented cocontraction patterns ( [Formula: see text]). EMG bipolar sampling encompassing proximal and distal gastrocnemius muscle regions may reduce bias in CCI computation and provide a more representative and accurate cocontraction index that is especially important for comparisons to the diseased state.
Collapse
|
3
|
Haggie L, Schmid L, Röhrle O, Besier T, McMorland A, Saini H. Linking cortex and contraction-Integrating models along the corticomuscular pathway. Front Physiol 2023; 14:1095260. [PMID: 37234419 PMCID: PMC10206006 DOI: 10.3389/fphys.2023.1095260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Computational models of the neuromusculoskeletal system provide a deterministic approach to investigate input-output relationships in the human motor system. Neuromusculoskeletal models are typically used to estimate muscle activations and forces that are consistent with observed motion under healthy and pathological conditions. However, many movement pathologies originate in the brain, including stroke, cerebral palsy, and Parkinson's disease, while most neuromusculoskeletal models deal exclusively with the peripheral nervous system and do not incorporate models of the motor cortex, cerebellum, or spinal cord. An integrated understanding of motor control is necessary to reveal underlying neural-input and motor-output relationships. To facilitate the development of integrated corticomuscular motor pathway models, we provide an overview of the neuromusculoskeletal modelling landscape with a focus on integrating computational models of the motor cortex, spinal cord circuitry, α-motoneurons and skeletal muscle in regard to their role in generating voluntary muscle contraction. Further, we highlight the challenges and opportunities associated with an integrated corticomuscular pathway model, such as challenges in defining neuron connectivities, modelling standardisation, and opportunities in applying models to study emergent behaviour. Integrated corticomuscular pathway models have applications in brain-machine-interaction, education, and our understanding of neurological disease.
Collapse
Affiliation(s)
- Lysea Haggie
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Laura Schmid
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Oliver Röhrle
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center for Simulation Sciences (SC SimTech), University of Stuttgart, Stuttgart, Germany
| | - Thor Besier
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Angus McMorland
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| | - Harnoor Saini
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Dynamics of Quadriceps Muscles during Isometric Contractions: Velocity-Encoded Phase Contrast MRI Study. Diagnostics (Basel) 2021; 11:diagnostics11122280. [PMID: 34943517 PMCID: PMC8699899 DOI: 10.3390/diagnostics11122280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Objective: To quantify the spatial heterogeneity of displacement during voluntary isometric contraction within and between the different compartments of the quadriceps. Methods: The thigh muscles of seven subjects were imaged on an MRI scanner while performing isometric knee extensions at 40% maximal voluntary contraction. A gated velocity-encoded phase contrast MRI sequence in axial orientations yielded tissue velocity-encoded dynamic images of the four different compartments of the thigh muscles (vastus lateralis (VL), vastus medialis (VM), vastus intermedius (VI), and rectus femoris (RF)) at three longitudinal locations of the proximal–distal length: 17.5% (proximal), 50% (middle), and 77.5% (distal). The displacement, which is the time integration of the measured velocity, was calculated along the three orthogonal axes using a tracking algorithm. Results: The displacement of the muscle tissues was clearly nonuniform within each axial section as well as between the three axial locations. The ensemble average of the magnitude of the total displacement as a synthetic vector of the X, Y, and Z displacements was significantly larger in the VM at the middle location (p < 0.01), and in the VI at the distal location than in the other three muscles. The ensemble average of Z-axis displacement, which was almost aligned with the line of action, was significantly larger in VI than in the other three muscles in all three locations. Displacements of more than 20 mm were observed around the central aponeuroses, such as those between VI and the other surrounding muscles. Conclusions: These results imply that the quadriceps muscles act as one functional unit in normal force generation through the central aponeuroses despite complex behavior in each of the muscles, each of which possesses different physiological characteristics and architectures.
