1
|
Chen RY, Lee KZ. Therapeutic Efficacy of Hemodynamic Management Using Norepinephrine on Cardiorespiratory Function Following Cervical Spinal Cord Contusion in Rats. J Neurotrauma 2025; 42:197-211. [PMID: 39661956 DOI: 10.1089/neu.2024.0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Cervical spinal cord injury usually leads to cardiorespiratory dysfunction due to interruptions of the supraspinal pathways innervating the phrenic motoneurons and thoracic sympathetic preganglionic neurons. Although clinical guidelines recommend maintaining the mean arterial pressure within 85-90 mmHg during the first week of injury, there is no pre-clinical evidence from animal models to prove the therapeutic efficacy of hemodynamic management. Accordingly, the present study was designed to investigate the therapeutic efficacy of hemodynamic management in rats with cervical spinal cord contusion. Adult male rats underwent cervical spinal cord contusion and the implantation of osmotic pumps filled with saline or norepinephrine (NE) (125 μg/(kg·h) for 1 week). The cardiorespiratory function of unanesthetized rats was examined using a non-invasive blood pressure analyzer and double-chamber plethysmography. Cervical spinal cord contusion caused a long-term reduction in the mean arterial pressure and tidal volume. This hypotensive response was significantly reversed in contused rats receiving NE (1 day: 88 ± 19 mmHg; 2 weeks: 96 ± 13 mmHg) compared with contused rats receiving saline (1 day: 72 ± 15 mmHg; 2 weeks: 82 ± 10 mmHg). NE also significantly improved the tidal volume 1 day post-injury (contused + NE: 0.7 ± 0.2 mL; contused + saline: 0.5 ± 0.1 mL). Immunofluorescence staining results revealed that injury-induced reductions of noradrenergic and glutamatergic fibers within the thoracic spinal cord were significantly improved by NE. These results provided the evidence demonstrating that hemodynamic management using NE significantly improves cardiorespiratory function by alleviating neural pathway damage after cervical spinal cord contusion.
Collapse
Affiliation(s)
- Rui-Yi Chen
- Department of Biological Sciences, College of Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Kun-Ze Lee
- Department of Biological Sciences, College of Science, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Lee KZ. Neuropathology of distinct diaphragm areas following mid-cervical spinal cord contusion in the rat. Spine J 2022; 22:1726-1741. [PMID: 35680014 DOI: 10.1016/j.spinee.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND The diaphragm is innervated by phrenic motoneurons distributed from the third to fifth cervical spinal cord. The rostral to caudal phrenic motoneuron pool segmentally innervates the ventral, medial, and dorsal diaphragm. PURPOSE The present study was designed to investigate the physiological and transcriptomic mechanism of neuropathology of distinct diaphragm areas following mid-cervical spinal cord injury. STUDY DESIGN In vivo animal study. METHODS Electromyograms and transcriptome of the ventral, medial, and dorsal diaphragm were examined in rats that received cervical laminectomy or mid-cervical spinal cord contusion in the acute (ie, 1-3 days) or subchronic (ie, ∼14 days) injury stages. RESULTS Mid-cervical spinal cord contusion significantly attenuated the inspiratory bursting amplitude of the dorsal diaphragm but not the ventral or medial diaphragm. Moreover, the discharge onset of the dorsal diaphragm was significantly delayed compared with that of the ventral and medial diaphragm in contused rats. Transcriptomic analysis revealed a robust change in gene expression in the ventral diaphragm compared with that in the dorsal diaphragm. Specifically, enrichment analysis of differentially expressed genes demonstrated that the cell cycle and immune response were significantly upregulated, whereas several metabolic pathways were downregulated, in the ventral diaphragm of acutely contused rats. However, no significant Kyoto Encyclopedia of Genes and Genomes pathway was altered in the dorsal diaphragm. CONCLUSIONS These results suggest that mid-cervical spinal cord injury has different impacts on the physiological and transcriptomic responses of distinct diaphragm areas. CLINICAL SIGNIFICANCE Future therapeutic strategies can consider applying different therapies to distinct diaphragm areas following cervical spinal cord injury. Additionally, confirmation of activities across different diaphragm areas may provide a critical reference for the placement of diaphragmatic pacing electrodes.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
