1
|
Shirai M, Beard M, Pearson JT, Sonobe T, Tsuchimochi H, Fujii Y, Gray E, Umetani K, Schwenke DO. Impaired pulmonary blood flow distribution in congestive heart failure assessed using synchrotron radiation microangiography. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:441-448. [PMID: 23592623 DOI: 10.1107/s0909049513007413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/18/2013] [Indexed: 06/02/2023]
Abstract
Synchrotron radiation microangiography is a powerful tool for assessing adverse changes in pulmonary vessel density associated with primary pulmonary hypertension (PH). Congestive heart failure (CHF) leads to a `secondary' onset of PH, yet it is unknown whether secondary PH is also associated with reduced vessel density. This study utilized synchrotron radiation to assess both pulmonary vessel density and endothelial function in a Dahl rat model of CHF with secondary PH. High salt-fed Dahl salt-sensitive (Dahl-S) and salt-resistant (Dahl-R) rats were anesthetized and microangiography was performed to assess the pulmonary vessel density and vascular responses to (i) sodium nitroprusside (5.0 µg kg(-1) min(-1)), (ii) acetylcholine (3.0 µg kg(-1) min(-1)) and (iii) ET-1A receptor blockade, BQ-123 (1 mg kg(-1)). Dahl-S rats developed CHF and secondary PH as evident by endothelial dysfunction, impaired vasodilatory responses to acetylcholine, enhanced vasodilatory responses to BQ-123 and extensive pulmonary vascular remodeling. Consequently, the pulmonary vessel density was adversely reduced. Interestingly, the etiology of secondary PH manifests with structural and functional changes that are comparable with that previously reported for primary PH. One important discrepancy, however, is that ET-1 modulation of pulmonary vessels is most striking in vessels with a diameter range of 100-200 µm in secondary PH, in contrast to a range of 200-300 µm in primary PH. Such discrepancies should be considered in future studies investigating primary and secondary forms of PH.
Collapse
Affiliation(s)
- Mikiyasu Shirai
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Hernández-Guerra M, de Ganzo ZA, González-Méndez Y, Salido E, Abreu P, Moreno M, Felipe V, Abrante B, Quintero E. Chronic intermittent hypoxia aggravates intrahepatic endothelial dysfunction in cirrhotic rats. Hepatology 2013; 57:1564-74. [PMID: 23174804 DOI: 10.1002/hep.26152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 11/01/2012] [Indexed: 12/17/2022]
Abstract
UNLABELLED Chronic intermittent hypoxia (CIH) occurs with obstructive sleep apnea syndrome (OSAS) and provokes systemic endothelial dysfunction, which is associated with oxidative stress and low nitric oxide (NO) bioavailability. Cirrhotic livers exhibit intrahepatic endothelial dysfunction, which is characterized by an impaired endothelium-dependent response to vasodilators and hyperresponse to vasoconstrictors. We hypothesized that CIH may also contribute to intrahepatic endothelial dysfunction in cirrhosis. Normal and cirrhotic rats were exposed for 14 days to repetitive cycles of CIH mimicking OSAS in humans, or caged with room air (handled controls [HC]). Hepatic endothelial function was assessed in isolated and perfused rat livers by dose-response curves to acetylcholine (ACh) and methoxamine (Mtx). In a group of cirrhotic rats, in vivo systemic and hepatic hemodynamic parameters were evaluated at baseline and after volume expansion. In addition, liver samples were obtained to assess endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (p-eNOS), NO bioavailability, and nitrotyrosinated proteins as a marker of oxidative stress. Cirrhotic rats exposed to CIH exhibited an attenuated vasodilatory response to ACh and hyperresponse to Mtx compared with HC rats. During volume expansion, similar portal pressure increases were observed in CIH and HC rats, although the mean arterial pressure increase was lower after CIH. These functional responses were associated with the presence of increased hepatic oxidative stress without changes in p-eNOS after CIH exposure. In normal rats, no hemodynamic changes were found. CONCLUSION CIH exacerbates intrahepatic endothelial dysfunction in cirrhotic rats, which is associated with increased oxidative stress that may reduce NO bioavailability. Clinical studies are needed to assess whether OSAS contributes to endothelial impairment in human patients with cirrhosis.
