1
|
Zhang C, Zhang Z, Tian Y, Yu L, Wang H. An Ultrasensitive Ethanol Gas Sensor Based on a Dual-Nanoparticle In 2O 3/SnO 2 Composite. SENSORS (BASEL, SWITZERLAND) 2024; 24:7823. [PMID: 39686360 DOI: 10.3390/s24237823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
As a VOC, ethanol can be found in human exhaled breath, and its concentration can be used as a biomarker of human liver disease. To detect trace-level concentrations of ethanol, an ultrasensitive ethanol sensor was developed based on a dual-nanoparticle In2O3/SnO2 composite that was prepared by hydrothermal synthesis, and its suspension was dipped on a flat electrode to form a gas sensor. The nanocomposite was characterized by an SEM (scanning electron microscope), XRD (X-ray diffraction), and a TEM (transmission electron microscope), and the nanoparticle structure was observed. The experimental results showed that gas sensors based on the In2O3/SnO2 nanocomposite had higher responses compared to sensors based on pure In2O3. Among the nanocomposites, the one with a In2O3-to-SnO2 mol ratio of 1:8 was used in the sensor with the highest response of 1.41 to 100 ppb ethanol at 150 °C, which also exhibited good repeatability. The ultrasensitive response to ethanol can be attributed to the faster electron migration rate and the increase in oxygen-absorbing sites caused by the n-n heterojunction in the nanocomposite. Due to its low detection limit, good repeatability, and relatively high responses in high humidity, this sensor has a potential application in exhaled breath detection.
Collapse
Affiliation(s)
- Cheng Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ze Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yao Tian
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lingmin Yu
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Hairong Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Anderson JC. A new approach to modeling transdermal ethanol kinetics. Physiol Rep 2024; 12:e70070. [PMID: 39358847 PMCID: PMC11446835 DOI: 10.14814/phy2.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Measurement of ethanol above the skin surface (supradermal) is used to monitor blood alcohol concentrations (BAC) in both legal and consumer settings. Previously, the relationship between supradermal alcohol concentration (SAC) and BAC was described using partial and ordinary differential equations (PDE model: J. Appl. Physiol. 100: 649-55, 2006). Using a range of BAC profiles by varying absorption times and peak concentrations, the PDE model accurately predicted experimental measures of SAC. Recently, other mathematical models have relied on the PDE model. This paper proposes a new approach to modeling transdermal ethanol kinetics using a mass transfer coefficient and only ordinary differential equations (ODE model). Using a range of BAC profiles, the ODE model performed very similarly to the PDE model. The ODE model had slightly slower washout rates and slightly slower times to peak SAC and to zero SAC. Similar to the PDE model, a sensitivity analysis on the ODE model showed changes in solubility and diffusivity within the stratum corneum, stratum corneum thickness, and the volume of gas above the skin affected model performance. This new model will streamline integration into larger physiologic models, reduce computation time, and decrease the time to transform skin alcohol measurements to blood alcohol concentrations.
Collapse
Affiliation(s)
- Joseph C. Anderson
- Department of BioengineeringUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
3
|
Dinis-Oliveira RJ. "Not everything that can be counted counts" in ethanol toxicological results: an antemortem and postmortem technical interpretation focusing on driving under the influence. Forensic Sci Res 2024; 9:owae023. [PMID: 39006154 PMCID: PMC11240237 DOI: 10.1093/fsr/owae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/29/2024] [Indexed: 07/16/2024] Open
Abstract
Ethanol blood analysis is the most common request in forensic toxicology, and some studies point to positive results in approximately one-third of all unnatural deaths. However, distinguishing sober deaths from drunk deaths is not as simple as it may seem. This technical, clinical, and forensic interpretation is proposed to interpret the ethanol toxicological results, discussing several artefacts and pitfalls that must be considered, namely focusing on driving under the influence. This work is presented with a practical and objective approach, aiming to alleviate the complexities associated with clinical, physiological, pathophysiological, and toxicological aspects to enhance comprehension, practicality, and applicability of its content, especially to courts. Particularly the physical integrity of the body, the postmortem interval, putrefactive signs, anatomic place of blood collection, alternative samples such as vitreous humour and urine, the possibility of postmortem redistribution, the inclusion of preservatives in containers, and optimal temperature conditions of shipment are among some of the aspects to pay attention. Although several biomarkers related to postmortem microbial ethanol production have been proposed, their translation into forensic routine is slow to be implemented due to the uncertainties of their application and analytical difficulties. Specifically, in the interpretation of ethanol toxicological results, "not everything that can be counted counts and not everything that counts can be counted" (attributed to Albert Einstein).
