1
|
Gomez M, Montalvo S, Conde D, Ibarra-Mejia G, Gurovich AN. The effects of eccentric cycling on vascular reactivity. Front Physiol 2025; 16:1554054. [PMID: 40177355 PMCID: PMC11961952 DOI: 10.3389/fphys.2025.1554054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Purpose Eccentric cycling has gained attention as a novel exercise modality that increases muscle performance at lower metabolic demand, which could enhance cardiovascular rehabilitation. However, endothelial function response to eccentric cycling (ECC) has yielded contradictory results. Therefore, the purpose of this study was to determine the effect of 30 min of moderate-intensity cycling ECC on endothelial function. Methods A total of 15 (9 females, 6 males) young, apparently healthy participants were recruited for two laboratory visits. First, a maximum oxygen consumption (VO2max) and blood lactate (BLa) threshold were measured to determine moderate workload intensity, followed by a familiarization stage on an ECC ergometer. During the second visit, a 30-min of moderate ECC was performed 72 h after the first visit. Endothelial function was measured via Flow-Mediated Dilation (FMD) pre- and post-exercise bout. FMD was calculated following traditional recommendations and adjusting for exercise-induced endothelial shear stress (ESS), utilizing the same pre-exercise baseline artery diameter for post-exercise FMD calculations. Results There was a significant increase in endothelial function (p = 0.037) when adjusting pre-exercise baseline diameter to adjust for ESS, but when utilizing the traditional method no change in endothelial function was observed. Conclusion 30-min of moderate ECC showed a significant improvement in endothelial function when accounting for exercise-induced ESS. These results support the use of the pre-exercise baseline diameter when calculating post-exercise FMD to avoid the exercise-induced ESS or muscle metabolites effects on post-exercise artery diameter.
Collapse
Affiliation(s)
- Manuel Gomez
- Clinical Applied Physiology Laboratory, Department of Physical Therapy and Movement Science, The University of Texas at El Paso, El Paso, TX, United States
- BioErgonomics Laboratory, Department of Public Health Sciences, The University of Texas at El Paso, El Paso, TX, United States
| | - Samuel Montalvo
- Stanford Sports Cardiology, Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
- Wu Tsai Human Performance Alliance, Stanford University, Palo Alto, CA, United States
| | - Daniel Conde
- Clinical Applied Physiology Laboratory, Department of Physical Therapy and Movement Science, The University of Texas at El Paso, El Paso, TX, United States
- BioErgonomics Laboratory, Department of Public Health Sciences, The University of Texas at El Paso, El Paso, TX, United States
| | - Gabriel Ibarra-Mejia
- BioErgonomics Laboratory, Department of Public Health Sciences, The University of Texas at El Paso, El Paso, TX, United States
| | - Alvaro N. Gurovich
- Clinical Applied Physiology Laboratory, Department of Physical Therapy and Movement Science, The University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
2
|
Giloteaux L, Glass KA, Germain A, Franconi CJ, Zhang S, Hanson MR. Dysregulation of extracellular vesicle protein cargo in female myalgic encephalomyelitis/chronic fatigue syndrome cases and sedentary controls in response to maximal exercise. J Extracell Vesicles 2024; 13:e12403. [PMID: 38173127 PMCID: PMC10764978 DOI: 10.1002/jev2.12403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/27/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
In healthy individuals, physical exercise improves cardiovascular health and muscle strength, alleviates fatigue and reduces the risk of chronic diseases. Although exercise is suggested as a lifestyle intervention to manage various chronic illnesses, it negatively affects people with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), who suffer from exercise intolerance. We hypothesized that altered extracellular vesicle (EV) signalling in ME/CFS patients after an exercise challenge may contribute to their prolonged and exacerbated negative response to exertion (post-exertional malaise). EVs were isolated by size exclusion chromatography from the plasma of 18 female ME/CFS patients and 17 age- and BMI-matched female sedentary controls at three time points: before, 15 min, and 24 h after a maximal cardiopulmonary exercise test. EVs were characterized using nanoparticle tracking analysis and their protein cargo was quantified using Tandem Mass Tag-based (TMT) proteomics. The results show that exercise affects the EV proteome in ME/CFS patients differently than in healthy individuals and that changes in EV proteins after exercise are strongly correlated with symptom severity in ME/CFS. Differentially abundant proteins in ME/CFS patients versus controls were involved in many pathways and systems, including coagulation processes, muscle contraction (both smooth and skeletal muscle), cytoskeletal proteins, the immune system and brain signalling.
Collapse
Affiliation(s)
- Ludovic Giloteaux
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Katherine A. Glass
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Arnaud Germain
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Carl J. Franconi
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of BiotechnologyCornell UniversityIthacaNew YorkUSA
| | - Maureen R. Hanson
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
3
|
Jodoin HL, Hinks A, Roussel OP, Contento VS, Dalton BH, Power GA. Eccentric exercise-induced muscle weakness abolishes sex differences in fatigability during sustained submaximal isometric contractions. JOURNAL OF SPORT AND HEALTH SCIENCE 2023:S2095-2546(23)00014-5. [PMID: 36801454 PMCID: PMC10362487 DOI: 10.1016/j.jshs.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/24/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Females are typically less fatigable than males during sustained isometric contractions at lower isometric contraction intensities. This sex difference in fatigability becomes more variable during higher intensity isometric and dynamic contractions. While less fatiguing than isometric or concentric contractions, eccentric contractions induce greater and longer lasting impairments in force production. However, it is not clear how muscle weakness influences fatigability in males and females during sustained isometric contractions. METHODS We investigated the effects of eccentric exercise-induced muscle weakness on time to task failure (TTF) during a sustained submaximal isometric contraction in young (18-30 years) healthy males (n = 9) and females (n = 10). Participants performed a sustained isometric contraction of the dorsiflexors at 35° plantar flexion by matching a 30% maximal voluntary contraction (MVC) torque target until task failure (i.e., falling below 5% of their target torque for ≥2 s). The same sustained isometric contraction was repeated 30 min after 150 maximal eccentric contractions. Agonist and antagonist activation were assessed using surface electromyography over the tibialis anterior and soleus muscles, respectively. RESULTS Males were ∼41% stronger than females. Following eccentric exercise both males and females experienced an ∼20% decline in maximal voluntary contraction torque. TTF was ∼34% longer in females than males prior to eccentric exercise-induced muscle weakness. However, following eccentric exercise-induced muscle weakness, this sex-related difference was abolished, with both groups having an ∼45% shorter TTF. Notably, there was ∼100% greater antagonist activation in the female group during the sustained isometric contraction following exercise-induced weakness as compared to the males. CONCLUSION This increase in antagonist activation disadvantaged females by decreasing their TTF, resulting in a blunting of their typical fatigability advantage over males.