Collapse
|
3
|
Gomez-Arroyo J, Saleem SJ, Mizuno S, Syed AA, Bogaard HJ, Abbate A, Taraseviciene-Stewart L, Sung Y, Kraskauskas D, Farkas D, Conrad DH, Nicolls MR, Voelkel NF. A brief overview of mouse models of pulmonary arterial hypertension: problems and prospects. Am J Physiol Lung Cell Mol Physiol 2012; 302:L977-91. [PMID: 22307907 DOI: 10.1152/ajplung.00362.2011] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Many chronic pulmonary diseases are associated with pulmonary hypertension (PH) and pulmonary vascular remodeling, which is a term that continues to be used to describe a wide spectrum of vascular abnormalities. Pulmonary vascular structural changes frequently increase pulmonary vascular resistance, causing PH and right heart failure. Although rat models had been standard models of PH research, in more recent years the availability of genetically engineered mice has made this species attractive for many investigators. Here we review a large amount of data derived from experimental PH reports published since 1996. These studies using wild-type and genetically designed mice illustrate the challenges and opportunities provided by these models. Hemodynamic measurements are difficult to obtain in mice, and right heart failure has not been investigated in mice. Anatomical, cellular, and genetic differences distinguish mice and rats, and pharmacogenomics may explain the degree of PH and the particular mode of pulmonary vascular adaptation and also the response of the right ventricle.
Collapse
Affiliation(s)
- Jose Gomez-Arroyo
- Victoria Johnson Center for Obstructive Lung Disease Research, Virginia Commonwealth University, 1220 E. Broad St., Richmond, VA 23298, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Morphological and biomechanical remodelling of the hepatic artery in a swine model of portal hypertension. Hepatol Int 2011; 6:631-8. [PMID: 21948212 DOI: 10.1007/s12072-011-9302-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 07/18/2011] [Indexed: 10/17/2022]
Abstract
OBJECTIVES To obtain the biomechanical and morphological remodelling of hepatic arteries in swine with portal hypertension. METHODS A number of 20 white pigs was used, of which 14 were subjected to liver cirrhosis and portal hypertension (PHT) induced by carbon tetrachloride and pentobarbital; the rest were used as the control group. The biomechanical remodelling of the hepatic arteries was measured, namely, the incremental elastic modulus (E inc), pressure-strain elastic modulus (E p), volume elastic modulus (E v), the incremental compliance (C), the opening angle and the stained microstructural components of the vessels. RESULTS The percentages for the microstructural components and the histologic data significantly changed in the experimental group, three incremental elastic moduli (E inc, E p, and E v) of the experimental group were significantly larger than those of the control group (P < 0.05); the compliance of hepatic arteries decreased greatly (P < 0.05) too. The opening angle (OA) was considerably larger than that of control group (P < 0.05). CONCLUSIONS The study suggests that the morphological and biomechanical properties of swine hepatic arteries have changed significantly during the process of portal hypertension and that from biomechanical aspects, the hepatic arteries have also suffered from extensive remodelling, which in turn deteriorates the existing portal hypertension.