3
|
Allen LL, Nichols NL, Asa ZA, Emery AT, Ciesla MC, Santiago JV, Holland AE, Mitchell GS, Gonzalez-Rothi EJ. Phrenic motor neuron survival below cervical spinal cord hemisection. Exp Neurol 2021; 346:113832. [PMID: 34363808 PMCID: PMC9065093 DOI: 10.1016/j.expneurol.2021.113832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 02/04/2023]
Abstract
Cervical spinal cord injury (cSCI) severs bulbospinal projections to respiratory motor neurons, paralyzing respiratory muscles below the injury. C2 spinal hemisection (C2Hx) is a model of cSCI often used to study spontaneous and induced plasticity and breathing recovery post-injury. One key assumption is that C2Hx dennervates motor neurons below the injury, but does not affect their survival. However, a recent study reported substantial bilateral motor neuron death caudal to C2Hx. Since phrenic motor neuron (PMN) death following C2Hx would have profound implications for therapeutic strategies designed to target spared neural circuits, we tested the hypothesis that C2Hx minimally impacts PMN survival. Using improved retrograde tracing methods, we observed no loss of PMNs at 2- or 8-weeks post-C2Hx. We also observed no injury-related differences in ChAT or NeuN immunolabeling within labelled PMNs. Although we found no evidence of PMN loss following C2Hx, we cannot rule out neuronal loss in other motor pools. These findings address an essential prerequisite for studies that utilize C2Hx as a model to explore strategies for inducing plasticity and/or regeneration within the phrenic motor system, as they provide important insights into the viability of phrenic motor neurons as therapeutic targets after high cervical injury.
Collapse
Affiliation(s)
- Latoya L Allen
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Nicole L Nichols
- Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Zachary A Asa
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | | | - Marissa C Ciesla
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Juliet V Santiago
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ashley E Holland
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
4
|
Randelman M, Zholudeva LV, Vinit S, Lane MA. Respiratory Training and Plasticity After Cervical Spinal Cord Injury. Front Cell Neurosci 2021; 15:700821. [PMID: 34621156 PMCID: PMC8490715 DOI: 10.3389/fncel.2021.700821] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022] Open
Abstract
While spinal cord injuries (SCIs) result in a vast array of functional deficits, many of which are life threatening, the majority of SCIs are anatomically incomplete. Spared neural pathways contribute to functional and anatomical neuroplasticity that can occur spontaneously, or can be harnessed using rehabilitative, electrophysiological, or pharmacological strategies. With a focus on respiratory networks that are affected by cervical level SCI, the present review summarizes how non-invasive respiratory treatments can be used to harness this neuroplastic potential and enhance long-term recovery. Specific attention is given to "respiratory training" strategies currently used clinically (e.g., strength training) and those being developed through pre-clinical and early clinical testing [e.g., intermittent chemical stimulation via altering inhaled oxygen (hypoxia) or carbon dioxide stimulation]. Consideration is also given to the effect of training on non-respiratory (e.g., locomotor) networks. This review highlights advances in this area of pre-clinical and translational research, with insight into future directions for enhancing plasticity and improving functional outcomes after SCI.