Collapse
Affiliation(s)
- Hanna L Jodoin
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Olivia P Roussel
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Vincenzo S Contento
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Brian H Dalton
- School of Health and Exercise Science, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
4
|
Tryfonos A, Cocks M, Browning N, Dawson EA. Post-exercise endothelial function is not associated with extracellular vesicle release in healthy young males. Appl Physiol Nutr Metab 2023; 48:209-218. [PMID: 36462215 DOI: 10.1139/apnm-2022-0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Acute exercise can result in temporary decrease in endothelial functions, which may represent a transient period of risk. Numerous mechanisms underpinning these responses included release of extracellular vesicles (EVs) derived from apoptotic or activated endothelial cells and platelets. This study aims to compare the time course of endothelial responses to moderate-intensity continuous exercise (MICE) and high-intensity interval exercise (HIIE) and the associations with EV release. Eighteen young healthy males (age: 22.6 ± 3.7 years, BMI: 25.6 ± 2.5 m2/kg, and VO2peak: 38.6 ± 6.5 mL/kg/min) completed two randomly assigned exercises: HIIE (10 × 1 min-@-90% heart rate reserve (HRR) and 1 min passive recovery) and MICE (30 min-@-70% HRR) on a cycle ergometer. Flow-mediated dilation (FMD) was used to assess endothelial function and blood samples were collected to evaluate endothelial cell-derived EV (CD62E+) and platelet-derived EV (CD41a+), 10, 60, and 120 min before and after exercise. There were similar increases but different time courses (P = 0.017) in FMD (increased 10 min post-HIIE, P < 0.0001 and 60 min post-MICE, P = 0.038). CD62E+ remained unchanged (P = 0.530), whereas overall CD41a+ release was reduced 60 min post-exercise (P = 0.040). FMD was not associated with EV absolute release or change (P > 0.05). Acute exercise resulted in similar improvements, but different time course in FMD following either exercise. Whilst EVs were not associated with FMD, the reduction in platelet-derived EVs may represent a protective mechanism following acute exercise.
Collapse
Affiliation(s)
- Andrea Tryfonos
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK.,Department of Laboratory Medicine, Division of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden
| | - Matthew Cocks
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | | | - Ellen A Dawson
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
5
|
Teixeira M, Martins TS, Gouveia M, Henriques AG, Santos M, Ribeiro F. Effects of Exercise on Circulating Extracellular Vesicles in Cardiovascular Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:241-258. [PMID: 37603284 DOI: 10.1007/978-981-99-1443-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The evidence that physical exercise has multiple beneficial effects and is essential to a healthy lifestyle is widely accepted for a long-time. The functional and psychological changes promoted by exercise improve clinical outcomes and prognosis in several diseases, by decreasing mortality, disease severity, and hospital admissions. Nonetheless, the mechanisms that regulate the release, uptake, and communication of several factors in response to exercise are still not well defined. In the last years, extracellular vesicles have attracted significant interest in the scientific community due to their ability to carry and deliver proteins, lipids, and miRNA to distant organs in the body, promoting a very exciting crosstalk machinery. Moreover, increasing evidence suggests that exercise can modulate the release of those factors within EVs into the circulation, mediating its systemic adaptations.In this chapter, we summarize the effects of acute and chronic exercise on the extracellular vesicle dynamics in healthy subjects and patients with cardiovascular disease. The understanding of the changes in the cargo and kinetics of extracellular vesicles in response to exercise may open new possibilities of research and encourage the development of novel therapies that mimic the effects of exercise.
Collapse
Affiliation(s)
- Manuel Teixeira
- Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Tânia Soares Martins
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Marisol Gouveia
- Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Ana Gabriela Henriques
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine-iBiMED, University of Aveiro, Aveiro, Portugal
| | - Mário Santos
- Cardiology Service, Hospital Santo António, Centro Hospitalar Universitário do Porto, and Unit for Multidisciplinary Research In Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Fernando Ribeiro
- Institute of Biomedicine-iBiMED, School of Health Sciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
6
|
Doncheva AI, Romero S, Ramirez‐Garrastacho M, Lee S, Kolnes KJ, Tangen DS, Olsen T, Drevon CA, Llorente A, Dalen KT, Hjorth M. Extracellular vesicles and microRNAs are altered in response to exercise, insulin sensitivity and overweight. Acta Physiol (Oxf) 2022; 236:e13862. [PMID: 36377504 PMCID: PMC9788120 DOI: 10.1111/apha.13862] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 01/29/2023]
Abstract
Extracellular vesicles induced by exercise have emerged as potential mediators of tissue crosstalk. Extracellular vesicles and their cargo miRNAs have been linked to dysglycemia and obesity in animal models, but their role in humans is unclear. AIM The aim of the study was to characterize the miRNA content in plasma extracellular vesicle isolates after acute and long-term exercise and to study associations between extracellular vesicle miRNAs, mRNA expression in skeletal muscle and adipose tissue, and cardiometabolic risk factors. METHODS Sedentary men with or without dysglycemia and overweight underwent an acute bicycle test and a 12-week exercise intervention with extensive metabolic phenotyping. Gene expression in m. vastus lateralis and subcutaneous adipose tissue was measured with RNA sequencing. Extracellular vesicles were purified from plasma with membrane affinity columns or size exclusion chromatography. RESULTS Extracellular vesicle miRNA profiling revealed a transient increase in the number of miRNAs after acute exercise. We identified miRNAs, such as miR-652-3p, that were associated to insulin sensitivity and adiposity. By performing explorative association analyses, we identified two miRNAs, miR-32-5p and miR-339-3p, that were strongly correlated to an adipose tissue macrophage signature. CONCLUSION Numerous miRNAs in plasma extracellular vesicle isolates were increased by exercise, and several miRNAs correlated to insulin sensitivity and adiposity. Our findings warrant future studies to characterize exercise-induced extracellular vesicles and cargo miRNA to clarify where exercise-induced extracellular vesicles originate from, and to determine whether they influence metabolic health or exercise adaptation.