Collapse
|
5
|
Exogenous ghrelin improves blood flow distribution in pulmonary hypertension-assessed using synchrotron radiation microangiography. Pflugers Arch 2011; 462:397-406. [PMID: 21744075 DOI: 10.1007/s00424-011-0992-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/09/2011] [Accepted: 06/23/2011] [Indexed: 10/18/2022]
Abstract
Ghrelin has cardioprotective properties and, recently, has been shown to improve endothelial function and reduce endothelin-1 (ET-1)-mediated vasoconstriction in peripheral vascular disease. Recently, we reported that ghrelin attenuates pulmonary hypertension (PH) caused by chronic hypoxia (CH), which we hypothesized in this study may be via suppression of the ET-1 pathway. We also aimed to determine whether ghrelin's ability to prevent alterations of the ET-1 pathway also prevented adverse changes in pulmonary blood flow distribution associated with PH. Sprague-Dawley rats were exposed to CH (10% O(2) for 2 weeks) with daily subcutaneous injections of ghrelin (150 μg/kg) or saline. Utilizing synchrotron radiation microangiography, we assessed pulmonary vessel branching structure, which is indicative of blood flow distribution, and dynamic changes in vascular responsiveness to (1) ET-1 (1 nmol/kg), (2) the ET-1(A) receptor antagonist, BQ-123 (1 mg/kg), and (3) ACh (3.0 μg kg⁻¹ min⁻¹). CH impaired blood flow distribution throughout the lung. However, this vessel "rarefaction" was attenuated in ghrelin-treated CH-rats. Moreover, ghrelin (1) reduced the magnitude of endothelial dysfunction, (2) prevented an increase in ET-1-mediated vasoconstriction, and (3) reduced pulmonary vascular remodeling and right ventricular hypertrophy-all adverse consequences associated with CH. These results highlight the beneficial effects of ghrelin for maintaining optimal lung perfusion in the face of a hypoxic insult. Further research is now required to establish whether ghrelin is also an effective therapy for restoring normal pulmonary hemodynamics in patients that already have established PH.
Collapse
|
6
|
Thenappan T, Goel A, Marsboom G, Fang YH, Toth PT, Zhang HJ, Kajimoto H, Hong Z, Paul J, Wietholt C, Pogoriler J, Piao L, Rehman J, Archer SL. A central role for CD68(+) macrophages in hepatopulmonary syndrome. Reversal by macrophage depletion. Am J Respir Crit Care Med 2011; 183:1080-91. [PMID: 21148721 PMCID: PMC3086745 DOI: 10.1164/rccm.201008-1303oc] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 11/21/2010] [Indexed: 12/16/2022] Open
Abstract
RATIONALE The etiology of hepatopulmonary syndrome (HPS), a common complication of cirrhosis, is unknown. Inflammation and macrophage accumulation occur in HPS; however, their importance is unclear. Common bile duct ligation (CBDL) creates an accepted model of HPS, allowing us to investigate the cause of HPS. OBJECTIVES We hypothesized that macrophages are central to HPS and investigated the therapeutic potential of macrophage depletion. METHODS Hemodynamics, alveolar-arterial gradient, vascular reactivity, and histology were assessed in CBDL versus sham rats (n = 21 per group). The effects of plasma on smooth muscle cell proliferation and endothelial tube formation were measured. Macrophage depletion was used to prevent (gadolinium) or regress (clodronate) HPS. CD68(+) macrophages and capillary density were measured in the lungs of patients with cirrhosis versus control patients (n = 10 per group). MEASUREMENTS AND MAIN RESULTS CBDL increased cardiac output and alveolar-arterial gradient by causing capillary dilatation and arteriovenous malformations. Activated CD68(+)macrophages (nuclear factor-κB+) accumulated in HPS pulmonary arteries, drawn by elevated levels of plasma endotoxin and lung monocyte chemoattractant protein-1. These macrophages expressed inducible nitric oxide synthase, vascular endothelial growth factor, and platelet-derived growth factor. HPS plasma increased endothelial tube formation and pulmonary artery smooth muscle cell proliferation. Macrophage depletion prevented and reversed the histological and hemodynamic features of HPS. CBDL lungs demonstrated increased medial thickness and obstruction of small pulmonary arteries. Nitric oxide synthase inhibition unmasked exaggerated pulmonary vasoconstrictor responses in HPS. Patients with cirrhosis had increased pulmonary intravascular macrophage accumulation and capillary density. CONCLUSIONS HPS results from intravascular accumulation of CD68(+)macrophages. An occult proliferative vasculopathy may explain the occasional transition to portopulmonary hypertension. Macrophage depletion may have therapeutic potential in HPS.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/physiology