Collapse
|
5
|
Baligand C, Hirschler L, Veeger TTJ, Václavů L, Franklin SL, van Osch MJP, Kan HE. A split-label design for simultaneous measurements of perfusion in distant slices by pulsed arterial spin labeling. Magn Reson Med 2021; 86:2441-2453. [PMID: 34105189 PMCID: PMC8596809 DOI: 10.1002/mrm.28879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/16/2022]
Abstract
Purpose Multislice arterial spin labeling (ASL) MRI acquisitions are currently challenging in skeletal muscle because of long transit times, translating into low‐perfusion SNR in distal slices when large spatial coverage is required. However, fiber type and oxidative capacity vary along the length of healthy muscles, calling for multislice acquisitions in clinical studies. We propose a new variant of flow alternating inversion recovery (FAIR) that generates sufficient ASL signal to monitor exercise‐induced perfusion changes in muscle in two distant slices. Methods Label around and between two 7‐cm distant slices was created by applying the presaturation/postsaturation and selective inversion modules selectively to each slice (split‐label multislice FAIR). Images were acquired using simultaneous multislice EPI. We validated our approach in the brain to take advantage of the high resting‐state perfusion, and applied it in the lower leg muscle during and after exercise, interleaved with a single‐slice FAIR as a reference. Results We show that standard multislice FAIR leads to an underestimation of perfusion, while the proposed split‐label multislice approach shows good agreement with separate single‐slice FAIR acquisitions in brain, as well as in muscle following exercise. Conclusion Split‐label FAIR allows measuring muscle perfusion in two distant slices simultaneously without losing sensitivity in the distal slice.
Collapse
Affiliation(s)
- Celine Baligand
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lydiane Hirschler
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Thom T J Veeger
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lena Václavů
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Suzanne L Franklin
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Center for image sciences, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Matthias J P van Osch
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Hermien E Kan
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Duchenne Center, Leiden, the Netherlands
| |
Collapse
|
6
|
Strijkers GJ, Araujo EC, Azzabou N, Bendahan D, Blamire A, Burakiewicz J, Carlier PG, Damon B, Deligianni X, Froeling M, Heerschap A, Hollingsworth KG, Hooijmans MT, Karampinos DC, Loudos G, Madelin G, Marty B, Nagel AM, Nederveen AJ, Nelissen JL, Santini F, Scheidegger O, Schick F, Sinclair C, Sinkus R, de Sousa PL, Straub V, Walter G, Kan HE. Exploration of New Contrasts, Targets, and MR Imaging and Spectroscopy Techniques for Neuromuscular Disease - A Workshop Report of Working Group 3 of the Biomedicine and Molecular Biosciences COST Action BM1304 MYO-MRI. J Neuromuscul Dis 2020; 6:1-30. [PMID: 30714967 PMCID: PMC6398566 DOI: 10.3233/jnd-180333] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuromuscular diseases are characterized by progressive muscle degeneration and muscle weakness resulting in functional disabilities. While each of these diseases is individually rare, they are common as a group, and a large majority lacks effective treatment with fully market approved drugs. Magnetic resonance imaging and spectroscopy techniques (MRI and MRS) are showing increasing promise as an outcome measure in clinical trials for these diseases. In 2013, the European Union funded the COST (co-operation in science and technology) action BM1304 called MYO-MRI (www.myo-mri.eu), with the overall aim to advance novel MRI and MRS techniques for both diagnosis and quantitative monitoring of neuromuscular diseases through sharing of expertise and data, joint development of protocols, opportunities for young researchers and creation of an online atlas of muscle MRI and MRS. In this report, the topics that were discussed in the framework of working group 3, which had the objective to: Explore new contrasts, new targets and new imaging techniques for NMD are described. The report is written by the scientists who attended the meetings and presented their data. An overview is given on the different contrasts that MRI can generate and their application, clinical needs and desired readouts, and emerging methods.