Collapse
Affiliation(s)
- Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, Gandra, Portugal
- UCIBIO - Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences 1H-TOXRUN, IUCS-CESPU, Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
- FOREN – Forensic Science Experts, Lisbon, Portugal
| |
Collapse
|
4
|
Recum P, Hirsch T. Graphene-based chemiresistive gas sensors. NANOSCALE ADVANCES 2023; 6:11-31. [PMID: 38125587 PMCID: PMC10729924 DOI: 10.1039/d3na00423f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/17/2023] [Indexed: 12/23/2023]
Abstract
Gas sensors allow the monitoring of the chemical environment of humans, which is often crucial for their wellbeing or even survival. Miniaturization, reversibility, and selectivity are some of the key challenges for serial use of chemical sensors. This tutorial review describes critical aspects when using nanomaterials as sensing substrates for the application in chemiresistive gas sensors. Graphene has been shown to be a promising candidate, as it allows gas sensors to be operated at room temperature, possibly saving large amounts of energy. In this review, an overview is given on the general mechanisms for gas-sensitive semiconducting materials and the implications of doping and functionalization on the sensing parameters of chemiresistive devices. It shows in detail how different challenges, like sensitivity, response time, reversibility and selectivity have been approached by material development and operation modes. In addition, perspectives from the area of data analysis and intelligent algorithms are presented, which can further enhance these sensors' usability in the field.
Collapse
|
5
|
Jin Z, Cao Y, Zou H, Hao P, Xue Y. A New Method for Breath and Blood Alcohol Determination in Rats Using a Breath Alcohol Meter: An Experimental Study. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e129483. [PMID: 36937209 PMCID: PMC10016125 DOI: 10.5812/ijpr-129483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/19/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
Background The use of police breath alcohol detectors in rat breath alcohol detection experiments has always been a challenge because of the small lung capacity and inability of rats to actively inhale. However, the method of using gas chromatography to detect blood alcohol concentration is time-consuming, complex, relatively expensive, and cannot achieve on-site detection and multi-point unlimited non-invasive detection. Objectives In this study, a laboratory method was validated for rat breath ethanol concentration (BrAC) measurement to estimate blood ethanol concentration (BAC) in rats. Methods The rats were placed in a gas collection bottle, the breath sample was drawn out with a syringe, and injected into the mouthpiece of the breath alcohol detector through a rubber tube. The results were immediately detected and automatically converted to BAC. Male rats were randomly divided into three groups. The control group received an intraperitoneal injection of normal saline, the liver injury group received an intraperitoneal injection of 50% Carbon tetrachloride (CCL4 1 mL.kg-1), and the induction group received an intraperitoneal injection of phenobarbital sodium (75 mg.kg-1). Western blot analysis was used to detect the protein expression of CYP2E1. Similar grouping and experimental methods were used for female rats. Results This method was reproducible. The metabolic activity of CYP2E1 was downregulated in the injury group and upregulated in the induction group, which was consistent with the results obtained for CYP2E1 protein expression. Conclusions Our results confirmed that the rat gas cylinder breath alcohol assay can be used for multiple detections with immediate and non-invasive determination of alcohol metabolizing capacity. This is important for studies that require repeated assessment of blood alcohol levels.
Collapse
Affiliation(s)
- Ziqi Jin
- Institute of Pharmacokinetics and Liver Molecular Pharmacology, Department of Pharmacology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Yingying Cao
- Institute of Pharmacokinetics and Liver Molecular Pharmacology, Department of Pharmacology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Huiqiong Zou
- Institute of Pharmacokinetics and Liver Molecular Pharmacology, Department of Pharmacology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Peipei Hao
- Institute of Pharmacokinetics and Liver Molecular Pharmacology, Department of Pharmacology, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Yongzhi Xue
- Institute of Pharmacokinetics and Liver Molecular Pharmacology, Department of Pharmacology, Baotou Medical College, Baotou, Inner Mongolia, China
- Corresponding Author: Institute of Pharmacokinetics and Liver Molecular Pharmacology, Department of Pharmacology, Baotou Medical College, Baotou, Inner Mongolia, China.