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/physiology
- Arteriovenous Malformations/etiology
- Arteriovenous Malformations/physiopathology
- Disease Models, Animal
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Hepatopulmonary Syndrome/etiology
- Hepatopulmonary Syndrome/immunology
- Humans
- Lung/blood supply
- Lung/cytology
- Lung/immunology
- Macrophages/immunology
- Macrophages/physiology
- Male
- Muscle, Smooth, Vascular/physiopathology
- Nitric Oxide Synthase Type II/antagonists & inhibitors
- Nitric Oxide Synthase Type II/physiology
- Platelet-Derived Growth Factor/antagonists & inhibitors
- Platelet-Derived Growth Factor/physiology
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/physiology
- Vascular Endothelial Growth Factor A/antagonists & inhibitors
- Vascular Endothelial Growth Factor A/physiology
Collapse
Affiliation(s)
- Thenappan Thenappan
- Section of Cardiology, Department of Medicine, The University of Chicago, Chicago, Illinois; and The Cardiovascular Research Institute, Kurume University, Kurume, Fukuoka, Japan
| | - Ankush Goel
- Section of Cardiology, Department of Medicine, The University of Chicago, Chicago, Illinois; and The Cardiovascular Research Institute, Kurume University, Kurume, Fukuoka, Japan
| | - Glenn Marsboom
- Section of Cardiology, Department of Medicine, The University of Chicago, Chicago, Illinois; and The Cardiovascular Research Institute, Kurume University, Kurume, Fukuoka, Japan
| | - Yong-Hu Fang
- Section of Cardiology, Department of Medicine, The University of Chicago, Chicago, Illinois; and The Cardiovascular Research Institute, Kurume University, Kurume, Fukuoka, Japan
| | - Peter T. Toth
- Section of Cardiology, Department of Medicine, The University of Chicago, Chicago, Illinois; and The Cardiovascular Research Institute, Kurume University, Kurume, Fukuoka, Japan
| | - Hannah J. Zhang
- Section of Cardiology, Department of Medicine, The University of Chicago, Chicago, Illinois; and The Cardiovascular Research Institute, Kurume University, Kurume, Fukuoka, Japan
| | - Hidemi Kajimoto
- Section of Cardiology, Department of Medicine, The University of Chicago, Chicago, Illinois; and The Cardiovascular Research Institute, Kurume University, Kurume, Fukuoka, Japan
| | - Zhigang Hong
- Section of Cardiology, Department of Medicine, The University of Chicago, Chicago, Illinois; and The Cardiovascular Research Institute, Kurume University, Kurume, Fukuoka, Japan
| | - Jonathan Paul
- Section of Cardiology, Department of Medicine, The University of Chicago, Chicago, Illinois; and The Cardiovascular Research Institute, Kurume University, Kurume, Fukuoka, Japan
| | - Christian Wietholt
- Section of Cardiology, Department of Medicine, The University of Chicago, Chicago, Illinois; and The Cardiovascular Research Institute, Kurume University, Kurume, Fukuoka, Japan
| | - Jennifer Pogoriler
- Section of Cardiology, Department of Medicine, The University of Chicago, Chicago, Illinois; and The Cardiovascular Research Institute, Kurume University, Kurume, Fukuoka, Japan
| | - Lin Piao
- Section of Cardiology, Department of Medicine, The University of Chicago, Chicago, Illinois; and The Cardiovascular Research Institute, Kurume University, Kurume, Fukuoka, Japan
| | - Jalees Rehman
- Section of Cardiology, Department of Medicine, The University of Chicago, Chicago, Illinois; and The Cardiovascular Research Institute, Kurume University, Kurume, Fukuoka, Japan
| | - Stephen L. Archer