Collapse
Affiliation(s)
- Margo Randelman
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.,Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Lyandysha V Zholudeva
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.,Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States.,Gladstone Institutes, San Francisco, CA, United States
| | - Stéphane Vinit
- INSERM, END-ICAP, Université Paris-Saclay, UVSQ, Versailles, France
| | - Michael A Lane
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States.,Marion Murray Spinal Cord Research Center, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
5
|
Lee KZ, Liou LM, Vinit S. Diaphragm Motor-Evoked Potential Induced by Cervical Magnetic Stimulation following Cervical Spinal Cord Contusion in the Rat. J Neurotrauma 2021; 38:2122-2140. [PMID: 33899506 DOI: 10.1089/neu.2021.0080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cervical spinal injury is typically associated with respiratory impairments due to damage to bulbospinal respiratory pathways and phrenic motoneurons. Magnetic stimulation is a non-invasive approach for the evaluation and modulation of the nervous system. The present study was designed to examine whether cervical magnetic stimulation can be applied to evaluate diaphragmatic motor outputs in a pre-clinical rat model of cervical spinal injury. The bilateral diaphragm was monitored in anesthetized rats using electromyogram at the acute, subchronic, and chronic stages following left mid-cervical contusion. The center of a figure-of-eight coil was placed 20 mm caudal to bregma to stimulate the cervical spinal cord. The results demonstrated that a single magnetic stimulation can evoke significant motor-evoked potentials in the diaphragms of uninjured animals when the animal's head was placed 30 mm right or left from the center of the coil. The spontaneous bursting of the diaphragm was significantly attenuated by contusion injury at all-time-points post-injury. However, the threshold of the diaphragmatic motor-evoked potential was reduced, and the amplitude of the diaphragmatic motor-evoked potential was enhanced in response to cervical magnetic stimulation at the acute injury stage. Moreover, the motor-evoked potentials of the bilateral diaphragm in animals with contusions were generally larger when the coil was placed at the left spinal cord at the subchronic and chronic injury stages. These results suggested that cervical magnetic stimulation can be used to examine the excitability of phrenic motor outputs post-injury, and magnetic stimulation applied more laterally may be more effective for triggering diaphragmatic motor-evoked potentials.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Min Liou
- Department of Neurology, Kaohsiung Medical University Hospital, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Stéphane Vinit
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France
| |
Collapse
|
6
|
Gonzalez-Rothi EJ, Lee KZ. Intermittent hypoxia and respiratory recovery in pre-clinical rodent models of incomplete cervical spinal cord injury. Exp Neurol 2021; 342:113751. [PMID: 33974878 DOI: 10.1016/j.expneurol.2021.113751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/24/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Impaired respiratory function is a common and devastating consequence of cervical spinal cord injury. Accordingly, the development of safe and effective treatments to restore breathing function is critical. Acute intermittent hypoxia has emerged as a promising therapeutic strategy to treat respiratory insufficiency in individuals with spinal cord injury. Since the original report by Bach and Mitchell (1996) concerning long-term facilitation of phrenic motor output elicited by brief, episodic exposure to reduced oxygen, a series of studies in animal models have led to the realization that acute intermittent hypoxia may have tremendous potential for inducing neuroplasticity and functional recovery in the injured spinal cord. Advances in our understanding of the neurobiology of acute intermittent hypoxia have prompted us to begin to explore its effects in human clinical studies. Here, we review the basic neurobiology of the control of breathing and the pathophysiology and respiratory consequences of two common experimental models of incomplete cervical spinal cord injury (i.e., high cervical hemisection and mid-cervical contusion). We then discuss the impact of acute intermittent hypoxia on respiratory motor function in these models: work that has laid the foundation for translation of this promising therapeutic strategy to clinical populations. Lastly, we examine the limitations of these animal models and intermittent hypoxia and discuss how future work in animal models may further advance the translation and therapeutic efficacy of this treatment.