Collapse
Affiliation(s)
| | - Ericky C.A. Araujo
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Noura Azzabou
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | | | - Andrew Blamire
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Jedrek Burakiewicz
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pierre G. Carlier
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Bruce Damon
- Vanderbilt University Medical Center, Nashville, USA
| | - Xeni Deligianni
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | | | - Arend Heerschap
- Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | | | | | | | - Benjamin Marty
- NMR Laboratory, Neuromuscular Investigation Center, Institute of Myology & NMR Laboratory, CEA/DRF/IBFJ/MIRCen, Paris, France
| | - Armin M. Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany & Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Francesco Santini
- Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland & Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Olivier Scheidegger
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Fritz Schick
- University of Tübingen, Section on Experimental Radiology, Tübingen, Germany
| | | | | | | | - Volker Straub
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | | | - Hermien E. Kan
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
7
|
Le Sant G, Nordez A, Andrade R, Hug F, Freitas S, Gross R. Stiffness mapping of lower leg muscles during passive dorsiflexion. J Anat 2017; 230:639-650. [PMID: 28251615 DOI: 10.1111/joa.12589] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2016] [Indexed: 12/19/2022] Open
Abstract
It is challenging to differentiate the mechanical properties of synergist muscles in vivo. Shear wave elastography can be used to quantify the shear modulus (i.e. an index of stiffness) of a specific muscle. This study assessed the passive behavior of lower leg muscles during passive dorsiflexion performed with the knee fully extended (experiment 1, n = 22) or with the knee flexed at 90° (experiment 2, n = 20). The shear modulus measurements were repeated twice during experiment 1 to assess the inter-day reliability. During both experiments, the shear modulus of the following plantar flexors was randomly measured: gastrocnemii medialis (GM) and lateralis (GL), soleus (SOL), peroneus longus (PL), and the deep muscles flexor digitorum longus (FDL), flexor hallucis longus (FHL), tibialis posterior (TP). Two antagonist muscles tibialis anterior (TA), and extensor digitorum longus (EDL) were also recorded. Measurements were performed in different proximo-distal regions for GM, GL and SOL. Inter-day reliability was adequate for all muscles (coefficient of variation < 15%), except for TP. In experiment 1, GM exhibited the highest shear modulus at 80% of the maximal range of motion (128.5 ± 27.3 kPa) and was followed by GL (67.1 ± 24.1 kPa). In experiment 2, SOL exhibited the highest shear modulus (55.1 ± 18.0 kPa). The highest values of shear modulus were found for the distal locations of both the GM (80% of participants in experiment 1) and the SOL (100% of participants in experiment 2). For both experiments, deep muscles and PL exhibited low levels of stiffness during the stretch in young asymptomatic adults, which was unknown until now. These results provide a deeper understanding of passive mechanical properties and the distribution of stiffness between and within the plantar flexor muscles during stretching between them and thus could be relevant to study the effects of aging, disease progression, and rehabilitation on stiffness.
Collapse
Affiliation(s)
- Guillaume Le Sant
- University of Nantes, Laboratory 'Movement, Interactions, Performance' (EA 4334), Faculty of Sport Sciences, Nantes, France.,School of Physiotherapy, IFM3R, Nantes, France
| | - Antoine Nordez
- University of Nantes, Laboratory 'Movement, Interactions, Performance' (EA 4334), Faculty of Sport Sciences, Nantes, France
| | - Ricardo Andrade
- University of Nantes, Laboratory 'Movement, Interactions, Performance' (EA 4334), Faculty of Sport Sciences, Nantes, France.,Faculdade de Motricidade Humana, CIPER, Universidade de Lisboa, Lisbon, Portugal
| | - François Hug
- University of Nantes, Laboratory 'Movement, Interactions, Performance' (EA 4334), Faculty of Sport Sciences, Nantes, France.,School of Health and Rehabilitation Sciences, Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, The University of Queensland, Brisbane, Australia
