1
|
Fernandes JFT, Wilson LJ, Dingley AF, Hearn AN, Johnson KO, Hicks KM, Twist C, Hayes LD. Advancing Age Is Not Associated With Greater Exercise-Induced Muscle Damage: A Systematic Review, Meta-Analysis, and Meta-Regression. J Aging Phys Act 2025:1-19. [PMID: 40174882 DOI: 10.1123/japa.2024-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 01/24/2025] [Accepted: 02/26/2025] [Indexed: 04/04/2025]
Abstract
OBJECTIVE The aim of this paper was to undertake a Preferred Reporting Items for Systematic Reviews and Meta-Analysis-accordant meta-analysis comparing exercise-induced muscle damage (EIMD) in older and younger adults. METHODS Google Scholar, PubMed, and SPORTDiscus were searched in June 2023 for the terms "ageing" OR "age" OR "middle-aged" OR "old" OR "older" OR "elderly" OR "masters" OR "veteran" AND "muscle damage" OR "exercise-induced muscle damage" OR "exercise-induced muscle injury" OR "contraction-induced injury" OR "muscle soreness" OR "delayed onset muscle soreness" OR "creatine kinase." From 1,092 originally identified titles, 36 studies were included which had an exercise component comparing a younger against an older group. The outcome variables of EIMD were muscle function, muscle soreness, and creatine kinase. A meta-analysis was conducted on change to EIMD after exercise in older versus younger adults using standardized mean difference (SMD) and an inverse-variance random effects model. RESULTS Change after 24 and 72 hr, and peak change, in muscle function was not different between old and young (SMD range = -0.16 to -0.35). Muscle soreness was greater in younger than older adults for all comparisons (SMD range = -0.34 to -0.62). Creatine kinase was greater in younger than older adults at 24 hr (SMD = -0.32), as was peak change (SMD = -0.32). A relationship between sex and peak muscle function change was evident for males (SMD = -0.45), but not females (SMD = -0.44). All other meta-regression was nonsignificant. CONCLUSION Advancing age is not associated with greater symptoms of EIMD. The implication of this study is that the older adults can pursue regular physical activity without concern for experiencing greater EIMD.
Collapse
Affiliation(s)
- John F T Fernandes
- School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, United Kingdom
| | - Laura J Wilson
- London Sport Institute, Middlesex University, London, United Kingdom
| | - Amelia F Dingley
- Department of Life Sciences, Brunel University, London, United Kingdom
| | - Andrew N Hearn
- Department of HE Sport, Hartpury University, Hartpury, United Kingdom
| | - Kelsie O Johnson
- Research Institute of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Kirsty M Hicks
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle, United Kingdom
- Washington Spirit, Columbia, WA, USA
| | - Craig Twist
- Research Institute of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Lawrence D Hayes
- Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
2
|
Jeon S, Sontag SA, Richardson LD, Olmos AA, Trevino MA. Neuromuscular electrical stimulation producing low evoked force elicits the repeated bout effect on muscle damage markers of the elbow flexors. SPORTS MEDICINE AND HEALTH SCIENCE 2025; 7:124-131. [PMID: 39811410 PMCID: PMC11726036 DOI: 10.1016/j.smhs.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 01/16/2025] Open
Abstract
This study examined the repeated bout effect (RBE) on muscle damage markers following two bouts of neuromuscular electrical stimulation (NMES) in untrained individuals. Following familiarization, participants received 45 consecutive NMES to the biceps brachii at an intensity that produced low evoked force for the elbow flexors. Muscle damage markers (maximal voluntary isometric contraction [MVIC], elbow range of motion [ROM], muscle soreness via visual analogue scale [VAS] scores, pressure pain threshold [PPT], and muscle thickness) were measured before (PRE), after (POST), 1 day after (24 POST), and 2 days after (48 POST) NMES. Following 1 week of rest, procedures were replicated. Separate repeated measures two-way ANOVAs examined each measure. There were no interactions or bout main effects for MVIC or ROM. Time main effects indicated PRE MVIC was greater than POST (p = 0.002) and 24-POST (p = 0.024), and PRE ROM was greater than POST (p = 0.036). There was no interaction for muscle thickness. Respective time and bout main effects indicated muscle thickness at PRE was less than POST (p = 0.017), and second-bout muscle thickness (p = 0.050) was less compared to the initial-bout. For PPT, there was an interaction (p = 0.019). Initial-bout PRE PPT was less than POST (p = 0.033). Initial-bout 48-POST PPT was less than second-bout 48-POST (p = 0.037). There was a significant interaction for VAS (p = 0.009). Initial-bout PRE VAS was less than POST (p = 0.033) and 24-POST (p = 0.015). Initial-bout POST and 24-POST VAS were greater than second-bout POST (p = 0.023) and 24-POST (p = 0.006), respectively. The results support RBE on muscle damage markers related to inflammation, but not MVIC and ROM.