Collapse
Affiliation(s)
- Elisa J Gonzalez-Rothi
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
7
|
Baroncini A, Maffulli N, Eschweiler J, Tingart M, Migliorini F. Pharmacological management of secondary spinal cord injury. Expert Opin Pharmacother 2021; 22:1793-1800. [PMID: 33899630 DOI: 10.1080/14656566.2021.1918674] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Secondary spinal cord injury (SCI) sets on immediately after trauma and, despite prompt treatment, may become chronic. SCI is a complex condition and presents numerous challenges to patients and physicians alike, also considering the lack of an approved pharmacological therapy.Areas covered: This review describes the pathophysiological mechanisms leading to secondary SCI to highlight possible targets for pharmacological therapy. Furthermore, an extensive search of the literature on different databases (PubMed, Google scholar, Embase, and Scopus) and of the current clinical trials (clinicaltrials.gov) was performed to investigate the current outlook for the pharmacological management of SCI. Only drugs with performed or ongoing clinical trials were considered.Expert opinion: Pharmacological therapy aims to improve motor and sensory function in patients. Overall, drugs are divided into neuroprotective compounds, which aim to limit the damage induced by the pro-inflammatory and pro-apoptotic milieu of SCI, and neuroregenerative drugs, which induce neuronal and axonal regrowth. While many compounds have been trialed with promising results, none has yet completed a stage III trial and has been approved for the pharmacological management of SCI.
Collapse
Affiliation(s)
- Alice Baroncini
- Department of Orthopaedic Surgery, RWTH Aachen University Clinic, Aachen, Germany
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy.,School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke on Trent, UK.,Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary University of London, Barts and the London School of Medicine and Dentistry, London, UK
| | - Jörg Eschweiler
- Department of Orthopaedic Surgery, RWTH Aachen University Clinic, Aachen, Germany
| | - Markus Tingart
- Department of Orthopaedic Surgery, RWTH Aachen University Clinic, Aachen, Germany
| | - Filippo Migliorini
- Department of Orthopaedic Surgery, RWTH Aachen University Clinic, Aachen, Germany
| |
Collapse
|
8
|
Lee KZ. Impact of cervical spinal cord contusion on the breathing pattern across the sleep-wake cycle in the rat. J Appl Physiol (1985) 2019; 126:111-123. [DOI: 10.1152/japplphysiol.00853.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The present study was designed to investigate breathing patterns across the sleep-wake state following a high cervical spinal injury in rats. The breathing patterns (e.g., respiratory frequency, tidal volume, and minute ventilation), neck electromyogram, and electroencephalography of unanesthetized adult male rats were measured at the acute (i.e., 1 day), subchronic (i.e., 2 wk), and/or chronic (i.e., 6 wk) injured stages after unilateral contusion of the second cervical spinal cord. Cervical spinal cord injury caused a long-term reduction in the tidal volume but did not influence the sleep-wake cycle duration. The minute ventilation during sleep was usually lower than that during the wake period in uninjured animals due to a decrease in respiratory frequency. However, this sleep-induced reduction in respiratory frequency was not observed in contused animals at the acute injured stage. By contrast, the tidal volume was significantly lower during sleep in contused animals but not uninjured animals from the acute to the chronic injured stage. Moreover, the frequency of sigh and postsigh apnea was elevated in acutely contused animals. These results indicated that high cervical spinal contusion is associated with exacerbated sleep-induced attenuation of the tidal volume and higher occurrence of sleep apnea, which may be detrimental to respiratory functional recovery after cervical spinal cord injury. NEW & NOTEWORTHY Cervical spinal injury is usually associated with sleep-disordered breathing. The present study investigated breathing patterns across sleep-wake state following cervical spinal injury in the rat. Unilateral cervical spinal contusion significantly impacted sleep-induced alteration of breathing patterns, showing a blunted frequency response and exacerbated attenuated tidal volume and occurrence of sleep apnea. The result enables us to investigate effects of cervical spinal injury on the pathogenesis of sleep-disordered breathing and evaluate potential therapies to improve respiration.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Taiwan
| |
Collapse
|
9
|
