1
|
Markwalter DJ, Primavera KD, Day RW, Lewis RS. Rapid Formation of Methemoglobin via Nitric Oxide Delivery for Potential Use as an MRI Contrast Agent. Ann Biomed Eng 2023; 51:506-516. [PMID: 36112294 PMCID: PMC10422684 DOI: 10.1007/s10439-022-03049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/05/2022] [Indexed: 11/25/2022]
Abstract
Contrast-enhanced magnetic resonance angiography is a vital tool for evaluating vascular pathology. However, concerns about the limitations and safety of gadolinium-based contrast agents have led to an interest in alternative agents. Methemoglobin (metHb) increases the T1-weighted signal intensity of the magnetic resonance image of blood and could provide a safe and effective alternative. MetHb can be produced by the reaction of nitric oxide (NO) gas with oxyhemoglobin followed by natural conversion back to hemoglobin by cytochrome b5 reductase. Since rapid production of metHb via NO has not been studied, the effectiveness of producing metHb via NO delivery to blood was evaluated using a hollow-fiber module. MetHb production began immediately and > 90% conversion was achieved within 10 min. MetHb remained stable for at least 90 min when NO delivery was removed following metHb formation. Comparison of experimental data for metHb formation with model predictions showed that only a fraction of the NO delivered was utilized for metHb production, suggesting an additional fast reaction of NO with other blood constituents. Directly delivering NO to blood for the rapid formation of metHb provides a potential platform for producing metHb as an alternative contrast agent.
Collapse
Affiliation(s)
- Denton J Markwalter
- Department of Mechanical Engineering, Brigham Young University, 350 Engineering Building, Provo, UT, 84602, USA
| | - Kyle D Primavera
- Department of Chemical Engineering, Brigham Young University, 330 Engineering Building, Provo, UT, 84602, USA
| | - Ronald W Day
- Department of Pediatrics, University of Utah and Primary Children's Hospital, Salt Lake City, UT, 84113, USA
| | - Randy S Lewis
- Department of Chemical Engineering, Brigham Young University, 330 Engineering Building, Provo, UT, 84602, USA.
| |
Collapse
|
2
|
Kobayashi J. Nitrite in breast milk: roles in neonatal pathophysiology. Pediatr Res 2021; 90:30-36. [PMID: 33173179 DOI: 10.1038/s41390-020-01247-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/03/2020] [Accepted: 10/13/2020] [Indexed: 11/09/2022]
Abstract
Dietary nitrate has beneficial effects on health maintenance and prevention of lifestyle-related diseases in adulthood by serving as an alternative source of nitric oxide (NO) through the enterosalivary nitrate-nitrite-NO pathway, particularly when endogenous NO generation is lacking due to vascular endothelial dysfunction. However, this pathway is not developed in the early postnatal period due to a lack of oral commensal nitrate-reducing bacteria and less saliva production than in adults. To compensate for the decrease in nitrite during this period, colostrum contains the highest amount of nitrite compared with transitional, mature, and even artificial milk, suggesting that colostrum plays an important role in tentatively replenishing nitrite, in addition to involving a nutritional aspect, until the enterosalivary nitrate-nitrite-NO pathway is established. Increasing evidence demonstrates that breast milk rich in nitrite can be effective in the prevention of neonatal infections and gastrointestinal diseases such as infantile hypertrophic pyloric stenosis and necrotizing enterocolitis, suggesting that breastfeeding is advantageous for newborns at risk, given the physiological role of nitrite in the early postnatal period. IMPACT: The aim of this review is to discuss the physiological roles of nitrite in breast milk and its implications for neonates. Nitrite in breast milk may compensate for the decrease in nitrite during the early neonatal period until the enterosalivary nitrate-nitrite-nitric oxide pathway is established. Breast milk rich in nitrite may be effective in the prevention of neonatal infections and gastrointestinal diseases by providing nitric oxide bioavailability.
Collapse
Affiliation(s)
- Jun Kobayashi
- Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmacy and Pharmaceutical Science, Josai University, Saitama, Japan.
| |
Collapse
|
3
|
Liu T, Mukosera GT, Blood AB. The role of gasotransmitters in neonatal physiology. Nitric Oxide 2019; 95:29-44. [PMID: 31870965 DOI: 10.1016/j.niox.2019.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 11/07/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
The gasotransmitters, nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO), are endogenously-produced volatile molecules that perform signaling functions throughout the body. In biological tissues, these small, lipid-permeable molecules exist in free gaseous form for only seconds or less, and thus they are ideal for paracrine signaling that can be controlled rapidly by changes in their rates of production or consumption. In addition, tissue concentrations of the gasotransmitters are influenced by fluctuations in the level of O2 and reactive oxygen species (ROS). The normal transition from fetus to newborn involves a several-fold increase in tissue O2 tensions and ROS, and requires rapid morphological and functional adaptations to the extrauterine environment. This review summarizes the role of gasotransmitters as it pertains to newborn physiology. Particular focus is given to the vasculature, ventilatory, and gastrointestinal systems, each of which uniquely illustrate the function of gasotransmitters in the birth transition and newborn periods. Moreover, given the relative lack of studies on the role that gasotransmitters play in the newborn, particularly that of H2S and CO, important gaps in knowledge are highlighted throughout the review.