Collapse
Affiliation(s)
- Sunggun Jeon
- Applied Neuromuscular Physiology Laboratory, Department of Health and Human Performance, Northwestern State University, Natchitoches, LA, 71497, USA
| | - Stephanie A. Sontag
- Applied Neuromuscular Physiology Laboratory, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, 74075, USA
| | - Lyric D. Richardson
- Applied Neuromuscular Physiology Laboratory, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, 74075, USA
| | - Alex A. Olmos
- Applied Neuromuscular Physiology Laboratory, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, 74075, USA
| | - Michael A. Trevino
- Applied Neuromuscular Physiology Laboratory, Department of Kinesiology, Applied Health, and Recreation, Oklahoma State University, Stillwater, OK, 74075, USA
| |
Collapse
|
3
|
Hayman O, Ansdell P, Angius L, Thomas K, Horsbrough L, Howatson G, Kidgell DJ, Škarabot J, Goodall S. Changes in motor unit behaviour across repeated bouts of eccentric exercise. Exp Physiol 2024; 109:1896-1908. [PMID: 39226215 PMCID: PMC11522828 DOI: 10.1113/ep092070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024]
Abstract
Unaccustomed eccentric exercise (EE) is protective against muscle damage following a subsequent bout of similar exercise. One hypothesis suggests the existence of an alteration in motor unit (MU) behaviour during the second bout, which might contribute to the adaptive response. Accordingly, the present study investigated MU changes during repeated bouts of EE. During two bouts of exercise where maximal lengthening dorsiflexion (10 repetitions × 10 sets) was performed 3 weeks apart, maximal voluntary isometric torque (MVIC) and MU behaviour (quantified using high-density electromyography; HDsEMG) were measured at baseline, during (after set 5), and post-EE. The HDsEMG signals were decomposed into individual MU discharge timings, and a subset were tracked across each time point. MVIC was reduced similarly in both bouts post-EE (Δ27 vs. 23%, P = 0.144), with a comparable amount of total work performed (∼1,300 J; P = 0.905). In total, 1,754 MUs were identified and the decline in MVIC was accompanied by a stepwise increase in discharge rate (∼13%; P < 0.001). A decrease in relative recruitment was found immediately after EE in Bout 1 versus baseline (∼16%; P < 0.01), along with reductions in derecruitment thresholds immediately after EE in Bout 2. The coefficient of variation of inter-spike intervals was lower in Bout 2 (∼15%; P < 0.001). Our data provide new information regarding a change in MU behaviour during the performance of a repeated bout of EE. Importantly, such changes in MU behaviour might contribute, at least in part, to the repeated bout phenomenon.