Collapse
Affiliation(s)
| | - Silvana Romero
- Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
| | | | - Sindre Lee
- Department of Transplantation, Institute of Clinical MedicineUniversity of OsloOsloNorway
| | - Kristoffer J. Kolnes
- Steno Diabetes Center OdenseOdense University HospitalOdenseDenmark,Department of Physical PerformanceNorwegian School of Sport SciencesOsloNorway
| | | | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Christian A. Drevon
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway,Department for Mechanical, Electronics and Chemical EngineeringOslo Metropolitan UniversityOsloNorway
| | - Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Marit Hjorth
- Department of Nutrition, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| |
Collapse
|
7
|
Han X, Li T, Li Y, Yang J, Chen S, Zhu X, Wang B, Cheng W, Wang L, Lu Z, Wu X, Jiang Y, Pan G, Zhao M. Exercise and Circulating Microparticles in Healthy Subjects. J Cardiovasc Transl Res 2021; 14:841-856. [PMID: 33495962 DOI: 10.1007/s12265-021-10100-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/06/2021] [Indexed: 12/18/2022]
Abstract
This study aimed to explore the relationship between exercise and circulating microparticles (CMPs). PubMed, Web of Science, Embase, and the Cochrane Library databases were searched until August 13, 2020, using the terms "exercise" and "cell-derived microparticles." The Cochrane tool of risk of bias and the Methodological Index for Non-Randomized Studies were used to grade the studies. Twenty-six studies that met criteria were included in this review, including one before-after self-control study, 2 cohort studies, 4 randomized control trials, 5 case-control studies, and 14 descriptive studies. The studies were divided into a single bout and long-term exercise. The types of MPs contained endothelium-derived microparticles (EMPs), leukocyte-derived microparticles (LMPs), platelet-derived microparticles (PMPs), and erythrocyte-derived microparticles (ErMPs). This first systematic review found that the levels of CMPs continued to increase after a single bout of exercise in untrained subjects and were lower in trained subjects. PMPs expressed a transient increase after a single bout of exercise, and the proportion and duration of PMPs increment reduced in long-term exercise. Most studies showed a decline in LMPs in trained subjects after a single bout and long-term exercise, and variable changes were found in EMPs and ErMPs after exercise. A single bout of exercise drives the vessels exposed to high shear stress that promotes the formation of CMPs. However, the decline in CMPs in trained subjects may be attributed to the fact that they have a better ability to adapt to changes in hemodynamics and cellular function during exercise.
Collapse
Affiliation(s)
- Xiaowan Han
- Dongzhimen Hospital, Department of Cardiovascular Medicine, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Tong Li
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Yang Li
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Jingjing Yang
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Shiqi Chen
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Xiangyu Zhu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Baofu Wang
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Wenkun Cheng
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Lei Wang
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Ziwen Lu
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Xiaoxiao Wu
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Yangyang Jiang
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China
| | - Guozhong Pan
- Dongzhimen Hospital, Department of Cardiovascular Medicine, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China.
| | - Mingjing Zhao
- Dongzhimen Hospital, Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing University of Chinese Medicine, Beijing, 100700, People's Republic of China.
| |
Collapse
|
8
|
Jan Z, Drab M, Drobne D, Bedina Zavec A, Benčina M, Drasler B, Hočevar M, Krek JL, Pađen L, Pajnič M, Repar N, Šimunič B, Štukelj R, Kralj-Iglič V. Decrease in Cellular Nanovesicles Concentration in Blood of Athletes More Than 15 Hours After Marathon. Int J Nanomedicine 2021; 16:443-456. [PMID: 33505159 PMCID: PMC7829122 DOI: 10.2147/ijn.s282200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/12/2020] [Indexed: 12/30/2022] Open
Abstract
Introduction Cellular nanovesicles (CNVs), that are shed from cells, have been recognized as promising indicators of health status. We analyzed the effect of long-distance running on concentration of CNVs, along with some standard blood parameters, in 27 athletes two days before and >15 hours after physical effort. Methods CNVs were isolated by repetitive centrifugation and washing of samples, and assessed by flow cytometry. Cholinesterase (ChE) and glutathione S-transferase (GST) activity were measured spectrophotometrically. Interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) concentrations were measured using enzyme-linked immunosorbent assay (ELISA). C-reactive protein (CRP) was measured with immunoturbidimetric determination and lipidogram parameters were measured by enzymatic colorimetric assay. Flow cytometry was used for blood cell count and mean platelet volume (MPV) measurement. Results More than 15 hours after physical effort a decrease was found in CNVs' concentration in isolates from blood (46%; p<0.05), in ChE activity in whole blood (47%; p<0.001), in plasma (34%; p<0.01), and in erythrocyte suspension (54%; p<0.001), as well as in GST activity in erythrocyte suspension (16%; p<0.01) and in IL-6 concentration in plasma (63%; p<0.05). We found no change in GST activity in plasma and in TNF-α concentration in plasma. Correlations (>0.8; p<0.001) between CNVs' concentration and ChE activity, and GST activity, respectively, in erythrocyte suspension were found. Conclusion We found that >15 hours post-physical effort, CNVs' concentration was below the initial value, concomitant with other measured parameters: ChE and GST activity as well as IL-6 concentration, indicating a favorable effect of physical effort on health status. CNVs' concentration and ChE activity in isolates from peripheral blood proved to have potential as indicators of the response of the human body to inflammation after physical effort. Physical activity should be considered as an important factor in preparation of subjects for blood sampling in procedures focusing on CNV-containing diagnostic and therapeutic compounds.