Collapse
Affiliation(s)
- Taiming Liu
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - George T Mukosera
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Arlin B Blood
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA; Lawrence D. Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| |
Collapse
|
4
|
Villar ML, Godwin IR, Hegarty RS, Dobos RC, Smith KA, Clay JW, Nolan JV. The effects of dietary nitrate on plasma glucose and insulin sensitivity in sheep. J Anim Physiol Anim Nutr (Berl) 2019; 103:1657-1662. [PMID: 31418937 DOI: 10.1111/jpn.13174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/08/2019] [Accepted: 07/11/2019] [Indexed: 11/29/2022]
Abstract
Nitrate (NO3 ¯ ) is an effective non-protein nitrogen source for gut microbes and reduces enteric methane (CH4 ) production in ruminants. Nitrate is reduced to ammonia by rumen bacteria with nitrite (NO2 ¯ ) produced as an intermediate. The absorption of NO2 ¯ can cause methaemoglobinaemia in ruminants. Metabolism of NO3 ¯ and NO2 ¯ in blood and animal tissues forms nitric oxide (NO) which has profound physiological effects in ruminants and has been shown to increase glucose uptake and insulin secretion in rodents and humans. We hypothesized that absorption of small quantities of NO2 ¯ resulting from a low-risk dose of dietary NO3 ¯ will increase insulin sensitivity (SI ) and glucose uptake in sheep. We evaluated the effect of feeding sheep with a diet supplemented with 18 g NO3 ¯ /kg DM or urea (Ur) isonitrogenously to NO3 ¯ , on insulin and glucose dynamics. A glucose tolerance test using an intravenous bolus of 1 ml/kg LW of 24% (w/v) glucose was conducted in twenty sheep, with 10 sheep receiving 1.8% supplementary NO3 ¯ and 10 receiving supplementary urea isonitrogenously to NO3 ¯ . The MINMOD model used plasma glucose and insulin concentrations to estimate basal plasma insulin (Ib ) and basal glucose concentration (Gb ), insulin sensitivity (SI ), glucose effectiveness (SG ), acute insulin response (AIRg) and disposition index (DI). Nitrate supplementation had no effect on Ib (p > .05). The decrease in blood glucose occurred at the same rate in both dietary treatments (SG ; p = .60), and there was no effect of NO3 ¯ on either Gb , SI , AIRg or DI. This experiment found that the insulin dynamics assessed using the MINMOD model were not affected by NO3 ¯ administered to fasted sheep at a low dose of 1.8% NO3 ¯ in the diet.
Collapse
Affiliation(s)
- Maria L Villar
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia.,Instituto Nacional de Tecnología Agropecuaria (INTA), S.C. Bariloche, Río Negro, Argentina
| | - Ian R Godwin
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Roger S Hegarty
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Robin C Dobos
- NSW Department of Primary Industries, Livestock Industries Centre, Armidale, NSW, Australia
| | - Katherine A Smith
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Jonathon W Clay
- School of Science and Technology, University of New England, Armidale, NSW, Australia
| | - John V Nolan
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| |
Collapse
|
5
|
Wakita R, Fukayama H. Methemoglobinemia should be suspected when oxygen saturation apparently decreases after prilocaine infiltration during intravenous sedation. Clin Case Rep 2018; 6:1077-1081. [PMID: 29881568 PMCID: PMC5986061 DOI: 10.1002/ccr3.1522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 11/24/2022] Open
Abstract
During intravenous sedation, a decrease in SpO2 is usually the result of respiratory failure. However, we experienced a case with SpO2 decrease that was caused by methemoglobinemia in prilocaine infiltration anesthesia during sedation. This indicates that methemoglobinemia should be considered if low SpO2 is sustained unrelated to sedation level.