Collapse
Affiliation(s)
- Oliver Hayman
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Center, College of Medical, Veterinary, and Life SciencesUniversity of GlasgowGlasgowUK
| | - Paul Ansdell
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Luca Angius
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Kevin Thomas
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Lauren Horsbrough
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
| | - Glyn Howatson
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
- Water Research GroupNorth West UniversityPotchefstroomSouth Africa
| | - Dawson J. Kidgell
- Monash Exercise Neuroplasticity Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health ScienceMonash UniversityMelbourneAustralia
| | - Jakob Škarabot
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Stuart Goodall
- Department of Sport, Exercise, & Rehabilitation, Faculty of Health and Life SciencesNorthumbria UniversityNewcastle upon TyneUK
- Physical Activity, Sport and Recreation Research Focus Area, Faculty of Health SciencesNorth‐West UniversityPotchefstroomSouth Africa
| |
Collapse
|
4
|
Angius L, Del Vecchio A, Goodall S, Thomas K, Ansdell P, Atkinson E, Farina D, Howatson G. Supraspinal, spinal, and motor unit adjustments to fatiguing isometric contractions of the knee extensors at low and high submaximal intensities in males. J Appl Physiol (1985) 2024; 136:1546-1558. [PMID: 38695356 PMCID: PMC11368526 DOI: 10.1152/japplphysiol.00675.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 06/16/2024] Open
Abstract
Contraction intensity is a key factor determining the development of muscle fatigue, and it has been shown to induce distinct changes along the motor pathway. The role of cortical and spinal inputs that regulate motor unit (MU) behavior during fatiguing contractions is poorly understood. We studied the cortical, spinal, and neuromuscular response to sustained fatiguing isometric tasks performed at 20% and 70% of the maximum isometric voluntary contraction (MVC), together with MU behavior of knee extensors in healthy active males. Neuromuscular function was assessed before and after performance of both tasks. Cortical and spinal responses during exercise were measured via stimulation of the motor cortex and spinal cord. High-density electromyography was used to record individual MUs from the vastus lateralis (VL). Exercise at 70%MVC induced greater decline in MVC (P = 0.023) and potentiated twitch force compared with 20%MVC (P < 0.001), with no difference in voluntary activation (P = 0.514). Throughout exercise, corticospinal responses were greater during the 20%MVC task (P < 0.001), and spinal responses increased over time in both tasks (P ≤ 0.042). MU discharge rate increased similarly after both tasks (P ≤ 0.043), whereas recruitment and derecruitment thresholds were unaffected (P ≥ 0.295). These results suggest that increased excitability of cortical and spinal inputs might be responsible for the increase in MU discharge rate. The increase in evoked responses together with the higher MU discharge rate might be required to compensate for peripheral adjustments to sustain fatiguing contractions at different intensities.NEW & NOTEWORTHY Changes in central nervous system and muscle function occur in response to fatiguing exercise and are specific to exercise intensity. This study measured corticospinal, neuromuscular, and motor unit behavior to fatiguing isometric tasks performed at different intensities. Both tasks increased corticospinal excitability and motor unit discharge rate. Our findings suggest that these acute adjustments are required to compensate for the exercise-induced decrements in neuromuscular function caused by fatiguing tasks.
Collapse
Affiliation(s)
- Luca Angius
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Alessandro Del Vecchio
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Kevin Thomas
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Paul Ansdell
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Elliot Atkinson
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- Water Research Group, North-West University, Potchefstroom, South Africa
| |
Collapse
|
5
|
Gioda J, Da Silva F, Monjo F, Corcelle B, Bredin J, Piponnier E, Colson SS. Immediate crossover fatigue after unilateral submaximal eccentric contractions of the knee flexors involves peripheral alterations and increased global perceived fatigue. PLoS One 2024; 19:e0293417. [PMID: 38346010 PMCID: PMC10861086 DOI: 10.1371/journal.pone.0293417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/11/2023] [Indexed: 02/15/2024] Open
Abstract
After a unilateral muscle exercise, the performance of the non-exercised contralateral limb muscle can be also impaired. This crossover fatigue phenomenon is still debated in the literature and very few studies have investigated the influence of eccentric contractions. This study was designed to assess neuromuscular adaptations involved in the crossover fatigue of the non-exercised contralateral knee flexor muscles. Seventeen healthy young men performed a unilateral submaximal eccentric exercise of the right knee flexors until a 20% reduction in maximal voluntary isometric contraction torque was attained in the exercised limb. Before (PRE), immediately after exercise cessation (POST) and 24 hours later (POST24), neuromuscular function and perceived muscle soreness were measured in both the exercised limb and non-exercised limb. In addition, global perceived fatigue was assessed at each measurement time. At POST, significant reductions in maximal voluntary isometric contraction were observed in the exercised limb (-28.1%, p < 0.001) and in the non-exercised limb (-8.5%, p < 0.05), evidencing crossover fatigue. At POST, voluntary activation decreased in the exercised limb only (-6.0%, p < 0.001), while electrically evoked potentiated doublet torque was impaired in both the exercised limb and the non-exercised limb (-11.6%, p = 0.001). In addition, global perceived fatigue significantly increased at POST (p < 0.001). At POST24, all measured variables returned to PRE values, except for perceived muscle soreness scores exhibiting greater values than PRE (p < 0.05). A possible cumulative interaction between peripheral alterations and global perceived fatigue may account for the immediate crossover fatigue observed in the non-exercised limb.