Collapse
Affiliation(s)
- Zala Jan
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Mitja Drab
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Drobne
- Nanobiology and Nanotoxicology Group, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Apolonija Bedina Zavec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Barbara Drasler
- Nanobiology and Nanotoxicology Group, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Matej Hočevar
- Physics and Chemistry of Materials, Laboratory of Surface Engineering and Applied Surface Science, The Institute of Metals and Technology, Ljubljana, Slovenia
| | - Judita Lea Krek
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Ljubiša Pađen
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Manca Pajnič
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Neža Repar
- Nanobiology and Nanotoxicology Group, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Boštjan Šimunič
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia
| | - Roman Štukelj
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Veronika Kralj-Iglič
- Laboratory of Clinical Biophysics, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
9
|
Barreto RV, de Lima LCR, Denadai BS. Moving forward with backward pedaling: a review on eccentric cycling. Eur J Appl Physiol 2020; 121:381-407. [PMID: 33180156 DOI: 10.1007/s00421-020-04548-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE There is a profound gap in the understanding of the eccentric cycling intensity continuum, which prevents accurate exercise prescription based on desired physiological responses. This may underestimate the applicability of eccentric cycling for different training purposes. Thus, we aimed to summarize recent research findings and screen for possible new approaches in the prescription and investigation of eccentric cycling. METHOD A search for the most relevant and state-of-the-art literature on eccentric cycling was conducted on the PubMed database. Literature from reference lists was also included when relevant. RESULTS Transversal studies present comparisons between physiological responses to eccentric and concentric cycling, performed at the same absolute power output or metabolic load. Longitudinal studies evaluate responses to eccentric cycling training by comparing them with concentric cycling and resistance training outcomes. Only one study investigated maximal eccentric cycling capacity and there are no investigations on physiological thresholds and/or exercise intensity domains during eccentric cycling. No study investigated different protocols of eccentric cycling training and the chronic effects of different load configurations. CONCLUSION Describing physiological responses to eccentric cycling based on its maximal exercise capacity may be a better way to understand it. The available evidence indicates that clinical populations may benefit from improvements in aerobic power/capacity, exercise tolerance, strength and muscle mass, while healthy and trained individuals may require different eccentric cycling training approaches to benefit from similar improvements. There is limited evidence regarding the mechanisms of acute physiological and chronic adaptive responses to eccentric cycling.
Collapse
Affiliation(s)
- Renan Vieira Barreto
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, São Paulo, Brazil
| | | | - Benedito Sérgio Denadai
- Human Performance Laboratory, Department of Physical Education, São Paulo State University, Rio Claro, São Paulo, Brazil.
| |
Collapse
|
10
|
Coratella G, Longo S, Cè E, Esposito F, de Almeida Costa Campos Y, Pereira Guimarães M, Fernandes da Silva S, Dufour SP, Hureau TJ, Lemire M, Favret F, Elmer SJ, LaStayo PC, Wernbom M, Seynnes O, Paulsen G, Bontemps B, Vercruyssen F, Gruet M, Louis J, Mourot L, Rakobowchuk M, Pageaux B, Tremblay J, Peñailillo L, Nosaka K, Hahn D, Raiteri BJ, Škarabot J, Valenzuela PL, Walsh JA, McAndrew DJ, Lepers R, Stapley PJ, Baumert P, Erskine RM, Clos P. Commentaries on Viewpoint: Distinct modalities of eccentric exercise: different recipes, not the same dish. J Appl Physiol (1985) 2020; 127:884-891. [PMID: 31525315 DOI: 10.1152/japplphysiol.00496.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Giuseppe Coratella
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Stefano Longo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Emiliano Cè
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Fabio Esposito
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Yuri de Almeida Costa Campos
- Study Group and Research in Neuromuscular Responses, University of Lavras, Lavras, Brazil,Postgraduate Program of the Faculty of Physical Education and Sports of the University of Juiz de Fora, Juiz de Fora, Brazil
| | - Miller Pereira Guimarães
- Study Group and Research in Neuromuscular Responses, University of Lavras, Lavras, Brazil,Postgraduate Program of the Faculty of Physical Education and Sports of the University of Juiz de Fora, Juiz de Fora, Brazil,Presbyterian College Gammon, Lavras, Brazil
| | | | - Stéphane P. Dufour
- University of Strasbourg, Faculty of Sport Sciences, FMTS (Federation for Translational Medicine, Mitochondria, Oxidative Stress and Muscular Protection Laboratory, Strasbourg, France
| | - Thomas J. Hureau
- University of Strasbourg, Faculty of Sport Sciences, FMTS (Federation for Translational Medicine, Mitochondria, Oxidative Stress and Muscular Protection Laboratory, Strasbourg, France
| | - Marcel Lemire
- University of Strasbourg, Faculty of Sport Sciences, FMTS (Federation for Translational Medicine, Mitochondria, Oxidative Stress and Muscular Protection Laboratory, Strasbourg, France
| | - Fabrice Favret
- University of Strasbourg, Faculty of Sport Sciences, FMTS (Federation for Translational Medicine, Mitochondria, Oxidative Stress and Muscular Protection Laboratory, Strasbourg, France
| | - Steven J. Elmer
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Paul C. LaStayo
- Department of Physical Therapy, University of Utah, Salt Lake City, Utah
| | - Mathias Wernbom
- Center for Health and Performance, Department of Food and Nutrition and Sport Science, University of Gothenburg, Gothenburg, Sweden,Institute of Neuroscience and Physiology, Department of Health and Rehabilitation, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olivier Seynnes