- Section of Cardiology, Department of Medicine, The University of Chicago, Chicago, Illinois; and The Cardiovascular Research Institute, Kurume University, Kurume, Fukuoka, Japan
| |
Collapse
|
7
|
Zipprich A, Loureiro-Silva MR, Jain D, D'Silva I, Groszmann RJ. Nitric oxide and vascular remodeling modulate hepatic arterial vascular resistance in the isolated perfused cirrhotic rat liver. J Hepatol 2008; 49:739-45. [PMID: 18804307 DOI: 10.1016/j.jhep.2008.06.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 06/02/2008] [Accepted: 06/04/2008] [Indexed: 12/25/2022]
Abstract
BACKGROUND/AIMS Hepatic arterial resistance is modulated by the hepatic arterioles but the role of NO and vascular remodeling in hepatic arterial resistance in cirrhosis is unknown. METHODS Cirrhosis was induced by CCl(4) or BDL. Using a bivascular liver perfusion dose-responses curves to methoxamine were obtained from the hepatic artery in absence and presence of L-NMMA. Lumen-diameter, wall thickness and number of smooth muscle nuclei were quantitated in the arteries using image analysis. RESULTS Hepatic arterial resistance and the response to methoxamine were lower in cirrhosis compared to controls (p< or = 0.04) and lower in BDL compared to CCl(4) (p< or = 0.01). L-NMMA increased the response to methoxamine in CCl(4) (p=0.002) and BDL (p=0.05) but corrected the response only in CCl(4) (p=n.s. vs. control). Wall thickness and the number of smooth muscle nuclei were significantly smaller in cirrhosis compared to controls (p<0.05) and the number of nuclei was also lower in BDL compared to CCl(4) (p=0.005). CONCLUSIONS NO is the main modulator of hepatic arterial resistance in CCl(4) but not in BDL. Intrahepatic arterial remodeling is present in both cirrhotic models but is greater in BDL. This indicates a larger role of structural changes in the control of hepatic arterial resistance in BDL.
Collapse
Affiliation(s)
- Alexander Zipprich
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | |
Collapse
|
8
|
Schwenke DO, Tokudome T, Shirai M, Hosoda H, Horio T, Kishimoto I, Kangawa K. Exogenous ghrelin attenuates the progression of chronic hypoxia-induced pulmonary hypertension in conscious rats. Endocrinology 2008; 149:237-44. [PMID: 17916633 DOI: 10.1210/en.2007-0833] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chronic exposure to hypoxia, a common adverse consequence of most pulmonary disorders, can lead to a sustained increase in pulmonary arterial pressure (PAP), right ventricular hypertrophy, and is, therefore, closely associated with heart failure and increased mortality. Ghrelin, originally identified as an endogenous GH secretagogue, has recently been shown to possess potent vasodilator properties, likely involving modulation of the vascular endothelium and its associated vasoactive peptides. In this study we hypothesized that ghrelin would impede the pathogenesis of pulmonary arterial hypertension during chronic hypoxia (CH). PAP was continuously measured using radiotelemetry, in conscious male Sprague Dawley rats, in normoxia and during 2-wk CH (10% O(2)). During this hypoxic period, rats received a daily sc injection of either saline or ghrelin (150 microg/kg). Subsequently, heart and lung samples were collected for morphological, histological, and molecular analyses. CH significantly elevated PAP in saline-treated rats, increased wall thickness of peripheral pulmonary arteries, and, consequently, induced right ventricular hypertrophy. In these rats, CH also led to the overexpression of endothelial nitric oxide synthase mRNA and protein, as well as endothelin-1 mRNA within the lung. Exogenous ghrelin administration attenuated the CH-induced overexpression of endothelial nitric oxide synthase mRNA and protein, as well as endothelin-1 mRNA. Consequently, ghrelin significantly attenuated the development of pulmonary arterial hypertension, pulmonary vascular remodeling, and right ventricular hypertrophy. These results demonstrate the therapeutic benefits of ghrelin for impeding the pathogenesis of pulmonary hypertension and right ventricular hypertrophy, particularly in subjects prone to CH (e.g. pulmonary disorders).