Collapse
Affiliation(s)
| | | | - Florian Monjo
- LAMHESS, Université Côte d’Azur, Nice, France
- LIBM, Université Savoie Mont Blanc, Chambéry, France
| | | | - Jonathan Bredin
- LAMHESS, Université Côte d’Azur, Nice, France
- Centre de Santé Institut Rossetti-PEP06, Nice, France
| | | | | |
Collapse
|
6
|
Hayes EJ, Stevenson E, Sayer AA, Granic A, Hurst C. Recovery from Resistance Exercise in Older Adults: A Systematic Scoping Review. SPORTS MEDICINE - OPEN 2023; 9:51. [PMID: 37395837 PMCID: PMC10317890 DOI: 10.1186/s40798-023-00597-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/15/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Resistance exercise is recommended for maintaining muscle mass and strength in older adults. However, little is known about exercise-induced muscle damage and recovery from resistance exercise in older adults. This may have implications for exercise prescription. This scoping review aimed to identify and provide a broad overview of the available literature, examine how this research has been conducted, and identify current knowledge gaps relating to exercise-induced muscle damage and recovery from resistance exercise in older adults. METHODS Studies were included if they included older adults aged 65 years and over, and reported any markers of exercise-induced muscle damage after performing a bout of resistance exercise. The following electronic databases were searched using a combination of MeSH terms and free text: MEDLINE, Scopus, Embase, SPORTDiscus and Web of Science. Additionally, reference lists of identified articles were screened for eligible studies. Data were extracted from eligible studies using a standardised form. Studies were collated and are reported by emergent theme or outcomes. RESULTS A total of 10,976 possible articles were identified and 27 original research articles were included. Findings are reported by theme; sex differences in recovery from resistance exercise, symptoms of exercise-induced muscle damage, and biological markers of muscle damage. CONCLUSIONS Despite the volume of available data, there is considerable variability in study protocols and inconsistency in findings reported. Across all measures of exercise-induced muscle damage, data in women are lacking when compared to males, and rectifying this discrepancy should be a focus of future studies. Current available data make it challenging to provide clear recommendations to those prescribing resistance exercise for older people.
Collapse
Affiliation(s)
- Eleanor Jayne Hayes
- AGE Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Emma Stevenson
- Faculty of Medical Sciences, Population Health Sciences Institute, Newcastle University, Cookson Building, 1St Floor, Newcastle Upon Tyne, UK.
| | - Avan Aihie Sayer
- AGE Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle University, Newcastle Upon Tyne, UK
| | - Antoneta Granic
- AGE Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle University, Newcastle Upon Tyne, UK
| | - Christopher Hurst
- AGE Research Group, Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
7
|
Ruas CV, Latella C, Taylor JL, Haff GG, Nosaka K. Comparison between Eccentric-Only and Coupled Concentric-Eccentric Contractions for Neuromuscular Fatigue and Muscle Damage. Med Sci Sports Exerc 2022; 54:1635-1646. [PMID: 36106831 DOI: 10.1249/mss.0000000000002959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Eccentric contractions induce muscle damage, but less is known about the effects of preceding concentric contractions to eccentric contractions on muscle damage. We compared eccentric-only (ECC) and coupled concentric and eccentric contractions (CON-ECC) of the knee extensors for parameters of neuromuscular fatigue and muscle damage. METHODS Twenty participants (age, 19-36 yr) were randomly placed into an ECC or a CON-ECC group (n = 10 per group), without significant (P > 0.06) differences in baseline neuromuscular variables between groups. The ECC group performed six sets of eight ECC at 80% of ECC one-repetition maximum (1-RMecc), whereas the CON-ECC group performed six sets of eight alternating concentric (CON) and ECC (16 contractions per set) at 80% of CON 1-RM and 1-RMecc, respectively. Maximal voluntary isometric contraction force, rate of force development, resting twitch force, maximal M-wave (MMAX), voluntary activation, motor evoked potentials, corticospinal silent period, short interval intracortical inhibition, and muscle soreness were measured before, immediately after, and 1-3 d after exercise. RESULTS No significant (P ≥ 0.09) differences between ECC and CON-ECC were observed for changes in any variables after exercise. However, maximal voluntary isometric contraction force decreased immediately after exercise (ECC: -20.7% ± 12.8%, CON-ECC: -23.6% ± 23.3%) and was still reduced 3 d after exercise (ECC: -13.6% ± 13.4%, CON-ECC: -3.3% ± 21.2%). Rate of force development at 0-30 ms reduced immediately after exercise (ECC: -38.3% ± 33.9%, CON-ECC: -30.7% ± 38.3%). Voluntary activation, resting twitch force, and motor evoked potential/MMAX decreased and corticospinal silent period increased after exercise (all P ≤ 0.03), but short interval intracortical inhibition and MMAX did not change. Muscle soreness developed (P < 0.001) similarly for both groups (peak, 38.5 ± 29.5 mm). CONCLUSIONS CON-ECC did not exacerbate neuromuscular fatigue and muscle damage when compared with ECC, despite twice as many contractions performed. Thus, eccentric contractions (n = 48 in both groups) seemed to mainly mediate the neuromuscular responses observed.