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Gøran Paulsen
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | | | | | - Mathieu Gruet
- LAMHESS, EA6312, Université de Toulon, Toulon, France
| | - Julien Louis
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Laurent Mourot
- EA3920 Prognostic Factors and Regulatory Factors of Cardiac and Vascular Pathologies, Exercise Performance Health Innovation (EPHI) platform, University of Bourgogne Franche- Comté, Besançon, France,National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Mark Rakobowchuk
- Department of Biological Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Benjamin Pageaux
- École de kinésiologie et des sciences l’activité physique (EKSAP), Faculté de médecine, Université de Montréal, Montréal, Canada,Centre de recherche de l’Institut universitaire de gériatrie de Montréal, Montréal, Canada
| | - Jonathan Tremblay
- École de kinésiologie et des sciences l’activité physique (EKSAP), Faculté de médecine, Université de Montréal, Montréal, Canada
| | - Luis Peñailillo
- Universidad Finis Terrae, Santiago, Chile and Edith Cowan University, Perth, Australia
| | - Kazunori Nosaka
- Universidad Finis Terrae, Santiago, Chile and Edith Cowan University, Perth, Australia
| | - Daniel Hahn
- Ruhr University Bochum, Faculty of Sport Science, Human Movement Science, Bochum, Germany,School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Australia
| | - Brent J. Raiteri
- Ruhr University Bochum, Faculty of Sport Science, Human Movement Science, Bochum, Germany
| | - Jakob Škarabot
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | | | - Joel A. Walsh
- Neural Control of Movement Group, School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, New South Wales, Australia,Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, New South Wales, Australia
| | - Darryl J. McAndrew
- Neural Control of Movement Group, School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, New South Wales, Australia,Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, New South Wales, Australia
| | - Romuald Lepers
- CAPS UMR1093, Institut National de la Santé et de la Recherche Médicale (INSERM), UFR des Sciences du Sport, Université Bourgogne Franche-Comté, Dijon, France
| | - Paul J. Stapley
- Neural Control of Movement Group, School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, New South Wales, Australia,Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, New South Wales, Australia
| | - P Baumert
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom,Exercise Biology Group, Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - R M Erskine
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom,Institute of Sport, Exercise & Health, University College London, London, United Kingdom
| | - Pierre Clos
- CAPS UMR1093, Institut National de la Santé et de la Recherche Médicale (INSERM), UFR des Sciences du Sport, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
11
|
Effect of Physical Exercise on the Release of Microparticles with Angiogenic Potential. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144871] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular communication has a fundamental role in both human physiological and pathological states and various mechanisms are involved in the crosstalk between organs. Among these, microparticles (MPs) have an important involvement. MPs are a subtype of extracellular vesicles produced by a variety of cells following activation or apoptosis. They are normally present in physiological conditions, but their concentration varies in pathological states such as cardiovascular disease, diabetes mellitus, or cancer. Acute and chronic physical exercise are able to modify MPs amounts as well. Among various actions, exercise-responsive MPs affect angiogenesis, the process through which new blood vessels grow from pre-existing vessels. Usually, the neo vascular growth has functional role; but an aberrant neovascularization accompanies several oncogenic, ischemic, or inflammatory diseases. In addition, angiogenesis is one of the key adaptations to physical exercise and training. In the present review, we report evidence regarding the effect of various typologies of exercise on circulating MPs that are able to affect angiogenesis.
Collapse
|
12
|
Kapilevich LV, Kologrivova VV, Zakharova AN, Mourot L. Post-exercise Endothelium-Dependent Vasodilation Is Dependent on Training Status. Front Physiol 2020; 11:348. [PMID: 32457640 PMCID: PMC7227416 DOI: 10.3389/fphys.2020.00348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/26/2020] [Indexed: 02/01/2023] Open
Abstract
The effect of training status on post-exercise flow-mediated dilation (FMD) is not well characterized. We tested the hypothesis that the more trained the subjects, the lower the reduction in FMD after an acute bout of aerobic exercise. Forty-seven men (mean ± SD, age: 20.1 ± 1.2 years, body mass: 75.5 ± 5.1 kg, height 178.1 ± 5.4 cm) were divided into five groups with different training characteristics (sedentary, two different groups of active subjects, two different groups of well-trained subjects - runners and weightlifters). Brachial artery FMD (blood pressure cuff placed around the arm distal to the probe with the proximal border adjacent to the medial epicondyle; 5 min at a pressure of 220 mmHg) was assessed before and during 3 min immediately after a bout of cycling exercise at a relative intensity of 170 bpm [(physical work capacity (PWC170)]. At baseline, a progressive increase in FMD was observed in the participants with the higher training status, if the training remained moderate. Indeed, FMD was reduced in runners and weightlifters compared to those who were moderately trained. After PWC170, FMD did not significantly change in sedentary and highly trained runners, significantly increased in the two groups of active subjects but significantly decreased in highly trained weightlifters. These results showed that endothelium-dependent vasodilation evaluated using brachial FMD is maintained or improved following acute aerobic exercise in moderately trained participants, but not in well-trained participants, especially if they are engaged in resistance training.