Collapse
Affiliation(s)
- Daryl O Schwenke
- Department of Biochemistry, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Tieppo J, Vercelino R, Dias AS, Silva Vaz MF, Silveira TR, Marroni CA, Marroni NP, Henriques JAP, Picada JN. Evaluation of the protective effects of quercetin in the hepatopulmonary syndrome. Food Chem Toxicol 2007; 45:1140-6. [PMID: 17306429 DOI: 10.1016/j.fct.2006.12.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 12/18/2006] [Accepted: 12/25/2006] [Indexed: 11/21/2022]
Abstract
The hepatopulmonary syndrome (HPS) occurs when intrapulmonary dilatation causes hypoxemia in cirrhosis. The free radicals may play a significant contributory role in the progression of HPS, and flavonoid agents could protect against deleterious effects of free radicals. The flavonoid quercetin was evaluated in an experimental model of biliary cirrhosis induced by bile duct ligation (BDL) in rats. Quercetin was administered at 50mg/kg for 14 days to cirrhotic and non-cirrhotic rats. Bone marrow was extracted from animals to analyze micronuclei. Lung, liver and blood were extracted to detect DNA damage using the comet assay. The results showed that the micronuclei and DNA damages to lung and liver were increased in BDL rats. Quercetin caused no damage to the DNA while decreasing the occurrence of micronucleated cells in bone marrow as well as DNA damage to lung and liver in cirrhotic rats. Quercetin showed antimutagenic activity against hydroperoxides as evaluated by the oxidative stress sensitive bacterial strains TA102 Salmonella typhimurium and IC203 Escherichia coli, suggesting protection by free radical scavenging. In Saccharomyces cerevisie yeast strains lacking mitochondrial or cytosolic superoxide dismutase, these results indicate that quercetin protects cells by induction of antioxidant enzymes. The present study is the first report of genotoxic/antigenotoxic effects of quercetin in a model of animal cirrhosis. In this model, quercetin was not able to induce genotoxicity and, conversely, it increased the genomic stability in the cirrhotic rats, suggesting beneficial effects, probably by its antioxidant properties.
Collapse
Affiliation(s)
- J Tieppo
- Hospital de Clínicas de Porto Alegre, HCPA/Universidade Federal do Rio Grande do Sul, UFRGS, 90035-903, Laboratório de Hepatologia Experimental, Fisiologia, Ramiro Barcelos, 2350 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Herve P, Le Pavec J, Sztrymf B, Decante B, Savale L, Sitbon O. Pulmonary vascular abnormalities in cirrhosis. Best Pract Res Clin Gastroenterol 2007; 21:141-59. [PMID: 17223502 DOI: 10.1016/j.bpg.2006.07.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two pulmonary vascular disorders can occur in liver disease and/or portal hypertension: the hepatopulmonary syndrome (HPS), which is characterized by intrapulmonary vascular dilatations, and portopulmonary hypertension (POPH), in which pulmonary vascular resistance is elevated. POPH and HPS are characterized by distinct pulmonary microvascular remodelling, which occurs at different anatomical sites of the pulmonary microcirculation. The exact pathophysiological mechanisms of these pulmonary vascular disorders are unknown. However, as HPS and POPH have been reported in patients with extrahepatic portal hypertension, the factor that determines their development must be portal hypertension. The clinical presentations are very different, with gas exchange impairment in HPS and hemodynamic failure in POPH. The severity of HPS seems to parallel the severity of liver failure, whereas no simple relationship has been identified between hepatic impairment and the severity of POPH. Resolution of HPS is common after liver transplantation, which has an uncertain effect in POPH.