Collapse
Affiliation(s)
- Ryo Wakita
- Section of Anesthesiology and Clinical PhysiologyDivision of Oral Health SciencesDepartment of Oral RestitutionGraduate SchoolTokyo Medical and Dental UniversityTokyoJapan
| | - Haruhisa Fukayama
- Section of Anesthesiology and Clinical PhysiologyDivision of Oral Health SciencesDepartment of Oral RestitutionGraduate SchoolTokyo Medical and Dental UniversityTokyoJapan
| |
Collapse
|
6
|
Rehman A, Shehadeh M, Khirfan D, Jones A. Severe acute haemolytic anaemia associated with severe methaemoglobinaemia in a G6PD-deficient man. BMJ Case Rep 2018; 2018:bcr-2017-223369. [PMID: 29592989 DOI: 10.1136/bcr-2017-223369] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Methaemoglobin is a form of haemoglobin in which the ferrous (Fe2+) ion contained in the iron-porphyrin complex of haem is oxidised to its ferric (Fe3+) state. Methaemoglobinaemia, the presence of methaemoglobin in the blood, is most commonly treated with methylene blue. However, methylene blue cannot be used in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency as it is ineffective in such patients and it can worsen G6PD deficiency haemolysis. We report the case of a 30-year-old man who presented with clinical features of G6PD deficiency-associated haemolysis and was found to have severe methaemoglobinaemia (35%). He was administered blood transfusions and intravenous ascorbic acid. His methaemoglobinaemia resolved within 24 hours. This case demonstrates the successful management of a patient with severe methaemoglobinaemia in the setting of G6PD deficiency haemolysis. Emergency physicians should be aware of the possible co-occurrence of severe methaemoglobinaemia in a patient with G6PD deficiency haemolysis.
Collapse
Affiliation(s)
- Abdul Rehman
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.,Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | | | - Diala Khirfan
- Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Akhnuwhkh Jones
- Department of Medicine, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
7
|
Jensen FB, Nielsen K. Methemoglobin reductase activity in intact fish red blood cells. Comp Biochem Physiol A Mol Integr Physiol 2018; 216:14-19. [DOI: 10.1016/j.cbpa.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/25/2023]
|
8
|
Gam LTH, Jensen FB, Damsgaard C, Huong DTT, Phuong NT, Bayley M. Extreme nitrite tolerance in the clown knifefish Chitala ornata is linked to up-regulation of methaemoglobin reductase activity. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 187:9-17. [PMID: 28351760 DOI: 10.1016/j.aquatox.2017.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 06/06/2023]
Abstract
The clown knifefish is a facultative air breather, which is widely farmed in freshwater ponds in Vietnam. Here we report a very high nitrite tolerance (96h LC50 of 7.82mM) in this species and examine the effects of 1mM (LC5) and 2.5mM (LC10) ambient nitrite on haemoglobin (Hb) derivatives, electrolyte levels, acid-base status, and total body water content during 7days of exposure. Furthermore, we tested the hypothesis that erythrocyte methaemoglobin (metHb) reductase activity is upregulated by nitrite exposure. Plasma nitrite levels increased for 2-3days but stayed below environmental levels and fell towards control values during the last half of the exposure period. Plasma nitrate, in contrast, rose continuously, reflecting detoxification of nitrite to nitrate. MetHb generated from the reaction between nitrite and erythrocyte Hb reached 38% at day 2, but then decreased to 17% by the end of experiment. The first order rate constant for metHb reduction by erythrocyte metHb reductase increased from 0.01 in controls to 0.046min-1 after 6days of nitrite exposure, showing up-regulation of this enzyme. While such upregulation has been suggested in nitrite-exposed fish species, this study provides the first experimental evidence.
Collapse
Affiliation(s)
- Le Thi Hong Gam
- College of Aquaculture and Fisheries, Can Tho Uiniversity, Can Tho City, Viet Nam
| | - Frank Bo Jensen
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | | | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho Uiniversity, Can Tho City, Viet Nam
| | - Nguyen Thanh Phuong
- College of Aquaculture and Fisheries, Can Tho Uiniversity, Can Tho City, Viet Nam
| | - Mark Bayley
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
9
|
Grgac K, Li W, Huang A, Qin Q, van Zijl PCM. Transverse water relaxation in whole blood and erythrocytes at 3T, 7T, 9.4T, 11.7T and 16.4T; determination of intracellular hemoglobin and extracellular albumin relaxivities. Magn Reson Imaging 2016; 38:234-249. [PMID: 27993533 DOI: 10.1016/j.mri.2016.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 11/16/2022]
Abstract
Blood is a physiological substance with multiple water compartments, which contain water-binding proteins such as hemoglobin in erythrocytes and albumin in plasma. Knowing the water transverse (R2) relaxation rates from these different blood compartments is a prerequisite for quantifying the blood oxygenation level-dependent (BOLD) effect. Here, we report the Carr-Purcell-Meiboom-Gill (CPMG) based transverse (R2CPMG) relaxation rates of water in bovine blood samples circulated in a perfusion system at physiological temperature in order to mimic blood perfusion in humans. R2CPMG values of blood plasma, lysed packed erythrocytes, lysed plasma/erythrocyte mixtures, and whole blood at 3 T, 7 T, 9.4 T, 11.7 T and 16.4 T were measured as a function of hematocrit or hemoglobin concentration, oxygenation, and CPMG inter-echo spacing (τcp). R2CPMG in lysed cells showed a small τcp dependence, attributed to the water exchange rate between free and hemoglobin-bound water to be much faster than τcp. This was contrary to the tangential dependence in whole blood, where a much slower exchange between cells and blood plasma applies. Whole blood data were fitted as a function of τcp using a general tangential correlation time model applicable for exchange as well as diffusion contributions to R2CPMG, and the intercept R20blood at infinitely short τcp was determined. The R20blood values at different hematocrit and the R2CPMG values of lysed erythrocyte/plasma mixtures at different hemoglobin concentration were used to determine the relaxivity of hemoglobin inside the erythrocyte (r2Hb) and albumin (r2Alb) in plasma. The r2Hb values obtained from lysed erythrocytes and whole blood were comparable at full oxygenation. However, while r2Hb determined from lysed cells showed a linear dependence on oxygenation, this dependence became quadratic in whole blood. This possibly suggests an additional relaxation effect inside intact cells, perhaps due to hemoglobin proximity to the erythrocyte membrane. However, we cannot exclude that this is a consequence of the simple tangential model used to remove relaxation contributions from exchange and diffusion. The extensive data set presented should be useful for future theory development for the transverse relaxation of blood.