Collapse
Affiliation(s)
| | | | | | | | - Kazunori Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, AUSTRALIA
| |
Collapse
|
8
|
Khassetarash A, Vernillo G, Krüger RL, Edwards WB, Millet GY. Neuromuscular, biomechanical, and energetic adjustments following repeated bouts of downhill running. JOURNAL OF SPORT AND HEALTH SCIENCE 2022; 11:319-329. [PMID: 34098176 PMCID: PMC9189713 DOI: 10.1016/j.jshs.2021.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/09/2021] [Accepted: 04/07/2021] [Indexed: 05/14/2023]
Abstract
PURPOSE This study used downhill running as a model to investigate the repeated bout effect (RBE) on neuromuscular performance, running biomechanics, and metabolic cost of running. METHODS Ten healthy recreational male runners performed two 30-min bouts of downhill running (DR1 and DR2) at a -20% slope and 2.8 m/s 3 weeks apart. Neuromuscular fatigue, level running biomechanics during slow and fast running, and running economy parameters were recorded immediately before and after the downhill bouts, and at 24 h, 48 h, 72 h, 96 h, and 168 h thereafter (i.e., follow-up days). RESULTS An RBE was confirmed by attenuated muscle soreness and serum creatine kinase rise after DR2 compared to DR1. An RBE was also observed in maximum voluntary contraction (MVC) force loss and voluntary activation where DR2 resulted in attenuated MVC force loss and voluntary activation immediately after the run and during follow-up days. The downhill running protocol significantly influenced level running biomechanics; an RBE was observed in which center of mass excursion and, therefore, lower-extremity compliance were greater during follow-up days after DR1 compared to DR2. The observed changes in level running biomechanics did not influence the energy cost of running. CONCLUSION This study demonstrated evidence of adaptation in neural drive as well as biomechanical changes with the RBE after DR. The higher neural drive resulted in attenuated MVC force loss after the second bout. It can be concluded that the RBE after downhill running manifests as changes to global and central fatigue parameters and running biomechanics without substantially altering the energy cost of running.
Collapse
Affiliation(s)
- Arash Khassetarash
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary T2N 1N4, Canada
| | - Gianluca Vernillo
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary T2N 1N4, Canada; Department of Biomedical Sciences for Health, University of Milan, Milan 20133, Italy
| | - Renata L Krüger
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary T2N 1N4, Canada
| | - W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary T2N 1N4, Canada
| | - Guillaume Y Millet
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary T2N 1N4, Canada; Inter-university Laboratory of Human Movement Biology, UJM-Saint-Etienne, Université de Lyon, Saint-Etienne 42023, France; Institut Universitaire de France (IUF), Paris 75231, France.