Wen MH, Lee KZ. Diaphragm and Intercostal Muscle Activity after Mid-Cervical Spinal Cord Contusion in the Rat. J Neurotrauma 2018; 35:533-547. [DOI: 10.1089/neu.2017.5128] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Ming-Han Wen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Lee KZ, Hsu SH. Compensatory Function of the Diaphragm after High Cervical Hemisection in the Rat. J Neurotrauma 2017; 34:2634-2644. [DOI: 10.1089/neu.2016.4943] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Hui Hsu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Lee KZ, Gonzalez-Rothi EJ. Contribution of 5-HT 2A receptors on diaphragmatic recovery after chronic cervical spinal cord injury. Respir Physiol Neurobiol 2017; 244:51-55. [PMID: 28711602 DOI: 10.1016/j.resp.2017.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 11/26/2022]
Abstract
Unilateral C2 spinal cord hemisection (C2Hx) interrupts bulbospinal respiratory pathways innervating ipsilateral phrenic motoneurons, resulting in cessation of ipsilateral diaphragm motor output. Plasticity within the spinal neural circuitry controlling the diaphragm can induce partial recovery of phrenic bursting which correlates with the time-dependent return of spinal serotonin (5-HT) immunoreactivity in the vicinity of phrenic motoneurons. The 5-HT2A receptor subtype is present on phrenic motoneurons and its expression is up-regulated after cervical spinal cord injury; however the functional role of these receptors following injury has not been clearly defined. The present study evaluated the functional role of 5-HT2A receptors by testing the hypothesis that pharmacologic blockade would attenuate diaphragm activity in rats with chronic cervical spinal cord injury. Bilateral diaphragm electromyography (EMG) was performed in vagal-intact and spontaneously breathing rats before and after intravenous administration of the 5-HT2A receptor antagonist Ketanserin (1mg/kg). Intravenous ketanserin significantly attenuated ipsilateral diaphragm EMG activity in C2Hx animals but had no impact on diaphragm output in uninjured animals. We conclude that 5-HT2A receptor activation contributes to the recovery of ipsilateral phrenic motor output after chronic cervical spinal cord injury.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan; Center for Neuroscience, National Sun Yat-Sen University, Kaohsiung, Taiwan; Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University and Academia Sinica, Taiwan.
| | | |
Collapse
|
12
|
Lin CC, Lai SR, Shao YH, Chen CL, Lee KZ. The Therapeutic Effectiveness of Delayed Fetal Spinal Cord Tissue Transplantation on Respiratory Function Following Mid-Cervical Spinal Cord Injury. Neurotherapeutics 2017; 14:792-809. [PMID: 28097486 PMCID: PMC5509620 DOI: 10.1007/s13311-016-0509-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Respiratory impairment due to damage of the spinal respiratory motoneurons and interruption of the descending drives from brainstem premotor neurons to spinal respiratory motoneurons is the leading cause of morbidity and mortality following cervical spinal cord injury. The present study was designed to evaluate the therapeutic effectiveness of delayed transplantation of fetal spinal cord (FSC) tissue on respiratory function in rats with mid-cervical spinal cord injury. Embryonic day-14 rat FSC tissue was transplanted into a C4 spinal cord hemilesion cavity in adult male rats at 1 week postinjury. The histological results showed that FSC-derived grafts can survive, fill the lesion cavity, and differentiate into neurons and astrocytes at 8 weeks post-transplantation. Some FSC-derived graft neurons exhibited specific neurochemical markers of neurotransmitter (e.g., serotonin, noradrenalin, or acetylcholine). Moreover, a robust expression of glutamatergic and γ-aminobutyric acid-ergic fibers was observed within FSC-derived grafts. Retrograde tracing results indicated that there was a connection between FSC-derived grafts and host phrenic nucleus. Neurophysiological recording of the phrenic nerve demonstrated that phrenic burst amplitude ipsilateral to the lesion was significantly greater in injured animals that received FSC transplantation than in those that received buffer transplantation under high respiratory drives. These results suggest that delayed FSC transplantation may have the potential to repair the injured spinal cord and promote respiratory functional recovery after mid-cervical spinal cord injury.
Collapse
Affiliation(s)
- Chia-Ching Lin
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Sih-Rong Lai
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Han Shao
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chun-Lin Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Kaohsiung, Taiwan.
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan.
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan.