Collapse
Affiliation(s)
- Ksenija Grgac
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Wenbo Li
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Alan Huang
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peter C M van Zijl
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
| |
Collapse
|
10
|
Godwin I, Li L, Luijben K, Oelbrandt N, Velazco J, Miller J, Hegarty R. The effects of chronic nitrate supplementation on erythrocytic methaemoglobin reduction in cattle. ANIMAL PRODUCTION SCIENCE 2015. [DOI: 10.1071/an13366] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Calcium nitrate and urea were fed as a supplement on an isonitrogenous basis to Angus steers and their erythrocytic methaemoglobin concentrations and NADH- and NADPH-methaemoglobin reductase levels were measured over a 54-day period. Methaemoglobin concentrations remained elevated despite increases in NADH-methaemoglobin reductase activity. In a second experiment, Brahman cross steers were fed either calcium nitrate or urea supplements for 111 days. Blood cells were then taken, washed and exposed to sodium nitrite to convert all haemoglobin to methaemoglobin. The rates of glycolysis and methaemoglobin reduction were measured following incubation of these cells in buffers containing 1, 5 or 10 mM inorganic phosphate. Glucose consumption and methaemoglobin reduction were increased by inorganic phosphate and were more rapid in those animals supplemented with nitrate. Lactate production of erythrocytes was reduced in those animals fed nitrate. It is concluded that adaptation to chronic nitrite exposure occurs in the erythron, resulting in greater methaemoglobin reduction potential and that there is competition between NADH-methaemoglobin reductase and lactate dehydrogenase for NADH.
Collapse
|
11
|
Jones JA, Hopper AO, Power GG, Blood AB. Dietary intake and bio-activation of nitrite and nitrate in newborn infants. Pediatr Res 2015; 77:173-81. [PMID: 25314582 PMCID: PMC4497514 DOI: 10.1038/pr.2014.168] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/15/2014] [Indexed: 12/13/2022]
Abstract
Nitrate and nitrite are commonly thought of as inert end products of nitric oxide (NO) oxidation, possibly carcinogenic food additives, or well-water contaminants. However, recent studies have shown that nitrate and nitrite play an important role in cardiovascular and gastrointestinal homeostasis through conversion back into NO via a physiological system involving enterosalivary recirculation, bacterial nitrate reductases, and enzyme-catalyzed or acidic reduction of nitrite to NO. The diet is a key source of nitrate in adults; however, infants ingest significantly less nitrate due to low concentrations in breast milk. In the mouth, bacteria convert nitrate to nitrite, which has gastro-protective effects. However, these nitrate-reducing bacteria are relatively inactive in infants. Swallowed nitrite is reduced to NO by acid in the stomach, affecting gastric blood flow, mucus production, and the gastric microbiota. These effects are likely attenuated in the less acidic neonatal stomach. Systemically, nitrite acts as a reservoir of NO bioactivity that can protect against ischemic injury, yet plasma nitrite concentrations are markedly lower in infants than in adults. The physiological importance of the diminished nitrate→nitrite→NO axis in infants and its implications in the etiology and treatment of newborn diseases such as necrotizing enterocolitis and hypoxic/ischemic injury are yet to be determined.