Collapse
Affiliation(s)
- Philippe Herve
- National French Reference Centre for Pulmonary Arterial Hypertension, UPRES EA 2705, Service de Pneumologie et Réanimation Respiratoire, Hôpital Antoine Béclère, Assistance Publique-Hôpitaux de Paris, Université Paris-Sud, Clamart, France.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
INTRODUCTION Porto-pulmonary hypertension (PoPH) is the association of pulmonary artery hypertension and portal hypertension. The diagnosis of PoPH is based on pulmonary haemodynamic criteria, obtained via right heart catheterisation, including an increase in mean pulmonary arterial pressure (> 25 mmHg) and in pulmonary vascular resistance (> 240 dyn.s.cm-5). STATE OF THE ART The exact pathophysiological mechanisms of PoPH are unknown. However, since PoPH has been reported in patients with non-hepatic portal hypertension, the factor that determines the development must be portal hypertension rather than liver disease per se. Moreover, no simple relationship has been identified between the degree of hepatic impairment and the severity of PoPH. The clinical presentation is non-specific with haemodynamic failure occurring at the end stage. As a consequence, screening by annual transthoracic echocardiography is highly recommended in potential liver transplant candidates. Therapy with prostacyclin analogues may partially relieve pulmonary arterial hypertension (PAH). Liver transplantation has an uncertain effect in PoPH and because PoPH is associated with a high perioperative mortality, moderate to severe PoPH remains a contraindication for liver transplantation. PERSPECTIVES AND CONCLUSIONS Recent advances in the management of PoPH have improved the prognosis. The safety and efficacy of oral endothelin receptor antagonists and oral phosphodiesterase inhibitors is currently under evaluation. A therapeutic approach utilising combinations of drugs should provide better long-term results.
Collapse
Affiliation(s)
- F Chabot
- Service des Maladies Respiratoires et Réanimation Respiratoire, CHU Nancy, Université Henri Poincaré, Nancy, France.
| | | | | | | | | | | | | |
Collapse
|
12
|
Ivy DD, McMurtry IF, Colvin K, Imamura M, Oka M, Lee DS, Gebb S, Jones PL. Development of occlusive neointimal lesions in distal pulmonary arteries of endothelin B receptor-deficient rats: a new model of severe pulmonary arterial hypertension. Circulation 2005; 111:2988-96. [PMID: 15927975 PMCID: PMC1934986 DOI: 10.1161/circulationaha.104.491456] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Human pulmonary arterial hypertension (PAH) is characterized by proliferation of vascular smooth muscle and, in its more severe form, by the development of occlusive neointimal lesions. However, few animal models of pulmonary neointimal proliferation exist, thereby limiting a complete understanding of the pathobiology of PAH. Recent studies of the endothelin (ET) system demonstrate that deficiency of the ET(B) receptor predisposes adult rats to acute and chronic hypoxic PAH, yet these animals fail to develop neointimal lesions. Herein, we determined and thereafter showed that exposure of ET(B) receptor-deficient rats to the endothelial toxin monocrotaline (MCT) leads to the development of neointimal lesions that share hallmarks of human PAH. METHODS AND RESULTS The pulmonary hemodynamic and morphometric effects of 60 mg/kg MCT in control (MCT(+/+)) and ET(B) receptor-deficient (MCT(sl/sl)) rats at 6 weeks of age were assessed. MCT(sl/sl) rats developed more severe PAH, characterized by elevated pulmonary artery pressure, diminished cardiac output, and right ventricular hypertrophy. In MCT(sl/sl) rats, morphometric evaluation revealed the presence of neointimal lesions within small distal pulmonary arteries, increased medial wall thickness, and decreased arterial-to-alveolar ratio. In keeping with this, barium angiography revealed diminished distal pulmonary vasculature of MCT(sl/sl) rat lungs. Cells within neointimal lesions expressed smooth muscle and endothelial cell markers. Moreover, cells within neointimal lesions exhibited increased levels of proliferation and were located in a tissue microenvironment enriched with vascular endothelial growth factor, tenascin-C, and activated matrix metalloproteinase-9, factors already implicated in human PAH. Finally, assessment of steady state mRNA showed that whereas expression of ET(B) receptors was decreased in MCT(sl/sl) rat lungs, ET(A) receptor expression increased. CONCLUSIONS Deficiency of the ET(B) receptor markedly accelerates the progression of PAH in rats treated with MCT and enhances the appearance of cellular and molecular markers associated with the pathobiology of PAH. Collectively, these results suggest an overall antiproliferative effect of the ET(B) receptor in pulmonary vascular homeostasis.
Collapse
Affiliation(s)
- D Dunbar Ivy
- Section of Pediatric Cardiology, University of Colorado School of Medicine and Children's Hospital, Denver 80218, USA.
| | | | | | | | | | | | | | | |
Collapse
|