| |
Collapse
|
9
|
Ruas CV, Latella C, Taylor JL, Haff GG, Nosaka K. Early Detection of Prolonged Decreases in Maximal Voluntary Contraction Force after Eccentric Exercise of the Knee Extensors. Med Sci Sports Exerc 2022; 54:267-279. [PMID: 35029591 DOI: 10.1249/mss.0000000000002797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE We examined whether the magnitude of muscle damage indicated by changes in maximal voluntary isometric contraction (MVIC) strength 1 to 3 d after unaccustomed eccentric exercise (ECC) was correlated with changes in central and peripheral neuromuscular parameters immediately post-ECC. METHODS Twenty participants (19-36 yr) performed six sets of eight eccentric contractions of the knee extensors. Rate of force development (RFD) during knee extensor MVIC, twitch force, rate of force development (RFDRT) and rate of relaxation (RRRT) of the resting twitch, maximal M-wave (MMAX), voluntary activation, silent period duration, motor-evoked potentials (MEP) and short-interval intracortical inhibition were assessed before, immediately after, and 1 to 3 d post-ECC. Relationships between changes in these variables immediately post-ECC and changes in MVIC strength at 1 to 3 d post-ECC were examined by Pearson product-moment (r) or Spearman correlations. RESULTS Maximal voluntary isometric contraction strength decreased (-22.2% ± 18.4%) immediately postexercise, and remained below baseline at 1 (-16.3% ± 15.2%), 2 (-14.7% ± 13.2%) and 3 d post-ECC (-8.6% ± 15.7%). Immediately post-ECC, RFD (0-30-ms: -38.3% ± 31.4%), twitch force (-45.9% ± 22.4%), RFDRT (-32.5% ± 40.7%), RRRT (-38.0% ± 39.7%), voluntary activation (-21.4% ± 16.5%) and MEP/MMAX at rest (-42.5% ± 23.3%) also decreased, whereas the silent period duration at 10%-MVIC increased by 26.0% ± 12.2% (P < 0.05). Decreases in RFD at 0 to 30 ms, 0 to 50 ms, and 0 to 100 ms immediately post-ECC were correlated (P < 0.05) with changes in MVIC strength at 1 d (r = 0.56-0.60) and 2 d post-ECC (r = 0.53-0.63). Changes in MEP/MMAX at 10%-MVIC immediately post-ECC were correlated with changes in MVIC strength at 1 d (r = -0.53) and 2 d (r = -0.54) post-ECC (P < 0.05). CONCLUSIONS The magnitude of decrease in MVIC strength at 1 to 3 d after ECC was associated with the magnitude of changes in RFD and MEP/MMAX immediately post-ECC. However, based on individual data, these markers were not sensitive for the practical detection of muscle damage.
Collapse
Affiliation(s)
| | | | | | | | - Kazunori Nosaka
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, AUSTRALIA
| |
Collapse
|
10
|
Jeon S, Ye X, Miller WM, Song JS. Effect of repeated eccentric exercise on muscle damage markers and motor unit control strategies in arm and hand muscle. SPORTS MEDICINE AND HEALTH SCIENCE 2021; 4:44-53. [PMID: 35782782 PMCID: PMC9219313 DOI: 10.1016/j.smhs.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 11/03/2022] Open
Abstract
To examine the contralateral repeated bout effect (CL-RBE) on muscle damage markers and motor unit (MU) control strategies, seventeen healthy adults performed two bouts of 60 eccentric contractions with elbow flexor (EF group; n = 9) or index finger abductor (IA group; n = 8) muscles, separated by 1 week. All participants randomly performed eccentric exercise on either the right or left arm or hand muscles, and muscle damage markers and submaximal trapezoid contraction tests were conducted pre, post, 1- and 2-day post eccentric protocol. One week after the first bout, the same exercise protocol and measurements were performed on the contralateral muscles. Surface electromyographic (EMG) signals were collected from biceps brachii (BB) or first dorsal interosseous (FDI) during maximal and submaximal tests. The linear regression analyses were used to examine MU recruitment threshold versus mean firing rate and recruitment threshold versus derecruitment threshold relationships. EMG amplitude from BB (bout 1 vs. bout 2 = 65.71% ± 22.92% vs. 43.05% ± 18.97%, p = 0.015, d = 1.077) and the y-intercept (group merged) from the MU recruitment threshold versus derecruitment threshold relationship (bout 1 vs. bout 2 = −7.10 ± 14.20 vs. 0.73 ± 16.24, p = 0.029, d = 0.513) at 50% MVIC were significantly different between two bouts. However, other muscle damage markers did not show any CL-RBE in both muscle groups. Therefore, despite changes in muscle excitation and MU firing behavior, our results do not support the existence of CL-RBE on BB and FDI muscles.