Collapse
Affiliation(s)
- Jesica A. Jones
- Department of Pediatrics, Division of Neonatology, Loma Linda University, Loma Linda, California
| | - Andrew O. Hopper
- Department of Pediatrics, Division of Neonatology, Loma Linda University, Loma Linda, California
| | - Gordon G. Power
- Center for Perinatal Biology, Loma Linda University, Loma Linda, California
| | - Arlin B. Blood
- Department of Pediatrics, Division of Neonatology, Loma Linda University, Loma Linda, California,Center for Perinatal Biology, Loma Linda University, Loma Linda, California
| |
Collapse
|
12
|
Sanyal T, Chakraborty S. Multiscale analysis of simultaneous uptake of two reactive gases in the human lungs and its application to methemoglobin anemia. Comput Chem Eng 2013. [DOI: 10.1016/j.compchemeng.2013.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Affiliation(s)
- Lydia Love
- Animal Emergency and Referral Associates, 1237 Bloomfield Ave, Fairfield, NJ 07004, USA.
| | | |
Collapse
|
14
|
Jones JA, Ninnis JR, Hopper AO, Ibrahim Y, Merritt TA, Wan KW, Power GG, Blood AB. Nitrite and nitrate concentrations and metabolism in breast milk, infant formula, and parenteral nutrition. JPEN J Parenter Enteral Nutr 2013; 38:856-66. [PMID: 23894175 DOI: 10.1177/0148607113496118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Dietary nitrate and nitrite are sources of gastric NO, which modulates blood flow, mucus production, and microbial flora. However, the intake and importance of these anions in infants is largely unknown. Nitrate and nitrite levels were measured in breast milk of mothers of preterm and term infants, infant formulas, and parenteral nutrition. Nitrite metabolism in breast milk was measured after freeze-thawing, at different temperatures, varying oxygen tensions, and after inhibition of potential nitrite-metabolizing enzymes. Nitrite concentrations averaged 0.07 ± 0.01 μM in milk of mothers of preterm infants, less than that of term infants (0.13 ± 0.02 μM) (P < .01). Nitrate concentrations averaged 13.6 ± 3.7 μM and 12.7 ± 4.9 μM, respectively. Nitrite and nitrate concentrations in infant formulas varied from undetectable to many-fold more than breast milk. Concentrations in parenteral nutrition were equivalent to or lower than those of breast milk. Freeze-thawing decreased nitrite concentration ~64%, falling with a half-life of 32 minutes at 37°C. The disappearance of nitrite was oxygen-dependent and prevented by ferricyanide and 3 inhibitors of lactoperoxidase. Nitrite concentrations in breast milk decrease with storage and freeze-thawing, a decline likely mediated by lactoperoxidase. Compared to adults, infants ingest relatively little nitrite and nitrate, which may be of importance in the modulation of blood flow and the bacterial flora of the infant GI tract, especially given the protective effects of swallowed nitrite.
Collapse
Affiliation(s)
| | - Janet R Ninnis
- Department of Pediatrics, Division of Neonatology Posthumous
| | | | | | - T Allen Merritt
- Department of Pediatrics, Division of Neonatology Poznan University of Medical Sciences, Poznan, Poland
| | - Kim-Wah Wan
- Neonatal Intensive Care Pharmacy, Loma Linda University, Loma Linda, California
| | | | - Arlin B Blood
- Department of Pediatrics, Division of Neonatology Center for Perinatal Biology
| |
Collapse
|
15
|
Lu M, Zhao L, Wang Y, You G, Kan X, Zhang Y, Zhang N, Wang B, Guo YJ, Zhou H. Measurement of the methemoglobin concentration using Raman spectroscopy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 42:63-9. [DOI: 10.3109/21691401.2013.775577] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Saleh MC, McConkey S. NADH-dependent cytochrome b5 reductase and NADPH methemoglobin reductase activity in the erythrocytes of Oncorhynchus mykiss. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1807-1813. [PMID: 22733093 DOI: 10.1007/s10695-012-9677-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 06/11/2012] [Indexed: 06/01/2023]
Abstract
Methemoglobin is oxidized hemoglobin that cannot bind to or dissociate from oxygen. In fish, it is most commonly caused by exposure to excess nitrites and can lead to abnormal swimming, buoyancy, or death. The methemoglobin concentration in mammals is determined by the balance of oxidizing agents versus reducing enzymes in erythrocytes. The objective of our studies was to characterize the enzymes that reduce methemoglobin in fish erythrocytes. Whole blood was collected from healthy rainbow trout. Methemoglobin was induced in vitro by NaNO(2) exposure. Methemoglobin reduction in controls was compared to reduction in samples with added NADH, NADPH, or NADPH and methylene blue. Rainbow trout whole blood was also fractionated into cytosol, microsomal, and mitochondria/plasma membranes/nuclei fractions. The fractions were compared for NADH-dependent cytochrome b5 reductase (CB5R) activity and for nitrite induction of methemoglobin. The CB5R activity in rainbow trout erythrocytes was compared to the CB5R activity in equine, feline, and canine erythrocytes. Rainbow trout erythrocytes had significant NADPH methemoglobin reductase activity in the presence of methylene blue (P < 0.001). The CB5R activity was greatest (P < 0.001) in the plasma membrane/mitochondria/nuclei fraction. The CB5R activity in rainbow trout erythrocytes was not significantly different than canine or equine activity but was significantly lower than feline CB5R activity (P < 0.0001). Methemoglobin in rainbow trout erythrocytes can be reduced by CB5R or NADPH-dependent methemoglobin reductase. Unlike mammalian anuclear erythrocytes, which are dependent on soluble CB5R, the nucleated RBCs of rainbow trout use membrane-bound CB5R to reduce methemoglobin.