Collapse
Affiliation(s)
- L V Kapilevich
- Faculty of Physical Education, National Research Tomsk State University, Tomsk, Russia.,Division for Physical Education, National Research Tomsk Polytechnic University, Tomsk, Russia.,Siberian State Medical University, Tomsk, Russia
| | - V V Kologrivova
- Faculty of Physical Education, National Research Tomsk State University, Tomsk, Russia
| | - A N Zakharova
- Faculty of Physical Education, National Research Tomsk State University, Tomsk, Russia
| | - Laurent Mourot
- Division for Physical Education, National Research Tomsk Polytechnic University, Tomsk, Russia.,EA3920 Prognostic Factors and Regulatory Factors of Cardiac and Vascular Pathologies, Exercise Performance Health Innovation (EPHI) platform, University Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
13
|
Brahmer A, Neuberger E, Esch-Heisser L, Haller N, Jorgensen MM, Baek R, Möbius W, Simon P, Krämer-Albers EM. Platelets, endothelial cells and leukocytes contribute to the exercise-triggered release of extracellular vesicles into the circulation. J Extracell Vesicles 2019; 8:1615820. [PMID: 31191831 PMCID: PMC6542154 DOI: 10.1080/20013078.2019.1615820] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/05/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022] Open
Abstract
Physical activity initiates a wide range of multi-systemic adaptations that promote mental and physical health. Recent work demonstrated that exercise triggers the release of extracellular vesicles (EVs) into the circulation, possibly contributing to exercise-associated adaptive systemic signalling. Circulating EVs comprise a heterogeneous collection of different EV-subclasses released from various cell types. So far, a comprehensive picture of the parental and target cell types, EV-subpopulation diversity and functional properties of EVs released during exercise (ExerVs) is lacking. Here, we performed a detailed EV-phenotyping analysis to explore the cellular origin and potential subtypes of ExerVs. Healthy male athletes were subjected to an incremental cycling test until exhaustion and blood was drawn before, during, and immediately after the test. Analysis of total blood plasma by EV Array suggested endothelial and leukocyte characteristics of ExerVs. We further purified ExerVs from plasma by size exclusion chromatography as well as CD9-, CD63- or CD81-immunobead isolation to examine ExerV-subclass dynamics. EV-marker analysis demonstrated increasing EV-levels during cycling exercise, with highest levels at peak exercise in all EV-subclasses analysed. Phenotyping of ExerVs using a multiplexed flow-cytometry platform revealed a pattern of cell surface markers associated with ExerVs and identified lymphocytes (CD4, CD8), monocytes (CD14), platelets (CD41, CD42, CD62P), endothelial cells (CD105, CD146) and antigen presenting cells (MHC-II) as ExerV-parental cells. We conclude that multiple cell types associated with the circulatory system contribute to a pool of heterogeneous ExerVs, which may be involved in exercise-related signalling mechanisms and tissue crosstalk.
Collapse
Affiliation(s)
- Alexandra Brahmer
- Institute of Developmental Biology and Neurobiology, Biology of Extracellular Vesicles, University of Mainz, Mainz, Germany
- Department of Sports Medicine, Rehabilitation and Disease Prevention, University of Mainz, Mainz, Germany
| | - Elmo Neuberger
- Department of Sports Medicine, Rehabilitation and Disease Prevention, University of Mainz, Mainz, Germany
| | - Leona Esch-Heisser
- Institute of Developmental Biology and Neurobiology, Biology of Extracellular Vesicles, University of Mainz, Mainz, Germany
| | - Nils Haller
- Department of Sports Medicine, Rehabilitation and Disease Prevention, University of Mainz, Mainz, Germany
| | - Malene Moeller Jorgensen
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
- Part of Extracellular Vesicle Research Center Denmark (EVsearch.dk), Aalborg, Denmark
| | - Rikke Baek
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
- Part of Extracellular Vesicle Research Center Denmark (EVsearch.dk), Aalborg, Denmark
| | - Wiebke Möbius
- Department of Neurogenetics, Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Perikles Simon
- Department of Sports Medicine, Rehabilitation and Disease Prevention, University of Mainz, Mainz, Germany
| | - Eva-Maria Krämer-Albers
- Institute of Developmental Biology and Neurobiology, Biology of Extracellular Vesicles, University of Mainz, Mainz, Germany
| |
Collapse
|
14
|
Stavres J, Fischer SM, McDaniel J. Exaggerated post exercise hypotension following concentric but not eccentric resistance exercise: Implications for metabolism. Eur J Sport Sci 2019; 19:983-993. [PMID: 30606088 DOI: 10.1080/17461391.2018.1564368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Post exercise hypotension (PEH) is primarily attributed to post-exercise vasodilation via central and peripheral mechanisms. However, the specific contribution of metabolic cost during exercise, independent of force production, is less clear. This study aimed to use isolated concentric and eccentric exercise to examine the role of metabolic activity in eliciting PEH, independent of total work. Twelve participants (6 male) completed upper and lower body concentric (CONC), eccentric (ECC), and traditional (TRAD) exercise sessions matched for work (3 × 10 in TRAD and 3 × 20 in CONC and ECC; all at 65% 1RM). Blood pressure was collected at baseline and every 15 min after exercise for 120 min. Brachial blood flow and vascular conductance were also assessed at baseline, immediately after exercise, and every 30 min after exercise. ⩒O2 was lower during ECC compared to CONC and TRAD (-2.7 mL/Kg/min ± 0.4 and -2.2 mL/Kg/min ± 0.4, respectively p < 0.001). CONC augmented the PEH response (Peak ΔMAP -3.3 mmHg ± 0.9 [mean ± SE], p = 0.006) through 75 min of recovery and ECC elicited a post-exercise hypertensive response through 120 min of recovery (Peak ΔMAP +4.5 mmHg ± 0.8, p < 0.001). CONC and TRAD elicited greater increases in brachial blood flow post exercise than ECC (Peak Δ brachial flow +190.4 mL/min ± 32.3, +202.3 mL/min ± 39.2, and 69.6 mL/min ± 19.8, respectively, p ≤ 0.005), while conductance increased immediately post exercise in all conditions and then decreased throughout recovery following ECC (-32.9 mL/min/mmHg ± 9.3, p = 0.005). These data suggest that more metabolically demanding concentric exercise augments PEH compared to work-matched eccentric exercise.