| |
Collapse
|
6
|
Li ZT, Zeng PY, Chen ZM, Guan WJ, Wang T, Lin Y, Li SQ, Zhang ZJ, Zhan YQ, Wang MD, Tan GB, Li X, Ye F. Exhaled Volatile Organic Compounds for Identifying Patients With Chronic Pulmonary Aspergillosis. Front Med (Lausanne) 2021; 8:720119. [PMID: 34631744 PMCID: PMC8495266 DOI: 10.3389/fmed.2021.720119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Diagnosing chronic pulmonary aspergillosis is a major challenge in clinical practice. The development and validation of a novel, sensitive and specific assay for diagnosing chronic pulmonary aspergillosis is urgently needed. Methods: From April 2018 to June 2019, 53 patients with chronic pulmonary aspergillosis (CPA), 32 patients with community-acquired pneumonia (CAP) and 48 healthy controls were recruited from the First Affiliated Hospital of Guangzhou Medical University. Clinical characteristics and samples were collected at enrollment. All exhaled breath samples were analyzed offline using thermal desorption single-photon ionization time-of-flight mass spectrometry; to analyze the metabolic pathways of the characteristic volatile organic compounds, serum samples were subjected to ultrahigh-performance liquid chromatography. Results: We identified characteristic volatile organic compounds in patients with chronic pulmonary aspergillosis, which mainly consisted of phenol, neopentyl alcohol, toluene, limonene and ethylbenzene. These compounds were assessed using a logistic regression model. The sensitivity and specificity were 95.8 and 96.9% for discriminating patients in the CPA group from those in the CAP group and 95.8 and 97.9% for discriminating patients in the CPA group from healthy controls, respectively. The concentration of limonene (m/z 136) correlated significantly positively with anti-Aspergillus fumigatus IgG antibody titers (r = 0.420, P < 0.01). After antifungal treatment, serum IgG and the concentration of limonene (m/z 136) decreased in the subgroup of patients with chronic pulmonary aspergillosis. Conclusions: We identified VOCs that can be used as biomarkers for differential diagnosis and therapeutic response prediction in patients with chronic pulmonary aspergillosis.
Collapse
Affiliation(s)
- Zheng-Tu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pei-Ying Zeng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhao-Ming Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Thoracic Surgery, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tong Wang
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, China.,Guangdong Provincial Engineering Research Center for On-Line Source Apportionment System of Air Pollution, Guangzhou, China
| | - Ye Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shao-Qiang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhi-Juan Zhang
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, China.,Guangdong Provincial Engineering Research Center for On-Line Source Apportionment System of Air Pollution, Guangzhou, China.,College of Pharmacy, Hena University of Chinese Medicine, Zhengzhou, China
| | - Yang-Qing Zhan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ming-Die Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guo-Bin Tan
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, China.,Guangdong Provincial Engineering Research Center for On-Line Source Apportionment System of Air Pollution, Guangzhou, China.,Guangzhou Hexin Instrument Co., Ltd., Guangzhou, China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, China.,Guangdong Provincial Engineering Research Center for On-Line Source Apportionment System of Air Pollution, Guangzhou, China
| | - Feng Ye
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Jones AW, Cowan JM. Reflections on variability in the blood-breath ratio of ethanol and its importance when evidential breath-alcohol instruments are used in law enforcement. Forensic Sci Res 2020; 5:300-308. [PMID: 33457048 PMCID: PMC7782040 DOI: 10.1080/20961790.2020.1780720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Variability in the blood–breath ratio (BBR) of alcohol is important, because it relates a measurement of the blood-alcohol concentration (BAC) with the co-existing breath-alcohol concentration (BrAC). The BBR is also used to establish the statutory BrAC limit for driving from the existing statutory BAC limits in different countries. The in-vivo BBR depends on a host of analytical, sampling and physiological factors, including subject demographics, time after end of drinking (rising or falling BAC), the nature of the blood draw (whether venous or arterial) and the subject’s breathing pattern prior to exhalation into the breath analyzer. The results from a controlled drinking study involving healthy volunteers (85 men and 15 women) from three ethnic groups (Caucasians, Hispanics and African Americans) were used to evaluate various factors influencing the BBR. Ethanol in breath was determined with a quantitative infrared analyzer (Intoxilyzer 8000) and BAC was determined by headspace gas chromatography (HS-GC). The BAC and BrAC were highly correlated (r = 0.948) and the BBR in the post-absorptive state was 2 382 ± 119 (mean ± SD). The BBR did not depend on gender (female: 2 396 ± 101 and male: 2 380 ± 123, P > 0.05) nor on racial group (Caucasians 2 398 ± 124, African Americans 2 344 ± 119 and Hispanics 2 364 ± 104, P > 0.05). The BBR was lower in subjects with higher breath- and body-temperatures (P < 0.05) and it also decreased with longer exhalation times into the breath-analyzer (P < 0.001). In the post-absorptive state, none of the 100 subjects had a BBR of less than 2 100:1.