Collapse
Affiliation(s)
- M C Saleh
- Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, Canada
| | - S McConkey
- Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PEI, Canada.
| |
Collapse
|
17
|
Abstract
Methemoglobinemia is a disease that results from abnormally high levels of methemoglobin (MetHb) in the red blood cell (RBC), which is caused by simultaneous uptake of oxygen (O(2)) and nitric oxide (NO) in the human lungs. MetHb is produced in the RBC by irreversible NO-induced oxidation of the oxygen carrying ferrous ion (Fe(2+)) present in the heme group of the hemoglobin (Hb) molecule to its non-oxygen binding ferric state (Fe(3+)). This paper studies the role of NO in the pathophysiology of methemoglobinemia and presents a multiscale quantitative analysis of the relation between the levels of NO inhaled by the patient and the hypoxemia resulting from the disease. Reactions of NO occurring in the RBC with both Hb and oxyhemoglobin are considered in conjunction with the usual reaction between oxygen and Hb to form oxyhemoglobin. Our dynamic simulations of NO and O(2) uptake in the RBC (micro scale), alveolar capillary (meso scale) and the entire lung (macro scale) under continuous, simultaneous exposure to both gases, reveal that NO uptake competes with the reactive uptake of O(2), thus suppressing the latter and causing hypoxemia. We also find that the mass transfer resistances increase from micro through meso to macro scales, thus decreasing O(2) saturation as one goes up the scales from the cellular to the organ (lung) level. We show that NO levels of 203 ppm or higher while breathing in room air may be considered to be fatal for methemoglobinemia patients since it causes severe hypoxemia by reducing the O(2) saturation below a critical value of 88%, at which Long Term Oxygen Therapy (LTOT) becomes necessary.
Collapse
|
18
|
Grgac K, van Zijl PCM, Qin Q. Hematocrit and oxygenation dependence of blood (1)H(2)O T(1) at 7 Tesla. Magn Reson Med 2012; 70:1153-9. [PMID: 23169066 DOI: 10.1002/mrm.24547] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 08/29/2012] [Accepted: 10/05/2012] [Indexed: 11/11/2022]
Abstract
Knowledge of blood (1)H2O T1 is critical for perfusion-based quantification experiments such as arterial spin labeling and cerebral blood volume-weighted MRI using vascular space occupancy. The dependence of blood (1)H2O T1 on hematocrit fraction (Hct) and oxygen saturation fraction (Y) was determined at 7 T using in vitro bovine blood in a circulating system under physiological conditions. Blood (1)H2O R1 values for different conditions could be readily fitted using a two-compartment (erythrocyte and plasma) model, which are described by a monoexponential longitudinal relaxation rate constant dependence. It was found that T1 = 2171 ± 39 ms for Y = 1 (arterial blood) and 2010 ± 41 ms for Y = 0.6 (venous blood), for a typical Hct of 0.42. The blood (1)H2O T1 values in the normal physiological range (Hct from 0.35 to 0.45, and Y from 0.6 to 1.0) were determined to range from 1900 to 2300 ms. The influence of oxygen partial pressure (pO2) and the effect of plasma osmolality for different anticoagulants were also investigated. It is discussed why blood (1)H2O T1 values measured in vivo for human blood may be about 10-20% larger than found in vitro for bovine blood at the same field strength.
Collapse
Affiliation(s)
- Ksenija Grgac
- The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | | | | |
Collapse
|
19
|
Rozanova S, Cherkashina Y, Repina S, Rozanova K, Nardid O. Protective effect of placenta extracts against nitrite-induced oxidative stress in human erythrocytes. Cell Mol Biol Lett 2012; 17:240-8. [PMID: 22350854 PMCID: PMC6275890 DOI: 10.2478/s11658-012-0007-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 02/08/2012] [Indexed: 11/20/2022] Open
Abstract
Aqueous-saline human placenta extract (HPE) is known to possess antioxidant activity due to the high concentration of bioactive substances. This fact allows its application in clinical practice in order to treat oxidation-induced diseases. Extract antioxidant activity is mainly conditioned by proteins. Freezing of extracts has been shown to lead to their antioxidant activity increasing due to protein conformation changes.Different biological models are widely used in order to evaluate efficacy of novel antioxidants and mechanisms of their action. One such model appears to be erythrocytes under nitrite-induced oxidative stress. Nitrite is known to be able to penetrate erythrocyte membrane and to oxidize hemoglobin. In order to investigate whether HPE is able to decrease nitrite-induced oxidative injuries and to evaluate the protein contribution to this process, spectrophotometric and electron spin resonance (ESR) assays were used.Experimental data have revealed that antioxidant activity of extracts and of some of their fractions correlates with methemoglobin concentration lowering. Preliminary erythrocyte incubation with an extract fraction of 12 kDa allows preservation of the structural-dynamic cytosol state the closest to the control.