Collapse
Affiliation(s)
- Jon Stavres
- a School of Health Sciences, Kent State University , Kent , OH , USA.,b Penn State Milton S. Hershey Medical Center , Hershey , PA , USA
| | - Stephen M Fischer
- a School of Health Sciences, Kent State University , Kent , OH , USA
| | - John McDaniel
- a School of Health Sciences, Kent State University , Kent , OH , USA.,c Louis Stokes Cleveland VA Medical Center , Cleveland , OH , USA
| |
Collapse
|
15
|
Kilic-Toprak E, Unver F, Kilic-Erkek O, Korkmaz H, Ozdemir Y, Oymak B, Oskay A, Bor-Kucukatay M. Increased erythrocyte aggregation following an acute bout of eccentric isokinetic exercise does not exceed two days. Biorheology 2018; 55:15-24. [DOI: 10.3233/bir-180175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Emine Kilic-Toprak
- Pamukkale University, Faculty of Medicine, Department of Physiology, , , Turkey
| | | | - Ozgen Kilic-Erkek
- Pamukkale University, Faculty of Medicine, Department of Physiology, , , Turkey
| | | | - Yasin Ozdemir
- Pamukkale University, Faculty of Medicine, Department of Physiology, , , Turkey
| | - Burak Oymak
- Pamukkale University, Faculty of Medicine, Department of Physiology, , , Turkey
| | | | - Melek Bor-Kucukatay
- Pamukkale University, Faculty of Medicine, Department of Physiology, , , Turkey
| |
Collapse
|
16
|
Wilhelm EN, Mourot L, Rakobowchuk M. Exercise-Derived Microvesicles: A Review of the Literature. Sports Med 2018; 48:2025-2039. [PMID: 29868992 DOI: 10.1007/s40279-018-0943-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Initially suggested as simple cell debris, cell-derived microvesicles (MVs) have now gained acceptance as recognized players in cellular communication and physiology. Shed by most, and perhaps all, human cells, these tiny lipid-membrane vesicles carry bioactive agents, such as proteins, lipids and microRNA from their cell source, and are produced under orchestrated events in response to a myriad of stimuli. Physical exercise introduces systemic physiological challenges capable of acutely disrupting cell homeostasis and stimulating the release of MVs into the circulation. The novel and promising field of exercise-derived MVs is expanding quickly, and the following work provides a review of the influence of exercise on circulating MVs, considering both acute and chronic aspects of exercise and training. Potential effects of the MV response to exercise are highlighted and future directions suggested as exercise and sports sciences extend the realm of extracellular vesicles.
Collapse
Affiliation(s)
- Eurico N Wilhelm
- School of Physical Education, UFPel, Rua Luís de Camões, 625, Três Vendas, Pelotas, RS, 96055-630, Brazil.
| | - Laurent Mourot
- EA3920 Prognostic Factors and Regulatory Factors of Cardiac and Vascular Pathologies, (Exercise Performance Health Innovation-EPHI), University of Bourgogne Franche-Comté, 25000, Besançon, France.,Tomsk Polytechnic University, Tomsk, Russia
| | - Mark Rakobowchuk
- Department of Biological Sciences, Faculty of Science, Thompson Rivers University, Kamloops, BC, Canada
| |
Collapse
|
17
|
Unver F, Kilic-Toprak E, Kilic-Erkek O, Korkmaz H, Yasin O, Oymak B, Oskay A, Bor-Kucukatay M. Hemorheological alterations following an acute bout of nordic hamstring exercise in active male participants1. Clin Hemorheol Microcirc 2018; 71:463-473. [PMID: 30320558 DOI: 10.3233/ch-180402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The Nordic hamstring exercise (NHE) has been proven to be an effective preventive technique for hamstring injuries. Hemorheological parameters (erythrocyte deformability and aggregation) play a critical role in exercise influencing oxygenation. Although previous studies presented hemorheological alterations induced by different types of exercise, changes in red blood cell (RBC) deformability and aggregation following NHE remain unknown. Present study was designed to explore possible alterations in hemorheological and oxidative parameters after an acute bout of NHE. METHODS 10 healthy, male, active students (mean age 19.9±0.23, BMI: 21.56±0.54) participated to the study. They performed a single session of seven-repetitions of NHE followed by a familiarisation period. Blood samples were obtained before and immediately after the exercise from the antecubital vein. Hemorheological parameters were measured by an ektacytometer. RESULTS NHE did not change deformability, hematocrit and oxidative stress but, increased RBC aggregation index (AI, p = 0.011) and decreased RBC aggregation half time (t½, p = 0.009). CONCLUSIONS Our results suggest that, increased RBC aggregation following an acute bout of NHE may result in increased plasma skimming and thus ease the flow of blood.