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
13
|
Daily acute intermittent hypoxia improves breathing function with acute and chronic spinal injury via distinct mechanisms. Respir Physiol Neurobiol 2017; 256:50-57. [PMID: 28549897 DOI: 10.1016/j.resp.2017.05.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/22/2017] [Accepted: 05/10/2017] [Indexed: 01/23/2023]
Abstract
Daily acute intermittent hypoxia (dAIH) elicits respiratory plasticity, enhancing respiratory motor output and restoring breathing capacity after incomplete cervical spinal injuries (cSCI). We hypothesized that dAIH-induced functional recovery of breathing capacity would occur after both acute (2 weeks) and chronic (8 weeks) cSCI, but through distinct cellular mechanisms. Specifically, we hypothesized that dAIH-induced breathing recovery would occur through serotonin-independent mechanisms 2wks post C2 cervical hemisection (C2Hs), versus serotonin-dependent mechanisms 8wks post C2Hs. In two independent studies, dAIH or sham (normoxia) was initiated 1 week (Study 1) or 7 weeks (Study 2) post-C2Hs to test our hypothesis. Rats were pre-treated with intra-peritoneal vehicle or methysergide, a broad-spectrum serotonin receptor antagonist, to determine the role of serotonin signaling in dAIH-induced functional recovery. Our data support the hypothesis that dAIH-induced recovery of breathing capacity transitions from a serotonin-independent mechanism with acute C2Hs to a serotonin-dependent mechanism with chronic C2Hs. An understanding of shifting mechanisms giving rise to dAIH-induced respiratory motor plasticity is vital for clinical translation of dAIH as a therapeutic modality.
Collapse
|
14
|
Vagal Control of Breathing Pattern after Midcervical Contusion in Rats. J Neurotrauma 2017; 34:734-745. [DOI: 10.1089/neu.2016.4645] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
15
|
Abstract
The cervical spine is the most common site of traumatic vertebral column injuries. Respiratory insufficiency constitutes a significant proportion of the morbidity burden and is the most common cause of mortality in these patients. In seeking to enhance our capacity to treat specifically the respiratory dysfunction following spinal cord injury, investigators have studied the "crossed phrenic phenomenon", wherein contraction of a hemidiaphragm paralyzed by a complete hemisection of the ipsilateral cervical spinal cord above the phrenic nucleus can be induced by respiratory stressors and recovers spontaneously over time. Strengthening of latent contralateral projections to the phrenic nucleus and sprouting of new descending axons have been proposed as mechanisms contributing to the observed recovery. We have recently demonstrated recovery of spontaneous crossed phrenic activity occurring over minutes to hours in C1-hemisected unanesthetized decerebrate rats. The specific neurochemical and molecular pathways underlying crossed phrenic activity following injury require further clarification. A thorough understanding of these is necessary in order to develop targeted therapies for respiratory neurorehabilitation following spinal trauma. Animal studies provide preliminary evidence for the utility of neuropharmacological manipulation of serotonergic and adenosinergic pathways, nerve grafts, olfactory ensheathing cells, intraspinal microstimulation and a possible role for dorsal rhizotomy in recovering phrenic activity following spinal cord injury.