Collapse
Affiliation(s)
- Svitlana Rozanova
- Department of Cryobiophysics, Institute for Problems of Cryobiology and Cryomedicine, NAS of Ukraine, Kharkiv, Ukraine.
| | | | | | | | | |
Collapse
|
20
|
Shugalei IV, Tselinskii IV, Kapitonenko ZV. Kinetics and mechanism of hemoglobin oxidation by nitroethane. RUSS J GEN CHEM+ 2012. [DOI: 10.1134/s107036321203022x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Föller M, Mahmud H, Qadri SM, Gu S, Braun M, Bobbala D, Hocher B, Lang F. Endothelin B receptor stimulation inhibits suicidal erythrocyte death. FASEB J 2010; 24:3351-9. [DOI: 10.1096/fj.10-159483] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Hasan Mahmud
- Department of PhysiologyUniversity of Tübingen Germany
| | - Syed M. Qadri
- Department of PhysiologyUniversity of Tübingen Germany
| | - Shuchen Gu
- Department of PhysiologyUniversity of Tübingen Germany
| | - Manuel Braun
- Department of PhysiologyUniversity of Tübingen Germany
| | | | - Berthold Hocher
- Institute of Nutritional ScienceUniversity of Potsdam Potsdam Germany
- Center for Cardiovascular ResearchDepartment of Pharmacology and Toxicology Charité, Campus Mitte Berlin Germany
| | - Florian Lang
- Department of PhysiologyUniversity of Tübingen Germany
| |
Collapse
|
22
|
Abstract
Eryptosis, the suicidal death of erythrocytes, is characterised by cell shrinkage, membrane blebbing and cell membrane phospholipid scrambling with phosphatidylserine exposure at the cell surface. Phosphatidylserine-exposing erythrocytes are recognised by macrophages, which engulf and degrade the affected cells. Reported triggers of eryptosis include osmotic shock, oxidative stress, energy depletion, ceramide, prostaglandin E(2), platelet activating factor, hemolysin, listeriolysin, paclitaxel, chlorpromazine, cyclosporine, methylglyoxal, amyloid peptides, anandamide, Bay-5884, curcumin, valinomycin, aluminium, mercury, lead and copper. Diseases associated with accelerated eryptosis include sepsis, malaria, sickle-cell anemia, beta-thalassemia, glucose-6-phosphate dehydrogenase (G6PD)-deficiency, phosphate depletion, iron deficiency, hemolytic uremic syndrome and Wilsons disease. Eryptosis may be inhibited by erythropoietin, adenosine, catecholamines, nitric oxide (NO) and activation of G-kinase. Most triggers of eryptosis except oxidative stress are effective without activation of caspases. Their signalling involves formation of prostaglandin E(2) with subsequent activation of cation channels and Ca2+ entry and/or release of platelet activating factor (PAF) with subsequent activation of sphingomyelinase and formation of ceramide. Ca2+ and ceramide stimulate scrambling of the cell membrane. Ca2+ further activates Ca2+-sensitive K+ channels leading to cellular KCl loss and cell shrinkage and stimulates the protease calpain resulting in degradation of the cytoskeleton. Eryptosis allows defective erythrocytes to escape hemolysis. On the other hand, excessive eryptosis favours the development of anemia. Thus, a delicate balance between proeryptotic and antieryptotic mechanisms is required to maintain an adequate number of circulating erythrocytes and yet avoid noneryptotic death of injured erythrocytes.