| | - Sandro Freitas
- Faculdade de Motricidade Humana, CIPER, Universidade de Lisboa, Lisbon, Portugal.,Benfica Lab, Sport Lisboa e Benfica, Lisboa, Portugal
| | - Raphaël Gross
- University of Nantes, Laboratory 'Movement, Interactions, Performance' (EA 4334), Faculty of Sport Sciences, Nantes, France.,Gait Analysis Laboratory, Physical and Rehabilitation Medicine Department, University Hospital of Nantes, Nantes, France
| |
Collapse
|
8
|
Héroux ME, Stubbs PW, Herbert RD. Behavior of human gastrocnemius muscle fascicles during ramped submaximal isometric contractions. Physiol Rep 2016; 4:4/17/e12947. [PMID: 27604399 PMCID: PMC5027354 DOI: 10.14814/phy2.12947] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/09/2016] [Indexed: 12/23/2022] Open
Abstract
Precise estimates of muscle architecture are necessary to understand and model muscle mechanics. The primary aim of this study was to estimate continuous changes in fascicle length and pennation angle in human gastrocnemius muscles during ramped plantar flexor contractions at two ankle angles. The secondary aim was to determine whether these changes differ between proximal and distal fascicles. Fifteen healthy subjects performed ramped contractions (0–25% MVC) as ultrasound images were recorded from the medial (MG, eight sites) and lateral (LG, six sites) gastrocnemius muscle with the ankle at 90° and 120° (larger angles correspond to shorter muscle lengths). In all subjects, fascicles progressively shortened with increasing torque. MG fascicles shortened 5.8 mm (11.1%) at 90° and 4.5 mm (12.1%) at 120°, whereas LG muscle fascicles shortened 5.1 mm (8.8%) at both ankle angles. MG pennation angle increased 1.4° at 90° and 4.9° at 120°, and LG pennation angle decreased 0.3° at 90° and increased 2.6° at 120°. Muscle architecture changes were similar in proximal and distal fascicles at both ankle angles. This is the first study to describe continuous changes in fascicle length and pennation angle in the human gastrocnemius muscle during ramped isometric contractions. Very similar changes occurred in proximal and distal muscle regions. These findings are relevant to studies modeling active muscle mechanics.
Collapse
Affiliation(s)
- Martin E Héroux
- Neuroscience Research Australia, Randwick, New South Wales, Australia School of Medical Sciences, University of New South Wales, Randwick, New South Wales, Australia
| | - Peter W Stubbs
- Neuroscience Research Australia, Randwick, New South Wales, Australia
| | - Robert D Herbert
- Neuroscience Research Australia, Randwick, New South Wales, Australia
| |
Collapse
|
9
|
Kindred JH, Ketelhut NB, Benson JM, Rudroff T. FDG-PET detects nonuniform muscle activity in the lower body during human gait. Muscle Nerve 2016; 54:959-966. [PMID: 27011051 DOI: 10.1002/mus.25116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 03/14/2016] [Accepted: 03/21/2016] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Nonuniform muscle activity has been partially explained by anatomically defined neuromuscular compartments. The purpose of this study was to investigate the uniformity of skeletal muscle activity during walking. METHODS Eight participants walked at a self-selected speed, and muscle activity was quantified using [18 F]-fluorodeoxyglucose positron emission tomography imaging. Seventeen muscles were divided into 10 equal length sections, and within muscle activity was compared. RESULTS Nonuniform activity was detected in 12 of 17 muscles (ƒ > 4.074; P < 0.046), which included both uni- and multi-articular muscles. Greater proximal activity was detected in 6 muscles (P < 0.049), and greater distal versus medial activity was found in the iliopsoas (P < 0.042). CONCLUSIONS Nonuniform muscle activity is likely related to recruitment of motor units located within separate neuromuscular compartments. These findings indicate that neuromuscular compartments are recruited selectively to allow for efficient energy transfer, and these patterns may be task-dependent. Muscle Nerve 54: 959-966, 2016.
Collapse
Affiliation(s)
- John H Kindred
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - Nathaniel B Ketelhut
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - John-Michael Benson
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA
| | - Thorsten Rudroff
- Department of Health and Exercise Science, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|