Collapse
Affiliation(s)
- Alan Wayne Jones
- Division of Drug Research, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | |
Collapse
|
8
|
Anderson JC, Hlastala MP. The alcohol breath test in practice: effects of exhaled volume. J Appl Physiol (1985) 2019; 126:1630-1635. [PMID: 30991012 DOI: 10.1152/japplphysiol.00726.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Alcohol breath test (ABT) measurements are sensitive to the volume of the exhaled breath. Although a minimum breath volume is required for a legally acceptable sample, any additional increase in the volume of exhaled air increases the measurement of breath alcohol concentration (BrAC). Using a sample of 115 ABTs collected by police agencies for evidentiary purposes, we studied the influence of exhaled air volume on the measurement of BrAC. The 115 ABTs were performed on 30 different Alcotest 9510s. Each of the tests included paired, time series measurements of exhaled breath flow rates and breath alcohol content. The exhalation flow rates and exhalation times were used to create exhalation volume-BrAC plots. On average, exhaled air volumes were ~50% of the subjects' age-, height-, race-, and sex-predicted vital capacities (VC). More than 80% of the samples had exhaled air volumes ranging between 30 and 70% of the subject's predicted VC. Breath volumes for duplicate breath samples were similar. For all breath samples, BrAC increased with exhalation volume, an expected behavior for any very high blood solubility compound such as alcohol. Beyond the legally accepted minimum expiratory volume, BrAC increased, on average, at a rate of 9.2 ± 2.8%/liter air exhaled. As a result, a person who exhales just beyond the minimum volume will have a lower BrAC compared with a person who exhales a full VC. Exhaled volume materially impacts the measurement of an ABT. NEW & NOTEWORTHY Subjects who provide breath samples for evidentiary alcohol breath tests exhale, on average, about half of their predicted vital capacity. Because breath alcohol concentration increases with greater exhaled air volume, subjects who exhale more than average volume will have a greater breath alcohol concentration, whereas subjects who exhale less than average volume will have a lesser breath alcohol concentration. A quantification of air volume impact on breath alcohol concentration is provided.
Collapse
Affiliation(s)
- Joseph C Anderson
- Department of Bioengineering, University of Washington , Seattle, Washington
| | - Michael P Hlastala
- Department of Physiology and Biophysics, University of Washington , Seattle, Washington.,Department of Medicine, University of Washington , Seattle, Washington
| |
Collapse
|
9
|
Price ME, Pavlik JA, Liu M, Ding SJ, Wyatt TA, Sisson JH. Alcohol drives S-nitrosylation and redox activation of protein phosphatase 1, causing bovine airway cilia dysfunction. Am J Physiol Lung Cell Mol Physiol 2017; 312:L432-L439. [PMID: 28062487 DOI: 10.1152/ajplung.00513.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/29/2016] [Accepted: 01/05/2017] [Indexed: 11/22/2022] Open
Abstract
Individuals with alcohol (ethanol)-use disorders are at increased risk for lung infections, in part, due to defective mucociliary clearance driven by motile cilia in the airways. We recently reported that isolated, demembranated bovine cilia (axonemes) are capable of producing nitric oxide (∙NO) when exposed to biologically relevant concentrations of alcohol. This increased presence of ∙NO can lead to protein S-nitrosylation, a posttranslational modification signaling mechanism involving reversible adduction of nitrosonium cations or ∙NO to thiolate or thiyl radicals, respectively, of proteins forming S-nitrosothiols (SNOs). We quantified and compared SNO content between isolated, demembranated axonemes extracted from bovine tracheae, with or without in situ alcohol exposure (100 mM × 24 h). We demonstrate that relevant concentrations of alcohol exposure shift the S-nitrosylation status of key cilia regulatory proteins, including 20-fold increases in S-nitrosylation of proteins that include protein phosphatase 1 (PP1). With the use of an ATP-reactivated axoneme motility system, we demonstrate that alcohol-driven S-nitrosylation of PP1 is associated with PP1 activation and dysfunction of axoneme motility. These new data demonstrate that alcohol can shift the S-nitrothiol balance at the level of the cilia organelle and highlight S-nitrosylation as a novel signaling mechanism to regulate PP1 and cilia motility.
Collapse
Affiliation(s)
- Michael E Price
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jacqueline A Pavlik
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Miao Liu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shi-Jian Ding
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Todd A Wyatt
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska.,Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center, Omaha, Nebraska; and.,Research Service, Nebraska-Western Iowa VA Healthcare System, Omaha, Nebraska
| | - Joseph H Sisson
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska;
| |
Collapse
|