Collapse
Affiliation(s)
- Michael Föller
- Department of Physiology, University of Tübingen, Germany
| | | | | |
Collapse
|
23
|
Blood AB, Tiso M, Verma ST, Lo J, Joshi MS, Azarov I, Longo LD, Gladwin MT, Kim-Shapiro DB, Power GG. Increased nitrite reductase activity of fetal versus adult ovine hemoglobin. Am J Physiol Heart Circ Physiol 2008; 296:H237-46. [PMID: 19028797 DOI: 10.1152/ajpheart.00601.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Growing evidence indicates that nitrite, NO2-, serves as a circulating reservoir of nitric oxide (NO) bioactivity that is activated during physiological and pathological hypoxia. One of the intravascular mechanisms for nitrite conversion to NO is a chemical nitrite reductase activity of deoxyhemoglobin. The rate of NO production from this reaction is increased when hemoglobin is in the R conformation. Because the mammalian fetus exists in a low-oxygen environment compared with the adult and is exposed to episodes of severe ischemia during the normal birthing process, and because fetal hemoglobin assumes the R conformation more readily than adult hemoglobin, we hypothesized that nitrite reduction to NO may be enhanced in the fetal circulation. We found that the reaction was faster for fetal than maternal hemoglobin or blood and that the reactions were fastest at 50-80% oxygen saturation, consistent with an R-state catalysis that is predominant for fetal hemoglobin. Nitrite concentrations were similar in blood taken from chronically instrumented normoxic ewes and their fetuses but were elevated in response to chronic hypoxia. The findings suggest an augmented nitrite reductase activity of fetal hemoglobin and that the production of nitrite may participate in the regulation of vascular NO homeostasis in the fetus.
Collapse
Affiliation(s)
- Arlin B Blood
- Department of Pediatrics, Division of Neonatology, School of Medicine, Loma Linda University, Loma Linda, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
To explore the functional significance of cGMP-dependent protein kinase type I (cGKI) in the regulation of erythrocyte survival, gene-targeted mice lacking cGKI were compared with their control littermates. By the age of 10 weeks, cGKI-deficient mice exhibited pronounced anemia and splenomegaly. Compared with control mice, the cGKI mutants had significantly lower red blood cell count, packed cell volume, and hemoglobin concentration. Anemia was associated with a higher reticulocyte number and an increase of plasma erythropoietin concentration. The spleens of cGKI mutant mice were massively enlarged and contained a higher fraction of Ter119(+) erythroid cells, whereas the relative proportion of leukocyte subpopulations was not changed. The Ter119(+) cGKI-deficient splenocytes showed a marked increase in annexin V binding, pointing to phosphatidylserine (PS) exposure at the outer membrane leaflet, a hallmark of suicidal erythrocyte death or eryptosis. Compared with control erythrocytes, cGKI-deficient erythrocytes exhibited in vitro a higher cytosolic Ca(2+) concentration, a known trigger of eryptosis, and showed increased PS exposure, which was paralleled by a faster clearance in vivo. Together, these results identify a role of cGKI as mediator of erythrocyte survival and extend the emerging concept that cGMP/cGKI signaling has an antiapoptotic/prosurvival function in a number of cell types in vivo.
Collapse
|
25
|
Nicolay JP, Liebig G, Niemoeller OM, Koka S, Ghashghaeinia M, Wieder T, Haendeler J, Busse R, Lang F. Inhibition of suicidal erythrocyte death by nitric oxide. Pflugers Arch 2007; 456:293-305. [PMID: 18058124 DOI: 10.1007/s00424-007-0393-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 11/07/2007] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) is known to counteract apoptosis by S-nitrosylation of protein thiol groups. NO is generated and stored in erythrocytes, which may undergo eryptosis, a suicidal cell death similar to apoptosis of nucleated cells. Eryptosis is triggered by increased cytosolic Ca2+ activity and/or ceramide and characterized by cell shrinkage and phosphatidylserine exposure at the cell surface. The present study explored whether nitric oxide could interfere with the machinery underlying eryptosis. To this end, erythrocyte phosphatidylserine exposure (annexin V-binding) and cell volume (forward scatter) were determined by flow cytometry. The Ca2+ ionophore ionomycin (0.1 microM) increased cytosolic Ca2+ activity, triggered annexin binding, and decreased forward scatter. The annexin binding and decrease of forward scatter but not the increase of cytosolic Ca2+ activity were reversed by the NO-donor nitroprusside (1 microM) and papanonoate (100 microM). Higher concentrations of nitroprusside (0.1 and 1 mM) stimulated eryptosis. Glucose depletion, exposure to C6-ceramide (3 microM), hypertonic (addition of 550 mM sucrose), and isotonic (replacement of Cl- with gluconate) cell shrinkage all triggered annexin V binding, effects all reversed by nitroprusside (1 microM). Dibutyryl-cGMP (1 mM) blunted the ionomycin- but not the ceramide-induced annexin V binding. Ionomycin decreased protein nitrosylation and thioredoxin activity, effects reversed by the NO-donor papanonoate. Clearance of erythrocytes from circulating blood was significantly faster in eNOS knockout mice than in their wild-type littermates. In conclusion, nitric oxide participates in the regulation of erythrocyte survival, an effect partially mimicked by cGMP and paralleled by alterations of protein nitrosylation and thioredoxin activity.
Collapse
Affiliation(s)
- Jan P Nicolay
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|