Collapse
|
11
|
Proessl F, Beckner ME, Sinnott AM, Eagle SR, LaGoy AD, Conkright WR, Canino MC, Sterczala AJ, Midhe Ramkumar PP, Sciavolino BM, Connaboy C, Ferrarelli F, Germain A, Nindl BC, Flanagan SD. Reliability of corticospinal excitability estimates for the vastus lateralis: Practical considerations for lower limb TMS task selection. Brain Res 2021; 1761:147395. [PMID: 33662340 DOI: 10.1016/j.brainres.2021.147395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 11/29/2022]
Abstract
Transcranial magnetic stimulation (TMS) is increasingly used to examine lower extremity corticospinal excitability (CSE) in clinical and sports research. Because CSE is task-specific, there is growing emphasis on the use of ecological tasks. Nevertheless, the comparative reliability of CSE measurements during established (e.g. knee extensions; KE) and more recent ecological (e.g. squats; SQT) lower extremity tasks has received less attention. The aim of this study was to compare the test-retest reliability of CSE, force, and muscle activity (EMG) during isometric SQT and KE. 19 right-footed men (age: 25 ± 5 yrs) with similar fitness and body composition performed SQT (N = 7) or KE (N = 12) on two consecutive days. Force and EMG were recorded during maximum voluntary isometric contractions (MVC). Corticospinal excitability was determined in the dominant leg during light (15% MVC) contractions based on motor evoked potential (MEP) stimulus-response-curves (SRC). Test-retest reliability, absolute agreement, and consistency were determined for force, EMG, and SRC MEP maximum (MEPMAX) and rising phase midpoint (V50). As a secondary analysis, all outcomes were compared between groups with mixed-methods ANCOVAs (Task × Time, covariate: body-fat-percentage). Compared with SQT, KE displayed better test-retest reliability and agreement for MEPMAX whereas V50, force, and EMG were similarly reliable. Force (p = 0.01) and MEPMAX (p = 0.02) were also greater during KE despite a similar V50 (p = 0.11). Differences in test-retest reliability, absolute agreement, and between-group comparisons highlight the need to carefully select lower limb TMS assessment tasks and encourage future efforts to balance ecological validity with statistical sensitivity.
Collapse
Affiliation(s)
- F Proessl
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA
| | - M E Beckner
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA
| | - A M Sinnott
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA
| | - S R Eagle
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA
| | - A D LaGoy
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - W R Conkright
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA
| | - M C Canino
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA
| | - A J Sterczala
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA
| | - P P Midhe Ramkumar
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA
| | - B M Sciavolino
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA
| | - C Connaboy
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA
| | - F Ferrarelli
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - A Germain
- Department of Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - B C Nindl
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA
| | - S D Flanagan
- Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Clos P, Lepers R, Garnier YM. Locomotor activities as a way of inducing neuroplasticity: insights from conventional approaches and perspectives on eccentric exercises. Eur J Appl Physiol 2021; 121:697-706. [PMID: 33389143 DOI: 10.1007/s00421-020-04575-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Corticospinal excitability, and particularly the balance between cortical inhibitory and excitatory processes (assessed in a muscle using single and paired-pulse transcranial magnetic stimulation), are affected by neurodegenerative pathologies or following a stroke. This review describes how locomotor exercises may counterbalance these neuroplastic alterations, either when performed under its conventional form (e.g., walking or cycling) or when comprising eccentric (i.e., active lengthening) muscle contractions. Non-fatiguing conventional locomotor exercise decreases intracortical inhibition and/or increases intracortical facilitation. These modifications notably seem to be a consequence of neurotrophic factors (e.g., brain-derived neurotrophic factor) resulting from the hemodynamic solicitation. Furthermore, it can be inferred from non-invasive brain and peripheral stimulation studies that repeated activation of neural networks can endogenously shape neuroplasticity. Such mechanisms could also occur following eccentric exercises (lengthening of the muscle), during which motor-related cortical potential (electroencephalography) is of greater magnitude and lasts longer than during concentric exercises (i.e., muscle shortening). As single-joint eccentric exercise decreased short- and long-interval intracortical inhibition and increased intracortical facilitation, locomotor eccentric exercise (e.g., downhill walking or eccentric cycling) may be even more potent by adding hemodynamic-related neuroplastic processes to endogenous processes. Besides, eccentric exercise is especially useful to develop relatively high force levels at low cardiorespiratory and perceived intensities, which can be a training goal alongside the induction of neuroplastic changes. Even though indirect evidence let us think that locomotor eccentric exercise could shape neuroplasticity in ways relevant to neurorehabilitation, its efficacy remains speculative. We provide future research directions on the neuroplastic effects and underlying mechanisms of locomotor exercise.