Collapse
Affiliation(s)
- Fatma Unver
- Pamukkale University, Physical Therapy and Rehabilitation Highschool, Kinikli, Denizli, Turkey
| | - Emine Kilic-Toprak
- Pamukkale University, Faculty of Medicine, Department of Physiology, Kinikli, Denizli, Turkey
| | - Ozgen Kilic-Erkek
- Pamukkale University, Faculty of Medicine, Department of Physiology, Kinikli, Denizli, Turkey
| | - Halil Korkmaz
- Gedik University, Sport Sciences Faculty, Istanbul, Turkey
| | - Ozdemir Yasin
- Pamukkale University, Faculty of Medicine, Department of Physiology, Kinikli, Denizli, Turkey
| | - Burak Oymak
- Pamukkale University, Faculty of Medicine, Department of Physiology, Kinikli, Denizli, Turkey
| | - Alten Oskay
- Suleyman Demirel University, Faculty of Medicine, Department of Emergency Medicine, Isparta, Turkey
| | - Melek Bor-Kucukatay
- Pamukkale University, Faculty of Medicine, Department of Physiology, Kinikli, Denizli, Turkey
| |
Collapse
|
18
|
Hotta K, Behnke BJ, Masamoto K, Shimotsu R, Onodera N, Yamaguchi A, Poole DC, Kano Y. Microvascular permeability of skeletal muscle after eccentric contraction-induced muscle injury: in vivo imaging using two-photon laser scanning microscopy. J Appl Physiol (1985) 2018; 125:369-380. [DOI: 10.1152/japplphysiol.00046.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Via modulation of endothelial integrity and vascular permeability in response to damage, skeletal muscle microvessels play a crucial permissive role in tissue leukocyte invasion. However, direct visual evidence of altered microvascular permeability of skeletal muscle has not been technically feasible, impairing mechanistic understanding of these responses. Two-photon laser scanning microscopy (TPLSM) allows three-dimensional in vivo imaging of skeletal muscle microcirculation. We hypothesized that the regulation of microvascular permeability in vivo is temporally related to acute inflammatory and regenerative processes following muscle injury. To test our hypothesis, tibialis anterior muscles of anesthetized male Wistar rats were subjected to eccentric contractions (ECCs) via electrical stimulation. The skeletal muscle microcirculation was imaged by an intravenously infused fluorescent dye (rhodamine B isothiocyanate-dextran) to assess microvascular permeability via TPLSM 1, 3, and 7 days after ECC. Immunohistochemistry on serial muscle sections was performed to determine the proportion of VEGF-A-positive muscle fibers in the damaged muscle. Compared with control rats, the volumetrically determined interstitial leakage of fluorescent dye (5.1 ± 1.4, 5.3 ± 1.2 vs. 0.51 ± 0.14 μm3 × 106; P < 0.05, days 1 and 3, respectively, vs. control) and percentage of VEGF-A-positive fibers in the damaged muscle (10 ± 0.4%, 22 ± 1.1% vs. 0%; days 1 and 3, respectively, vs. control) were significantly higher on days 1 and 3 after ECC. The interstitial leakage volume returned to control by day 7. These results suggest that microvascular hyperpermeability assessed by in vivo TPLSM imaging is associated with ECC-induced muscle damage and increased VEGF expression. NEW & NOTEWORTHY This investigation employed a novel in vivo imaging technique for skeletal muscle microcirculation using two-photon laser scanning microscopy that enabled microvascular permeability to be assessed by four-dimensional image analysis. By combining in vivo imaging and histological analysis, we found the temporal profile of microvascular hyperpermeability to be related to that of eccentric contraction-induced skeletal muscle injury and pronounced novel myocyte VEGF expression.
Collapse
Affiliation(s)
- Kazuki Hotta
- Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Bradley Jon Behnke
- Department of Kinesiology, Kansas State University College of Human Ecology, Manhattan, Kansas
| | - Kazuto Masamoto
- Faculty of Informatics and Engineering, Brain Science Inspired Life Support Research Center, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Rie Shimotsu
- Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Naoya Onodera
- Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Akihiko Yamaguchi
- Department of Physical Therapy, Health Sciences University of Hokkaido, Kanazawa Ishikari-Tobetsu, Hokkaido, Japan
| | - David C. Poole
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Yutaka Kano
- Department of Engineering Science, University of Electro-Communications, Chofu, Tokyo, Japan
| |
Collapse
|
19
|
Wilhelm EN, González-Alonso J, Chiesa ST, Trangmar SJ, Kalsi KK, Rakobowchuk M. Whole-body heat stress and exercise stimulate the appearance of platelet microvesicles in plasma with limited influence of vascular shear stress. Physiol Rep 2018; 5:5/21/e13496. [PMID: 29122961 PMCID: PMC5688785 DOI: 10.14814/phy2.13496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 01/02/2023] Open
Abstract
Intense, large muscle mass exercise increases circulating microvesicles, but our understanding of microvesicle dynamics and mechanisms inducing their release remains limited. However, increased vascular shear stress is generally thought to be involved. Here, we manipulated exercise‐independent and exercise‐dependent shear stress using systemic heat stress with localized single‐leg cooling (low shear) followed by single‐leg knee extensor exercise with the cooled or heated leg (Study 1, n = 8) and whole‐body passive heat stress followed by cycling (Study 2, n = 8). We quantified femoral artery shear rates (SRs) and arterial and venous platelet microvesicles (PMV–CD41+) and endothelial microvesicles (EMV–CD62E+). In Study 1, mild passive heat stress while one leg remained cooled did not affect [microvesicle] (P ≥ 0.05). Single‐leg knee extensor exercise increased active leg SRs by ~12‐fold and increased arterial and venous [PMVs] by two‐ to threefold, even in the nonexercising contralateral leg (P < 0.05). In Study 2, moderate whole‐body passive heat stress increased arterial [PMV] compared with baseline (mean±SE, from 19.9 ± 1.5 to 35.5 ± 5.4 PMV.μL−1.103, P < 0.05), and cycling with heat stress increased [PMV] further in the venous circulation (from 27.5 ± 2.2 at baseline to 57.5 ± 7.2 PMV.μL−1.103 during cycling with heat stress, P < 0.05), with a tendency for increased appearance of PMV across exercising limbs. Taken together, these findings demonstrate that whole‐body heat stress may increase arterial [PMV], and intense exercise engaging either large or small muscle mass promote PMV formation locally and systemically, with no influence upon [EMV]. Local shear stress, however, does not appear to be the major stimulus modulating PMV formation in healthy humans.
Collapse
Affiliation(s)
- Eurico N Wilhelm
- Centre for Human Performance, Exercise, and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - José González-Alonso
- Centre for Human Performance, Exercise, and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,Division of Sport, Health and Exercise Sciences, Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Scott T Chiesa
- Centre for Human Performance, Exercise, and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Steven J Trangmar
- Centre for Human Performance, Exercise, and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Kameljit K Kalsi
- Centre for Human Performance, Exercise, and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Mark Rakobowchuk
- Centre for Human Performance, Exercise, and Rehabilitation, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom .,Faculty of Science, Department of Biological Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada
| |
Collapse
|