Collapse
|
16
|
Lee KZ, Chiang SC, Li YJ. Mild Acute Intermittent Hypoxia Improves Respiratory Function in Unanesthetized Rats With Midcervical Contusion. Neurorehabil Neural Repair 2016; 31:364-375. [DOI: 10.1177/1545968316680494] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background. Mild intermittent hypoxia has been considered a potential approach to induce respiratory neuroplasticity. Objective. The purpose of the present study was to investigate whether mild acute intermittent hypoxia can improve breathing function in a clinically relevant spinal cord injury animal model. Methods. Adult male rats received laminectomy or unilateral contusion at the C3-C4 spinal cord using a MASCIS Impactor (height: 6.25 or 12.5 mm). At 4 weeks postinjury, the breathing patterns of unanesthetized rats were measured by whole body plethysmography before, during and after 10 episodes of 5 minutes of hypoxia (10% O2, 4% CO2, balance N2) with 5 minutes of normoxia intervals. Results. The results demonstrated that cervical contusion resulted in reduction in breathing capacity and number of phrenic motoneurons. Acute hypoxia induced significant increases in frequency and tidal volume in sham surgery and contused animals. In addition, there was a progressive decline in the magnitude of hypoxic ventilatory response during intermittent hypoxia. Further, the tidal volume was significantly enhanced in contused but not sham surgery rats at 15 and 30 minutes postintermittent hypoxia, suggesting intermittent hypoxia can bring about long-term facilitation of tidal volume following cervical spinal contusion. Conclusions. These results suggest that mild acute intermittent hypoxia can elicit differential forms of respiratory plasticity in sham surgery versus contused animals, and may be a promising neurorehabilitation approach to improve respiratory function after cervical spinal cord injury.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Center for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Chi Chiang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Jie Li
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
17
|
Lee KZ. Phrenic motor outputs in response to bronchopulmonary C-fibre activation following chronic cervical spinal cord injury. J Physiol 2016; 594:6009-6024. [PMID: 27106483 DOI: 10.1113/jp272287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/19/2016] [Indexed: 01/20/2023] Open
Abstract
KEY POINTS Activation of bronchopulmonary C-fibres, the main chemosensitive afferents in the lung, can induce pulmonary chemoreflexes to modulate respiratory activity. Following chronic cervical spinal cord injury, bronchopulmonary C-fibre activation-induced inhibition of phrenic activity was exaggerated. Supersensitivity of phrenic motor outputs to the inhibitory effect of bronchopulmonary C-fibre activation is due to a shift of phrenic motoneuron types and slow recovery of phrenic motoneuron discharge in cervical spinal cord-injured animals. These data suggest that activation of bronchopulmonary C-fibres may retard phrenic output recovery following cervical spinal cord injury. The alteration of phenotype and discharge pattern of phrenic motoneuron enables us to understand the impact of spinal cord injury on spinal respiratory activity. ABSTRACT Cervical spinal injury interrupts bulbospinal pathways and results in cessation of phrenic bursting ipsilateral to the lesion. The ipsilateral phrenic activity can partially recover over weeks to months following injury due to the activation of latent crossed spinal pathways and exhibits a greater capacity to increase activity during respiratory challenges than the contralateral phrenic nerve. However, whether the bilateral phrenic nerves demonstrate differential responses to respiratory inhibitory inputs is unclear. Accordingly, the present study examined bilateral phrenic bursting in response to capsaicin-induced pulmonary chemoreflexes, a robust respiratory inhibitory stimulus. Bilateral phrenic nerve activity was recorded in anaesthetized and mechanically ventilated adult rats at 8-9 weeks after C2 hemisection (C2Hx) or C2 laminectomy. Intra-jugular capsaicin (1.5 μg kg-1 ) injection was performed to activate the bronchopulmonary C-fibres to evoke pulmonary chemoreflexes. The present results indicate that capsaicin-induced prolongation of expiratory duration was significantly attenuated in C2Hx animals. However, ipsilateral phrenic activity was robustly reduced after capsaicin treatment compared to uninjured animals. Single phrenic fibre recording experiments demonstrated that C2Hx animals had a higher proportion of late-inspiratory phrenic motoneurons that were relatively sensitive to capsaicin treatment compared to early-inspiratory phrenic motoneurons. Moreover, late-inspiratory phrenic motoneurons in C2Hx animals had a weaker discharge frequency and slower recovery time than uninjured animals. These results suggest bilateral phrenic nerves differentially respond to bronchopulmonary C-fibre activation following unilateral cervical hemisection, and the severe inhibition of phrenic bursting is due to a shift in the discharge pattern of phrenic motoneurons.
Collapse
Affiliation(s)
- Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan. .,Centre for Neuroscience, National Sun Yat-sen University, Kaohsiung, Taiwan. .,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University and Academia Sinica, Taiwan. .,Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan. .,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|