Collapse
Affiliation(s)
- Pierre Clos
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, 21000, Dijon, France.
| | - Romuald Lepers
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, 21000, Dijon, France
| | - Yoann M Garnier
- Clermont-Auvergne University, AME2P, Clermont-Ferrand, France
| |
Collapse
|
13
|
Ansdell P, Brownstein CG, Škarabot J, Angius L, Kidgell D, Frazer A, Hicks KM, Durbaba R, Howatson G, Goodall S, Thomas K. Task‐specific strength increases after lower‐limb compound resistance training occurred in the absence of corticospinal changes in vastus lateralis. Exp Physiol 2020; 105:1132-1150. [DOI: 10.1113/ep088629] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/30/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Paul Ansdell
- Faculty of Health and Life SciencesNorthumbria University Newcastle upon Tyne UK
| | - Callum G. Brownstein
- Faculty of Health and Life SciencesNorthumbria University Newcastle upon Tyne UK
- Laboratoire Interuniversitaire de Biologie de la MotricitéUniversité Jean Monnet Saint Etienne, Université Lyon Lyon France
| | - Jakob Škarabot
- Faculty of Health and Life SciencesNorthumbria University Newcastle upon Tyne UK
- School of SportExercise and Health SciencesLoughborough University Loughborough UK
| | - Luca Angius
- Faculty of Health and Life SciencesNorthumbria University Newcastle upon Tyne UK
| | - Dawson Kidgell
- Department of PhysiotherapySchool of Primary and Allied Health CareFaculty of MedicineNursing and Health SciencesMonash University Melbourne Australia
| | - Ashlyn Frazer
- Department of PhysiotherapySchool of Primary and Allied Health CareFaculty of MedicineNursing and Health SciencesMonash University Melbourne Australia
| | - Kirsty M. Hicks
- Faculty of Health and Life SciencesNorthumbria University Newcastle upon Tyne UK
| | - Rade Durbaba
- Faculty of Health and Life SciencesNorthumbria University Newcastle upon Tyne UK
| | - Glyn Howatson
- Faculty of Health and Life SciencesNorthumbria University Newcastle upon Tyne UK
- Water Research GroupSchool of Biological SciencesNorth West University Potchefstroom South Africa
| | - Stuart Goodall
- Faculty of Health and Life SciencesNorthumbria University Newcastle upon Tyne UK
| | - Kevin Thomas
- Faculty of Health and Life SciencesNorthumbria University Newcastle upon Tyne UK
| |
Collapse
|
14
|
Borzuola R, Giombini A, Torre G, Campi S, Albo E, Bravi M, Borrione P, Fossati C, Macaluso A. Central and Peripheral Neuromuscular Adaptations to Ageing. J Clin Med 2020; 9:jcm9030741. [PMID: 32182904 PMCID: PMC7141192 DOI: 10.3390/jcm9030741] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 12/31/2022] Open
Abstract
Ageing is accompanied by a severe muscle function decline presumably caused by structural and functional adaptations at the central and peripheral level. Although researchers have reported an extensive analysis of the alterations involving muscle intrinsic properties, only a limited number of studies have recognised the importance of the central nervous system, and its reorganisation, on neuromuscular decline. Neural changes, such as degeneration of the human cortex and function of spinal circuitry, as well as the remodelling of the neuromuscular junction and motor units, appear to play a fundamental role in muscle quality decay and culminate with considerable impairments in voluntary activation and motor performance. Modern diagnostic techniques have provided indisputable evidence of a structural and morphological rearrangement of the central nervous system during ageing. Nevertheless, there is no clear insight on how such structural reorganisation contributes to the age-related functional decline and whether it is a result of a neural malfunction or serves as a compensatory mechanism to preserve motor control and performance in the elderly population. Combining leading-edge techniques such as high-density surface electromyography (EMG) and improved diagnostic procedures such as functional magnetic resonance imaging (fMRI) or high-resolution electroencephalography (EEG) could be essential to address the unresolved controversies and achieve an extensive understanding of the relationship between neural adaptations and muscle decline.
Collapse
Affiliation(s)
- Riccardo Borzuola
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| | - Arrigo Giombini
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| | - Guglielmo Torre
- Department of Orthopaedic And Trauma Surgery, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (S.C.); (E.A.)
- Correspondence: ; Tel.: +6-225-418-825
| | - Stefano Campi
- Department of Orthopaedic And Trauma Surgery, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (S.C.); (E.A.)
| | - Erika Albo
- Department of Orthopaedic And Trauma Surgery, Campus Bio-Medico University of Rome, 00128 Rome, Italy; (S.C.); (E.A.)
| | - Marco Bravi
- Department of Physical Medicine and Rehabilitation, Campus Bio-Medico University of Rome, 00128 Rome, Italy;
| | - Paolo Borrione
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| | - Andrea Macaluso
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (R.B.); (A.G.); (P.B.); (C.F.); (A.M.)
| |
Collapse
|